检索项 检索词
  土壤学报  2018, Vol. 55 Issue (1): 100-110  DOI: 10.11766/trxb201705090108
0

引用本文  

李涛, 于蕾, 吴越, 等. 山东省设施菜地土壤次生盐渍化特征及影响因素. 土壤学报, 2018, 55(1): 100-110.
LI Tao, YU Lei, WU Yue, et al. Secondary Salinization of Greenhouse Vegetable Soils and Its Affecting Factors in Shandong Province, China. Acta Pedologica Sinica, 2018, 55(1): 100-110.

通讯作者Corresponding author

于蕾, E-mail:yuleisdnu@163.com

作者简介

李涛(1963-),男,山东蓬莱人,学士,研究员,主要研究耕地改良修复、土壤节水技术推广。E-mail:litaonyt@163.com
山东省设施菜地土壤次生盐渍化特征及影响因素
李涛 , 于蕾 , 吴越 , 万广华 , 李建伟     
山东省土壤肥料总站,济南 250100
摘要:调查和分析了山东省设施菜地土壤次生盐渍化特征和影响因素。2014年全省设施菜地(含瓜类)总面积(日光温室、大拱棚含棚间面积)为64.98×104 hm2,占全省菜地面积的35.45%,其中,日光温室25.06×104 hm2,大拱棚20.94×104 hm2,中小拱棚18.98×104 hm2。山东省设施菜地土壤盐分离子组成中阴离子以SO42-离子为主,阳离子以Ca2+为主。全省设施菜地约39.73%出现不同程度的盐渍化现象,其中,轻度盐渍化为28.64%,中度盐渍化为8.37%,重度盐渍化为2.29%,盐土为0.43%。在不同设施类型中,盐渍化发生程度为:日光温室>大拱棚>中小拱棚;全省17个市设施菜地次生盐渍化发生程度表现出聊城、莱芜、东营相对较高。全省化肥平均施用量(折纯)为1 624 kg hm-2,氮肥(N)、磷肥(P2O5)、钾肥(K2O)施用量(折纯)分别为559.5、465.2、599.3 kg hm-2。通过分析设施菜地土壤次生盐渍化影响因素发现,化肥的高投入是可溶性盐分增加的一个重要原因,但在实际生产中受各种因素影响,未表现出完全线性相关关系;可溶性盐分增加与种植年限密切相关。典型对应分析发现,施肥数量、种植年限均会影响盐渍化程度,但影响各不相同。氮肥、磷肥和钾肥对K+和Na+的影响较大;Ca2+和SO42-含量受种植年限影响较大,K+、Na+、HCO3-和Cl-受种植年限的影响较小;Mg2+受氮磷钾肥和种植年限的影响均较大。
关键词设施菜地    次生盐渍化    典型对应分析    施肥数量    种植年限    山东省    

设施菜地栽培是玻璃温室、日光温室、塑料大棚等园艺设施栽培的总称[1-2]。由于设施菜地栽培具有产量高、经济效益高等特点,近年来,中国设施菜地栽培发展迅速,并在蔬菜和其他重要经济作物的反季节和跨地区种植中有着重要作用[3-4]。据不完全统计,2008年全国设施蔬菜368×104 hm2,总产量2.51×108 t,占全国蔬菜产量的34%以上[5-6]。有调查表明,大棚蔬菜生产每公顷产量较露地蔬菜高598.6 kg[7],利润率是露地蔬菜的3倍~4倍[7-8]。但是,由于设施菜地栽培处于密闭空间中,缺少雨水淋洗,温度、湿度、通气状况和水肥管理等均与露地栽培有较大差别[9],加之长期栽培管理措施不当、肥料施用量过大,导致了地下水位上升、土壤板结、次生盐渍化、养分失衡等诸多问题[3, 10-12]。设施菜地发生次生盐渍化,土壤中可溶性盐类过多,会引起植物根细胞吸收土壤水分困难或脱水,造成植物生理干旱,同时产生离子毒害作用[10],以致生长发育不良,病虫害加重等,严重影响蔬菜的产量和品质。设施菜地发生次生盐渍化已成为限制设施蔬菜发展的主要障碍因子[1, 13-14],因此,了解设施土壤次生盐渍化的现状、特征、成因、影响因素及其对土壤性质的影响,对于指导农业生产,实现设施土壤的可持续利用具有十分重要的现实意义。

山东省共辖17市,是全国重要的设施蔬菜生产基地,也是全国设施蔬菜优势主产区之一,2013年底全省耕地总面积为7.64×107 hm2[15],蔬菜种植面积1.83×107 hm2[16]。由于肥料投入量大、设施栽培年限增加及管理不当等原因[17],山东设施菜地土壤出现不同程度的次生盐渍化,影响了区域设施栽培的可持续发展[3, 13]。本文以山东省设施菜地土壤为研究对象,分析其次生盐渍化分布、程度及典型原因,以期为全省设施菜地次生盐渍化管理提供数据支持和参考。

1 材料与方法 1.1 数据来源

本研究数据来源于山东省土壤肥料总站对全省17市蔬菜地次生盐渍化状况的调研。

2014年5月至6月,在山东省17市设施菜地采集土样,分析土壤全盐含量数据,并对农户进行调查。在采样过程中,每133~333 hm2布置一个调查点,0~20 cm全层均匀取样,8~10个小点混合,并考虑蔬菜种植年限、盐渍化程度及代表性。共采集了设施菜地样点2 751个,其中,日光温室采样1 489个,大拱棚采样861个,中小拱棚采样401个。

1.2 调查方法

农户调查数据通过填写调查表格“菜地基本情况调查表”获得,统计种植类型、种植制度、地形部位、成土母质、土种类型、质地、灌溉水源、灌溉方式、耕作方式、障碍因素等资料。

1.3 分析方法

测定土壤水溶性盐总量,并对土壤水溶性盐总量大于6 g kg-1的土样,进行K+、Na+、Ca2+、Mg2+、CO32-、HCO3-、Cl-和SO42-分析[18]:水溶性盐总量用质量法测定;CO32-和HCO3-用双指示剂中和法测定;Cl-用硝酸银滴定法测定;SO42-用硫酸钡比浊法测定;Ca2+、Mg2+用EDTA络合滴定法测定;Na+、K+用火焰光度法测定,仪器为火焰光度计(Ap1302,傲谱,上海)。

1.4 盐渍化程度划分标准

参考全国第二次土壤普查硫酸盐型盐化潮土划分标准[19],土壤水溶性盐总量2~4 g kg-1为轻度盐渍化,4~6 g kg-1为中度盐渍化,6~10 g kg-1为重度盐渍化,大于10 g kg-1为盐土。

1.5 数据处理

采用Excel 2003和Canoco 4.5将试验所得数据资料进行整理分析。

2 结果 2.1 山东省设施菜地土壤次生盐渍化基本特征

山东省蔬菜生产地基本在平坦的平原地貌上,母质为河流冲积物、湖积物、洪冲积物、洪积物等。土壤类型主要有棕壤、褐土、潮土和砂姜黑土等。质地类型主要为轻壤土和中壤土。全部菜地具有水源保障,沟灌占调查点位总数的89.79%,畦灌占0.25%,微灌占9.96%。耕作方式以旋耕和深耕为主,旋耕占调查点位总数的76.4%,深耕占21.01%,其他为2.58%。

据山东省土壤肥料总站调研(表 1),2014年全省设施菜地(含瓜类)总面积(日光温室、大拱棚含棚间面积)为64.98×104 hm2,占全省菜地面积的35.45%,其中,日光温室25.06×104 hm2,大拱棚20.94×104 hm2,中小拱棚18.98×104 hm2。潍坊、聊城和临沂的设施菜地面积较大,分别为10.23×104 hm2、9.525×104 hm2、9.061×104 hm2;莱芜、威海和东营的面积较小,分别为0.092×104 hm2、0.615×104 hm2、0.929×104 hm2

表 1 山东省17市不同类型设施菜地面积 Table 1 Area of greenhouse vegetable land in the 17 cities of Shandong Province relative to type of greenhouse(×104 hm2)

本次调查数据(表 2)显示,山东省设施菜地土壤中非盐渍化土壤、轻度盐渍化土壤、中度盐渍化土壤、重度盐渍化土壤和盐土调查点位分别占总点位60.27%、28.64%、8.37%、2.29%、0.43%。设施菜地次生盐渍化推算面积通过各设施菜地的面积(表 1)与采样点所占比例相乘进行推算,结果分别为39.16×104 hm2、18.61×104 hm2、5.439×104 hm2、1.49×104 hm2、0.28×104 hm2。总体看,山东省设施菜地出现中度以上盐渍化的比例约为11.09%,需引起高度关注。

表 2 不同类型设施菜地次生盐渍化所占比例及推算面积 Table 2 Proportions and areas of facilitated vegetable lands under secondary salinization relative to type of greenhouse

山东省设施菜地土壤盐分离子组成(图 1)中阴离子以SO42-离子为主,占阴离子总量的65.56%,其次为Cl-和HCO3-,分别占27.59%和6.96%,SO42-和Cl-摩尔比大于2,为硫酸盐型;阳离子以Ca2+为主,占阳离子总量的48.36%,其次为Na+和Mg2+,分别占22.74%和14.79%。

图 1 山东省设施菜地土壤盐分离子组成 Fig. 1 Composition of salt ions in the soils under greenhouse in Shandong Province

日光温室、大拱棚和中小拱棚覆盖设施不同,种植类型与施肥管理亦不同,使得土壤积盐程度不同。本文将日光温室、大拱棚、中小拱棚分别讨论。通过对土壤样本的调查分析得到不同设施类型土壤次生盐渍化面积及所占比例(表 2),在不同设施类型中,日光温室土壤盐渍化发生程度最高,为46.91%;其次是大拱棚,为38.10%;中小拱棚最低,为32.17%。日光温室和大拱棚分别出现了8个、6个全盐量大于10 g kg-1的盐土点位。

图 2 山东省各地市日光温室次生盐渍化状况 Fig. 2 Secondary salinization of the soils under sunlight greenhouse in the 17 cities in Shandong Province 注:1-济南,2-青岛,3-淄博,4-枣庄,5-东营,6-烟台,7-潍坊,8-济宁,9-泰安,10-威海,11-日照,12-莱芜,13-临沂,14-德州,15-聊城,16-滨州,17-菏泽。下同 Note:1-Jinan, 2-Qingdao, 3-Zibo, 4-Zaozhuang, 5-Dongying, 6-Yantai, 7-Weifang, 8-Jining, 9-Taian, 10-Weihai, 11-Rizhao, 12-Laiwu, 13-Linyi, 14-Dezhou, 15-Liaocheng, 16-Binzhou, 17-Heze. The same below
2.2 日光温室土壤次生盐渍化状况

由山东省17市日光温室土壤次生盐渍化现状(图 2)可知,山东省日光温室非盐渍化土壤、轻度盐渍化土壤、中度盐渍化土壤、重度盐渍化土壤和盐土调查点位分别占总点位的53.19%、32.44%、9.81%、4.03%、0.53%,推算面积分别为13.33×104 hm2、8.129×104 hm2、2.458×104 hm2、1.01×104 hm2、0.133×104 hm2,各地市情况各有不同,聊城、莱芜、东营和烟台土壤盐渍化发生程度相对较高,淄博、青岛、潍坊和临沂土壤盐渍化发生程度相对较低。

聊城、莱芜、东营和烟台发生盐渍化的土壤调查点位占总点位的比例均超过了65%,分别为83.62%、77.78%、76%和65.71%。莱芜虽然盐渍化程度较高,但轻度盐渍化土壤占比为66.67%,无中度、重度盐渍化土壤和盐土。东营的中度盐渍化土壤达到52%,烟台重度盐渍化土壤达到了7.14%,聊城中度、重度盐渍化土壤和盐土均有占比,需引起注意。聊城、东营是易发生盐渍化和潜在盐渍化地区,更易发生或加重盐渍化。

淄博、青岛、潍坊和临沂非盐渍化土壤调查点位占总点位的比例均超过了65%,分别为98.41%、82.42%、68.51%和65.91%。

2.3 大拱棚土壤次生盐渍化状况

由山东省各地市大拱棚次生盐渍化现状(图 3)可知,山东省大拱棚非盐渍化土壤、轻度盐渍化土壤、中度盐渍化土壤、重度盐渍化土壤和盐土调查点位分别占总点位61.90%、27.88%、8.59%、0.93%、0.70%,推算面积分别为12.96×104 hm2、5.838×104 hm2、1.799×104 hm2、0.195×104 hm2、0.147×104 hm2,各地市情况各有不同,莱芜和滨州土壤盐渍化程度相对较高,淄博、日照、枣庄、德州、济南和潍坊非盐渍化程度相对较高。

图 3 山东省各地市大拱棚次生盐渍化状况 Fig. 3 Secondary salinization of the soils under large arched hut in the 17 cities in Shandong Province

莱芜和滨州发生盐渍化的土壤调查点位占总点位的比例均超过了65%,分别为85.71%、75%,其中,莱芜土壤盐渍化比例较高,但全部为轻度盐渍化土壤,无中度、重度盐渍化土壤和盐土。滨州是易发生盐渍化和潜在盐渍化地区,更易发生盐渍化或加重。

淄博无发生盐渍化土壤;日照、枣庄、德州、济南和潍坊非盐渍化土壤调查点位占总点位的比例均超过了70%,分别为90.91%、89.06%、87.5%、81.58%和72.22%,但枣庄有0.78%的中度、重度盐渍化土壤和盐土。

2.4 中小拱棚土壤次生盐渍化状况

由山东省各地市中小拱棚次生盐渍化现状(图 4)可知,中小拱棚土壤次生盐渍化发生率较低,无盐土。非盐渍化土壤、轻度盐渍化土壤、中度盐渍化土壤、重度盐渍化土壤和盐土调查点位分别占总点位67.83%、24.44%、6.23%、1.50%、0.00%,推算面积分别为12.87×104 hm2、4.639×104 hm2、1.182×104 hm2、0.285×104 hm2、0 hm2。各地市情况各有不同,威海、泰安和滨州土壤盐渍化程度相对较高,济南、淄博和日照无盐渍化土壤。

图 4 山东省各地市中小拱棚次生盐渍化状况 Fig. 4 Secondary salinization of the soils under middle and small arched shed in the 17 cities in Shandong Province

威海、泰安和滨州发生盐渍化的土壤调查点位占总点位的比例分别为64.71%、60.87%和58.33%,其中,滨州均为轻度盐渍化土壤。

济南、淄博和日照无盐渍化土壤。枣庄、聊城、德州、潍坊、青岛和临沂非盐渍化土壤调查点位占总点位的比例均超过了65%,分别为87.78%、85.71%、80%、73.33%、69.23%和69.14%,临沂有1.23%重度盐渍化土壤,枣庄有1.11%的重度盐渍化土壤。

3 讨论 3.1 施肥对设施菜地土壤次生盐渍化的影响

在设施生产中,种植户常过量施用化肥和大量施用有机肥。有研究表明,盲目大量施肥和偏施氮肥是造成设施土壤次生盐渍化的另一重要因素,氮、磷养分远远超出了蔬菜本身的吸肥量[20-21],一些未被作物吸收利用的肥料及其副成分便大量残留于土壤中,成为土壤盐分离子的主要来源[20, 22]

分别对设施菜地氮、磷、钾平均施用量计算得到表 3,全省年平均施用化肥纯养分为1 624 kg hm-2,其中,施用氮肥(N)、磷肥(P2O5)、钾肥(K2O)分别为559.5、465.2、599.3 kg hm-2。日光温室平均施用氮肥、磷肥、钾肥量最高,分别为643.8、529.7、683.7 kg hm-2;中小拱棚施用氮肥、磷肥、钾肥最低,分别为564.2、386.8、524.3 kg hm-2。文献[23-24]表明,山东省用于设施栽培的化肥年施用量达6 000~9 000 kg hm-2,与此相比,2014年化肥年施用量已明显降低。

表 3 不同类型设施菜地氮、磷、钾年平均施用量 Table 3 Mean annual application rate of nitrogen, phosphorus and potassium in facilitated vegetable land relative to type of greenhouse(kg hm-2)

通过对不同设施类型、不同盐渍化程度菜地氮、磷、钾平均施用量计算(表 4)发现,化肥施用与可溶性盐分增加有一定关系。日光温室中,氮肥施用量与盐渍化发生程度呈线性关系;磷肥和钾肥为先增后降,在重度盐渍化情况施用量降低,盐土情况下最高。大拱棚和中小拱棚中,氮肥、磷肥和钾肥施用量均为非盐渍化土壤较高,轻度和中度盐渍化情况较低,重度盐渍化或盐土最高(中小拱棚无盐土)。由此可见,设施栽培条件下化肥的高投入是其可溶性盐分增加的一个重要原因[10],但在实际生产中受各种因素影响,不呈完全线性相关关系。

表 4 不同设施类型、不同盐渍化程度菜地氮、磷、钾平均施用量 Table 4 Mean annual application rate of nitrogen, phosphorus and potassium in facilitated vegetable land relative to type of greenhouse and degree of salinization(kg hm-2)
3.2 种植年限对设施菜地土壤次生盐渍化的影响

由于设施菜地土壤仅在凉棚期才受降雨淋洗,施入的多余肥料则大部分残留于土壤中并逐年累积。因此,随着棚室使用年限不断延长,土壤中盐分的累积量也不断增加[25]

全省设施菜地种植年限(表 5)调查表明,大部分菜地种植年限均较短,种植年限在0~15 a的调查点位数占到了调查点位总数的80%~90%。在日光温室栽培中,种植年限最长为25 a,其中,种植年限<5 a的调查点位占日光温室调查点位的41.22%,种植年限5~10 a的调查点位占31.05%,种植年限>10 a的调查点位占27.72%;在大拱棚生产中,种植年限最长为30 a,其中,<5 a的调查点位占大拱棚调查点位的41.02%,种植年限5~10 a的调查点位占31.72%,种植年限>10 a的调查点位占27.26%;在中小拱棚生产中,种植年限最长为32 a,其中,<5 a的调查点位占中小拱棚调查点位的34.54%,种植年限5~10 a的调查点位占32.99%,种植年限>10 a的调查点位占32.48%。

表 5 山东省不同类型设施菜地种植年限分布 Table 5 Distribution of facilitated vegetable lands relative to type of greenhouse and cropping history in Shandong Province(%)

同时,按不同设施类型土壤盐渍化平均种植时间进行统计分析(表 6)表明,三种设施类型种植年限与土壤全盐量变化趋势不尽相同。

表 6 不同设施类型土壤盐渍化平均种植时间 Table 6 Mean number of years of cropping under greenhouse relative to grade of secondary salinization and type of greenhouse

在日光温室中,种植年限越长,盐渍化程度越高,但盐土出现年限一般为9 a,低于中度盐渍化的平均年限10.17 a,可能与土壤和地下水矿化度有关;大拱棚中,种植年限越长,盐渍化程度越高,盐土种植年限最长,为20 a,非盐渍化和轻度盐渍化年限较短,为8.65 a和8.67 a;中小拱棚中,种植年限较为平均,最低为9.32 a,最高为10.89 a,表现为先升高后降低又升高,轻度盐渍化土壤最高。在日光温室中出现盐土的年限最短,说明盐渍化程度不完全与种植年限密切相关,可能与设施菜地有季节性揭棚等因素相关。有研究[3]表明,盐分含量在一年中会出现明显的季节性消积变化现象,即冬春覆棚时表土盐分积累,夏季揭棚后,表土含盐量明显下降,但随着使用年限的增长,整个土体内盐分仍呈逐年累积趋势。设施菜地含盐量有随种植年限的增加而上升的趋势,在约0~8 a时随着种植年限的增加,土壤全盐含量呈现增加的趋势;而在8~15 a间,则有随种植年限增加而降低的趋势[26]

3.3 山东省设施菜地土壤盐分离子与环境变量的关系

为进一步研究,利用Canoco 4.5软件对设施菜地土壤的盐分离子进行典型对应分析,以反映盐分离子与环境变量和采样区域之间的关系,获得如图 5所示的结果。典型对应分析(Canonical correspondence analysis)是研究两组变量之间相关关系的非线性多元直接梯度分析方法[27-28]。利用降维的思想,分别对两组研究变量提取主成分,将对应分析与多元回归分析相结合,将盐分离子、样点和环境指标同时表示在一个低维的空间中,直观地反映出三者之间的关系。

图 5 山东省设施菜地土壤盐分离子的典型对应分析 Fig. 5 Canonical correspondence analysis of salt ions in the soils under greenhouse in Shandong Province 注:Years为种植年限,N为氮肥,P为磷肥,K为钾肥,OF为有机肥 Note: Years stands for cropping history, N for nitrogen fertilizer, P for phosphate fertilizer, K for potash fertilizer, OF for organic manure

盐分离子间的距离为卡方距离,表明它们之间的亲疏关系。盐分离子中,Ca2+、Mg2+与SO42-的距离较近,说明硫酸盐积累较高的区域,Ca2+、Mg2+的浓度也比较高。

盐分离子对环境变量线段的投影点至空箭头的距离表示环境变量对盐分离子的影响,距离越短,影响越大,即在该环境变量中,盐分离子有较大的积累量。Ca2+、Mg2+与SO42-对Years(种植年限)的投影点至空心箭头的距离较近,说明2种离子的积累量随种植年限的增加而增大。K+、Na+、HCO3-、Cl-受种植年限的影响较小。N、P、K对K+、Na+、Mg2+的影响较大。

环境变量间夹角的余弦值表示二者的相关关系。OF(有机肥)与Years呈负相关,说明短期内有机肥在一定程度上可以改良盐渍化土壤。

4 结论

通过调研发现,山东省约39.73%的设施菜地出现不同程度的次生盐渍化现象,其中,轻度盐渍化为28.64%,中度盐渍化为8.37%,重度盐渍化为2.29%,盐土为0.43%,肥料投入量大和设施栽培年限增加是发生次生盐渍化的重要原因。不同地市不同设施类型次生盐渍化发生程度不均衡,从类型看,日光温室>大拱棚>中小拱棚;从不同地市看,聊城、莱芜和东营发生程度相对较高。盐渍化在一定程度上影响区域设施栽培的可持续发展,针对山东省的情况,可根据不同地市不同设施类型,从肥料投入、种植年限等方面加强管理,以减少次生盐渍化的发生或降低其程度的加深。

参考文献
[1]
张俊侠, 孙德平, 司友斌. 设施土壤蔬菜栽培的障碍因子研究. 安徽农学通报, 2001, 7(4): 52-54.
Zhang J X, Sun D P, Si Y B. Study on obstruction factors of vegetable installation culture (In Chinese). Anhui Agricultural Science Bulletin, 2001, 7(4): 52-54. (0)
[2]
蒋卫杰, 邓杰, 余宏军. 设施园艺发展概况、存在问题与产业发展建议. 中国农业科学, 2015, 48(17): 3515-3523.
Jiang W J, Deng J, Yu H J. Development situation, problems and suggestions on industrial development of protected horticulture (In Chinese). Scientia Agricultura Sinica, 2015, 48(17): 3515-3523. DOI:10.3864/j.issn.0578-1752.2015.17.017 (0)
[3]
余海英, 李廷轩, 周健民. 设施土壤次生盐渍化及其对土壤性质的影响. 土壤, 2005, 37(6): 581-586.
Yu H Y, Li T X, Zhou J M. Secondary salinization of greenhouse soil and its effects on soil properties (In Chinese). Soils, 2005, 37(6): 581-586. (0)
[4]
范庆锋, 虞娜, 张玉玲, 等. 设施蔬菜栽培对土壤阳离子交换性能的影响. 土壤学报, 2014, 51(5): 1132-1137.
Fan Q F, Yu N, Zhang Y L, et al. Effects of vegetable cultivation on soil cation exchange capacity in greenhouse (In Chinese). Acta Pedologica Sinica, 2014, 51(5): 1132-1137. (0)
[5]
董静, 赵志伟, 梁斌, 等. 我国设施蔬菜产业发展现状. 中国园艺文摘, 2017, 33(1): 75-77.
Dong J, Zhao Z W, Liang B, et al. Development status of protected vegetable industry in China (In Chinese). Chinese Horticulture Abstracts, 2017, 33(1): 75-77. (0)
[6]
张志斌. 我国设施园艺发展现状、存在的问题及发展方向. 蔬菜, 2015(6): 1-4.
Zhang Z B. Present situation, existing problems and development direction of protected horticulture in China (In Chinese). Vegetables, 2015(6): 1-4. (0)
[7]
张金锦, 段增强. 设施菜地土壤次生盐渍化的成因、危害及其分类与分级标准的研究进展. 土壤, 2011, 43(3): 361-366.
Zhang J J, Duan Z Q. Preliminary study on classification & grading standards and causes & hazards of secondary salinization of facility vegetable soils (In Chinese). Soils, 2011, 43(3): 361-366. (0)
[8]
蒋和平, 王有年, 辛岭. 北京设施农业发展现状、问题与对策. 北京农学院学报, 2009, 24(3): 28-31.
Jiang H P, Wang Y N, Xin L. Current development, problem and strategy of facility agriculture in Beijing (In Chinese). Journal of Beijing Agricultural College, 2009, 24(3): 28-31. (0)
[9]
殷永娴, 刘鸿雁. 设施栽培下土壤中硝化、反硝化作用的研究. 生态学报, 1996, 16(3): 246-250.
Yin Y X, Liu H Y. Investigation on nitrification and denitrification of soil under installing cultivation conditions (In Chinese). Acta Ecologica Sinica, 1996, 16(3): 246-250. (0)
[10]
郭文忠, 刘声峰, 李丁仁, 等. 设施蔬菜土壤次生盐渍化发生机理的研究现状与展望. 土壤, 2004, 36(1): 25-29.
Guo W Z, Liu S F, Li D R, et al. Mechanism of soil salinization in protected cultivation (In Chinese). Soils, 2004, 36(1): 25-29. DOI:10.11838/sfsc.20040108 (0)
[11]
陈永, 黄标, 胡文友, 等. 设施蔬菜生产系统重金属积累特征及生态效应. 土壤学报, 2013, 50(4): 693-702.
Chen Y, Huang B, Hu W Y, et al. Heavy metals accumulation in greenhouse vegetable production systems and its ecological effects (In Chinese). Acta Pedologica Sinica, 2013, 50(4): 693-702. (0)
[12]
成杰民, 张英, 王岩. 中国污染农地整理工程的环境问题及解决途径. 农业工程学报, 2016, 32(16): 1-6.
Cheng J M, Zhang Y, Wang Y. Potential environmental problems resulted from contaminated farmland and solution for land consolidation in China (In Chinese). Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(16): 1-6. (0)
[13]
夏立忠, 李忠佩, 杨林章. 大棚栽培番茄不同施肥条件下土壤养分和盐分组成与含量的变化. 土壤, 2005, 37(6): 620-625.
Xia L Z, Li Z P, Yang L Z. Changes in composition and content of nutrients and water soluble salts in soil under plastic greenhouse tomato cultivation in relation to fertilization (In Chinese). Soils, 2005, 37(6): 620-625. (0)
[14]
谢文军, 张衍鹏, 张淼, 等. 滨海盐渍化土壤理化性质与小麦生产间的关系. 土壤学报, 2015, 52(2): 461-466.
Xie W J, Zhang Y P, Zhang M, et al. Relationships between soil physicochemical properties and wheat production in coastal saline soil (In Chinese). Acta Pedologica Sinica, 2015, 52(2): 461-466. (0)
[15]
山东省农业厅. 山东农业自然概况. http://www.sdny.gov.cn/zwgk/sdny/zrgk/201509/t20150925_320255.html
Shandong Provincial Department of Agriculture. General situation of agriculture in Shandong. http://www.sdny.gov.cn/zwgk/sdny/zrgk/201509/t20150925_320255.html (0)
[16]
山东省农业厅. 山东农业生产. http://www.sdny.gov.cn/zwgk/sdny/nysc/201505/t20150515_161596.html
Shandong Provincial Department of Agriculture. Agriculture production in Shandong. http://www.sdny.gov.cn/zwgk/sdny/nysc/201505/t20150515_161596.html (0)
[17]
吕福堂, 司东霞, 张秀省. 日光温室土壤盐分和养分的变化趋势. 中国蔬菜, 2004, 1(3): 14-16.
Lü F T, Si D X, Zhang X S. Changing trend of soil salt and nutrient content in greenhouse (In Chinese). China Vegetables, 2004, 1(3): 14-16. (0)
[18]
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
Bao S D. Soil and agricultural chemistry analysis (In Chinese). Beijing: China Agriculture Press, 2000. (0)
[19]
山东省土壤肥料工作站. 山东土壤. 北京: 中国农业出版社, 1994.
Soil and Fertilizer Station of Shandong Province. Shandong soils (In Chinese). Beijing: China Agriculture Press, 1994. (0)
[20]
秦巧燕, 贾陈忠, 曲东, 等. 我国设施农业发展现状及施肥特点. 湖北农学院学报, 2002, 22(4): 373-376.
Qin Q Y, Jia C Z, Qu D, et al. Advances and characters of fertilizer application of protected field agriculture in china (In Chinese). Journal of Hubei Agricultural College, 2002, 22(4): 373-376. (0)
[21]
Li W Q, Zhang M, van Der Zee D. Salt contents in soils under plastic greenhouse gardening in China . Pedosphere, 2001, 11(4): 359-367. (0)
[22]
Zhang Y G, Jiang Y, Liang W J. Accumulation of soil soluble salt in vegetable greenhouses under heavy application of fertilizers . Agricultural Journal, 2006, 1(3): 123-127. (0)
[23]
冯永军, 陈为峰, 张蕾娜, 等. 设施园艺土壤的盐化与治理对策. 农业工程学报, 2001, 17(2): 111-114.
Feng Y J, Chen W F, Zhang L N, et al. Soil salinization and countermeasures in protected horticulture (In Chinese). Transactions of the Chinese Society of Agricultural Engineering, 2001, 17(2): 111-114. (0)
[24]
王学军. 日光温室土壤次生盐渍化分析. 北方园艺, 1998(3): 12-13.
Wang X J. Analysis of soil secondary salinization in greenhouse (In Chinese). Northern Horticulture, 1998(3): 12-13. (0)
[25]
高新昊, 张英鹏, 刘兆辉, 等. 种植年限对寿光设施大棚土壤生态环境的影响. 生态学报, 2015, 35(5): 1452-1459.
Gao X H, Zhang Y P, Liu Z H, et al. Effects of cultivating years on soil ecological environment in greenhouse of Shouguang City, Shandong Province (In Chinese). Acta Ecologica Sinica, 2015, 35(5): 1452-1459. (0)
[26]
曾希柏, 白玲玉, 苏世鸣, 等. 山东寿光不同种植年限设施土壤的酸化与盐渍化. 生态学报, 2010, 30(7): 1853-1859.
Zeng X B, Bai L Y, Su S M, et al. Acidification and salinization in greenhouse soil of different cultivating years from Shouguang City, Shandong (In Chinese). Acta Ecologica Sinica, 2010, 30(7): 1853-1859. (0)
[27]
Ter Braak C J F. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis . Ecology, 1986, 67(5): 1167-1179. DOI:10.2307/1938672 (0)
[28]
Ter Braak C J F, Prentic I C. A theory of gradient analysis . Advances in Ecological Research, 1988, 18: 271-317. DOI:10.1016/S0065-2504(08)60183-X (0)
Secondary Salinization of Greenhouse Vegetable Soils and Its Affecting Factors in Shandong Province, China
LI Tao , YU Lei , WU Yue , WAN Guanghua , LI Jianwei     
Soil and Fertilizer Station of Shandong Province, Jinan 250100, China
Abstract: 【Objective】 Facilitated vegetable cultivation is a general term, encompassing glass greenhouse, sunlight greenhouse and plastic greenhouse, and characterized by high yield and high economic efficiency. However, as facilitated vegetable cultivation is going on in a confined space where temperature, humidity, ventilation and water/fertilizer management, all are different from those in the open field, high fertilizer input, consecutive years of cultivation and improper management make the soils therein liable to have secondary salinization. Shandong Province is an important base of facilitated vegetable production, enjoying great advantages, in China. By studying the soils under greenhouse in Shandong Province and analyze distribution, degree and major causes of secondary salinization in the soils is expected to be able to provide certain data, support and reference for management of secondary salinization in the soils under greenhouse all over the country.【Method】 From May to June 2014, soil samples were collected from facilitated vegetable fields in 17 cities of Shandong Province for analysis of total salt and salt content, while a survey was conducted on the farmers. For soil sampling, sampling points were laid out, one every 133~333 hm2, and samples collected evenly from the 0~20 cm soil layer of each sampling point. Soil samples from 8~10 points were blended into one sample. Total soluble salt was determined with the mass method, using water bath, electric ovens, dryer, and 1000ml porcelain evaporating dish; CO32- and HCO3- was with the double indicator neutralization method; Cl- was with the silver nitrate titration method; SO42- was with the Barium Sulfate Turbidimetry; Ca2+ and Mg2+ was with the EDTA complexometric titration; and Na+ and K+ was with the flame photometry. For the survey, a questionnaire titled as"Questionnaire on Basic Situation of Facilitated Vegetable Cultivation"was distributed for farmers to fill out. It contained the following items: planting type, cropping system, position in land relief, parent soil, soil type, soil texture, irrigation water source, irrigation mode, tillage pattern, restraining factors, etc. The criteria for grading sulfate-type salinized fluvo-aquic soils for the Second National Soil Survey was cited as reference, that is, soils 2~4 g kg-1 in total water-soluble salt are sorted as slightly salinized soil, soils 4~6 g kg-1 as moderately salinized soil, soils 6~10 g kg-1 as severely salinized soil, and soils >10g kg-1 as saline soil.【Result】 Secondary salinization of greenhouse vegetable soils in Shandong was investigated and analyzed. In 2014, the greenhouse vegetable(including melons)land totaled 64.98×104 hm2 in area, accounting for 35.45% of the total vegetable land of the province. Of the greenhouse vegetable land in Shandong, 25.06×104 hm2 was under sunlight greenhouses; 20.94×104 hm2 under large arched plastic huts; and 18.98×104 hm2 under medium and small arched plastic sheds. The salt ions in the greenhouse vegetable soils, consisted mainly of SO42--dominated anions and Ca2+-dominated cations About 39.73% of the greenhouse vegetable soils in the province suffered salinization varying in degree, and among them, 0.43% was slightly salinized, 2.29% moderately salinized, 8.37% severely salinized and 28.64% saline soils. In terms of salinization degree, the three types of greenhouses displayed an order of, sunlight greenhouse>large arched hut>small arched shed. In the 17 cities investigated of Shandong Province, Liaocheng, Laiwu, and Dongying was relatively high in secondary salinization degree. The province applied 1 624 kg hm-2(on nutrient element basis)of chemical fertilizers on average, consisting of 559.5 kg hm-2 N, 465.2 kg hm-2 P2O5 and 599.3 kg hm-2 K2O. Analysis shows that among the factors affecting secondary salinization, high chemical fertilizer input ranked first, although in the actual production practice affected by a huge variety of factors, no apparent linear relationship was observed, Instead, accumulation of soluble salts was found closely related to cropping history. Canonical correspondence analysis shows that both input of fertilizers and cropping history would affect salinization degree, though varying in impact. Input of NPK fertilizers was the major factor affecting contents of K+, Na+ and Mg2+ in the soi, while cropping history was the one affecting contents of Ca2+, Mg2+ and SO42-, rather than contents of K+, Na+, HCO3- and Cl-. Content of Mg2+ was significantly affected by both factors.【Conclusion】 About 39.73% of the facilitated vegetable land in Shandong Province exhibits a varying degree of secondary salinization. High input of chemical fertilizers is an important cause of the increase in soluble salt, and cropping history is another. It is, therefore, recommended that management of the cultivation under greenhouse should be intensified case-specifically in response to differences in type of greenhouse input of fertilizers and cropping history so as to mitigate the risk or reduce the degree of secondary salinization.
Key words: Greenhouse vegetable soil    Secondary salinization    Canonical correspondence analysis    Fertilization rate    Cropping history    Shandong Province