检索项 检索词
  土壤学报  2018, Vol. 55 Issue (1): 174-181  DOI: 10.11766/trxb201705110141
0

引用本文  

乔春连, 布仁巴音. 合成氮肥对中国茶园土壤养分供应和活性氮流失的影响. 土壤学报, 2018, 55(1): 174-181.
QIAO Chunlian, Burenbayin. Effects of Application of Synthetic Nitrogen Fertilizers on Soil Nutrient Supply and Loss of Reactive Nitrogen in Tea (Camellia Sinensis L. Kuntze) Gardens in China. Acta Pedologica Sinica, 2018, 55(1): 174-181.

基金项目

中国博士后科学基金(2017M612390)、河南省科技计划项目(172102110254)和信阳师范学院青年骨干教师资助计划(2017GGJS-12)资助

通讯作者Corresponding author

布仁巴音, E-mail:burenbayin@163.com

作者简介

乔春连(1985—),女,山东青岛人,博士,讲师,现主要从事陆地生态系统对全球变化的响应研究。E-mail:chlqiao@xynu.edu.cn
合成氮肥对中国茶园土壤养分供应和活性氮流失的影响
乔春连1,2 , 布仁巴音3     
1. 信阳师范学院大别山生物农业资源开发与利用研究院,河南信阳 464000;
2. 河南大学河南省全球变化生态学国际联合实验室,河南开封 475004;
3. 信阳师范学院分析测试中心,河南信阳 464000
摘要:茶树是我国广泛种植的一种高需氮经济植物。目前,尽管茶园生态系统中已开展了一些模拟氮肥施用的实验,但对于合成氮肥如何影响茶园土壤性质、养分供应及活性氮的流失仍缺乏全面的评估和量化。对2004—2016年间发表的相关研究数据进行整合分析,结果显示,施用合成氮肥导致我国茶园土壤pH平均降低0.20,使土壤总无机氮升高172%,对土壤有机碳、有效磷和钾离子浓度无影响。合成氮肥使土壤钙、镁离子浓度分别降低了23%和37%,铝离子浓度上升了近54%。同时,使土壤N2O排放和无机氮淋溶分别增加292%和127%。总体上,大量施用合成氮肥加剧了我国茶园土壤酸化和养分元素的流失,增加了活性氮的流失,威胁着我国茶园生态环境的可持续发展。
关键词合成氮肥    土壤酸化    养分供应    无机氮淋溶    N2O排放    

茶(Camellia sinensis L.Kuntze)作为全球最重要的健康饮品之一,广泛种植于热带和亚热带地区,尤其是东亚和南亚等发展中国家,具有重要的社会、经济和文化价值[1]。我国的茶种植历史悠久,作为世界第一产茶大国,至2013年种植面积已达2.58×106 hm2,产量达1.92×106 t,分别占世界总量的47%和35%[2]。茶树为多年生喜铵植物,因采摘用叶使茶树组织中氮素消耗很大,为高需氮植物。茶园施氮量通常在N450~1200 kg hm-2 a-1[3-5]。随着工业合成氮肥施用量的上升,土壤微生物的硝化反应加速,以淋溶和气态含氮化合物形式流失的活性氮上升,在很大程度上干扰了氮的生物地球化学循环,引发全球水体、大气和土壤方面一系列严重的环境问题[6-8]。我国约66%的N2O排放是由农田氮肥施用引起的,造成了全国62%的淡水区域产生严重富营养化[9-10],使密集农业区大气氮沉降高达89~104 kg hm-2 a-1[11],这进一步导致了土壤严重酸化和土壤中钙镁等营养元素的大量流失。

尽管施用氮肥可显著提高茶叶产量[12-14],但由于茶树多生长于高热高湿、透水性良好的酸性土壤,大量施用合成氮肥可能导致土壤pH进一步降低[15-16]。我国南方植茶区生长季降水频率高且降水量大,土壤酸化及养分流失,影响茶树根系的生长及土壤微生物的活性[17]。福建茶园土柱淋滤实验显示,随着氮肥施用量的增加,土壤铵态氮(NH4+-N)和硝态氮(NO3--N)的淋溶量均显著上升[16]。据估算,中国的茶园生态系统N2O排放约占世界茶园N2O排量的85%[18],且随着茶树树龄的增加,土壤酸化逐渐加剧,使N2O排放也呈显著的上升趋势[19, 4-5],导致茶园生态环境的持续恶化。我国南方茶树种植区域广,氮肥施用剂量高,目前就合成氮肥对茶园生态系统的影响仍缺乏准确的认识。因此,本研究搜集茶园模拟合成氮肥实验,开展整合分析(Meta-analysis),旨在量化和评估合成氮肥对不同茶树建植的茶园土壤养分供应和活性氮流失的影响,为我国茶园氮肥的科学管理和生态环境的可持续发展提供初步的理论依据。

1 材料与方法 1.1 数据来源

本研究在Web of Sciences(2004—2016)、谷歌学术、中国知网上搜集公开发表的中国茶园开展的模拟合成氮肥施用的研究论文。研究必须满足以下条件:(1)基于茶园生态系统开展的,遵循茶园常规管理,(2)至少有两个氮肥施用剂量,(3)相关的指标在研究中有准确的测定。对满足条件的研究数据进行提取,共评估了合成氮肥对15个相关指标的影响:(1)土壤基本情况:土壤pH、土壤有机碳(SOC)、全氮(TN);(2)土壤速效养分供应:总无机氮(DIN)、NH4+-N、NO3--N、有效磷浓度、K+、Ca2+、Mg2+、Al3+浓度;(3)活性氮的流失:N2O排放、DIN淋溶、NH4+-N淋溶和NO3--N淋溶。对于文献中以图片形式呈现的数据使用Engauge Digitizer(Free Software Foundation,Inc.,Boston,MA,USA)软件进行数字化处理,并尽量按照同一标准降低人工处理过程中造成数据的误差。

1.2 整合分析

通过搜集2004—2016年间的17篇关于我国茶园氮肥施用影响茶园土壤养分供应和活性氮流失的文献,获取到246条数据记录。对于土壤养分,NH4+-N、NO3--N、DIN、有效磷和K+浓度等用茶树每个茶季的平均值表示。对于有较大季节变化的变量,如NH4+-N淋溶、NO3--N淋溶和DIN的淋溶及N2O的排放等指标,用整个茶季的累计值来表示。由于整合分析模型要求数据的独立性,如研究中包含同一地点的多个茶季的数据,提取最后一个茶季的数据进行整合分析[20]。如果同一个实验中设有不同氮肥类型或施氮水平,视为独立观测值处理。

响应比(Response Ratio,RR)用来衡量施用氮肥对评估变量的效应[21]。每个变量响应比的自然对数用以下公式计算:lnRR=ln(XT/XC),其中,XC为对照均值(未施用氮肥组),XT为处理组均值。本研究采用重取样方法、95%的置信区间来估算响应比的均值。响应比的95%置信区间(95% CI)与1没有交叠表明变量有显著的正效应或负效应,变量间95% CI无交叠表明差异显著,反之则认为变量间不存在显著差异。

2 结果与讨论 2.1 土壤pH、有机碳及全氮的变化

当酸性土壤的pH低于5.5,将制约农业生态系统的生产力[22]。而作为一种耐酸植物,茶树的最适生长pH范围是5.0~5.6[23]。已搜集到的茶园数据显示对照组土壤平均pH为4.86,低于茶树生长的最适pH范围,合成氮肥使茶园pH约降低了0.20(-0.27~-0.15),加剧了茶园土壤的酸性。对于种植绿茶、红茶和乌龙茶树种的3种土壤,合成氮肥均使pH显著降低(表 1),且茶树种间无显著差异(p>0.05,表 1)。茶园土壤的酸化与土壤交换性铝与铝络合物的增加以及土壤盐基的淋溶密切相关[24]。以往研究表明,土壤硝化反应的加速,是由于H+作为中间产物大量产生,导致土壤酸化[25];另一方面大量NO3--N的淋失导致盐基离子的流失,使土壤缓冲系统中的H+进一步释放出来[23-26]

表 1 不同茶园土壤化学性质和养分供应各指标对合成氮肥施用的响应及组间差异比较 Table 1 Response ratios of various indices of soil chemical properties and nutrient supply to application of synthetic N fertilizer in tea gardensand the between-group heterogeneity

合成氮肥施用对土壤有机碳含量无显著影响(图 1)。对于种植不同茶树类型的土壤,合成氮肥使种植绿茶的土壤中有机碳显著升高了15%(7%~24%,表 1),而对乌龙茶茶园土壤有机碳影响不显著(表 1)。合成氮肥施用情况下,土壤全氮含量显著升高了18%(10%~27%,图 1)。尽管合成氮肥施用引起的土壤酸化在一定程度上抑制茶树的生长,影响茶园生态系统的健康发展[27],本研究结果可见,茶树产量的升高主要是由土壤中氮供应量的上升决定的。由于已有研究文献数据量的限制,本研究尚无法评估种植不同类型茶树的土壤全氮的响应差异。

图 1 合成氮肥对茶园土壤基本情况和速效养分的影响 Fig. 1 Effects of synthetic N fertilizer on basic properties and readily available nutrients in tea gardens 注:SOC:土壤有机碳;DIN:可溶性无机氮;AP:有效磷;数字表示参数的记录数。下同 Note:SOC stands for soil organic carbon;DIN for dissolved inorganic nitrogen;AP for readily available phosphorus.Numbers near the dots are the sample sizes of the indices. The same below
2.2 土壤养分供应的变化

合成氮肥总体上使土壤DIN、NH4+-N、NO3--N浓度分别升高了172%(127%~236%)、721%(397%~1296%)和52%(9%~106%)。由于我国植茶区土壤基本为高酸性土壤,土壤中NH4+-N相对稳定,而NO3-N淋溶和转化量较大,这可能是NH4+-N浓度升高幅度较NO3--N大的主要原因之一。土壤DIN浓度、NH4+-N、NO3--N浓度对合成氮肥的响应随种植茶树品种的不同存在显著差异(p<0.05,表 1)。合成氮肥施用时,乌龙茶种植土壤的DIN、NH4+-N浓度显著高于绿茶土壤(p<0.01,表 1);绿茶种植的土壤NO3--N无显著的响应,而红茶和乌龙茶土壤NO3--N均显著上升(表 1),且红茶种植茶园的土壤NO3--N显著高于乌龙茶茶园(p<0.01,表 1)。由于当前研究的限制,本文尚不清楚导致速效氮响应差异的潜在机制。

土壤中磷和钾元素也是茶树正常生长的关键元素[27]。已有研究显示,施用氮肥可能加剧土壤中磷和钾元素的匮乏[28-29]。而本研究显示,施用合成氮肥总体上对土壤有效磷和K+的供应没有显著影响(图 1)。土壤Ca2+和Mg2+浓度分别降低了23%(-30%~-16%)和37%(-48%~-24%),Al3+浓度升高了54%(38%~69%)(图 1)。钙镁不仅是植物生长的必须元素,Ca2+和Mg2+也是重要的缓冲离子。在高氮输入情况下,随着土壤的酸化,大量H+将Ca2+和Mg2+置换出来,两者随着NO3--N的淋溶而大量流失[24]。氮肥添加导致的Ca2+和Mg2+浓度显著降低将直接影响土壤缓冲能力,加剧土壤pH的降低(图 1)。土壤中Al3+对植物的毒性和生长抑制作用已被广泛证明[30-31],外源氮肥添加使茶园土壤Al3+大量累积可能抑制茶树的生长,阻碍茶叶产量的形成。

2.3 土壤活性氮的流失

随着氮肥施用量的上升,土壤微生物的硝化和反硝化反应加剧,土壤中活性氮气体污染物和水溶性无机氮淋溶量上升[32],导致我国农业生态系统中大量活性氮以含氮污染物形式流失[11]。合成氮肥被认为是N2O排放的主要的贡献源[33-34]。本研究结果显示,合成氮肥使我国茶园土壤活性氮流失显著升高,其中N2O排放平均上升292%(140%~575%)。有研究发现,有外源氮添加的茶园生态系统中土壤硝化反应是N2O的主要来源,土壤酸化程度控制着土壤N2O排放速率[19]15N示踪实验显示,当林地转化为茶园后,土壤微生物的硝化过程加速,而微生物对硝态氮的固持显著降低,导致低铵高硝的土壤环境,不利于茶树的生长[35]。在施氮情况下,茶园土壤的进一步酸化将加剧N2O的排放[19]。由于N2O较高的全球增温潜能[36],持续增加N2O的排放将极大程度地加快区域甚至全球尺度的气候变暖。

氮肥施用使我国茶园土壤DIN淋溶总体上升高了127%(55%~206%)、NH4+-N淋溶升高了422%(280%~617%)、NO3--N淋溶升高了92%(31%~161%)(图 2)。淡水及饮用水资源的硝态氮污染已成为全球共同关注和面临的环境问题之一[34, 37]。土壤NO3--N具有较强的移动性,是农田系统土壤无机氮淋溶液的主要成分[38]。已有研究表明,茶园中土壤NH4+-N和NO3--N的淋溶量随氮肥施用量的升高而增加,NO3--N淋溶量约占到系统氮流失量70%~90%[19],活性氮的流失将导致毗邻系统和地表地下水的污染,危机饮用水资源和水体物种多样性的安全。本研究中土壤NH4+-N和NO3--N数据量的限制可能会降低其结果的可靠性。因此,当前我国茶园生态学研究应加强氮循环和氮肥施用引起的环境效应方面的机理和应用研究。

图 2 合成氮肥对茶园含氮污染物排放的影响 Fig. 2 Impacts of synthetic N fertilizer addition on reactive N losses from tea gardens
3 结论

本研究通过利用整合分析方法对文献数据进行系统的分析,量化和评估了合成氮肥对不同茶树的茶园土壤养分供应和活性氮流失的影响,为我国茶园氮肥的科学管理和生态环境的可持续发展提供了理论依据。研究结果表明,施用合成氮肥总体上加剧了我国茶园土壤的酸化,显著提高了土壤全氮及速效氮的供应,对土壤有机碳、速效磷和钾离子浓度无影响,使土壤钙镁等金属阳离子大量流失,毒性铝离子富集。同时,合成氮肥施用还导致以N2O和淋溶流失的活性氮量显著上升,对大气和淡水系统造成负面影响。未来有必要在我国茶园生态系统开展长期的野外原位实验,进一步探究合成氮肥施用产生的长远影响及潜在机制。

致谢 对本文数据库涉及的文献作者表示由衷的感谢!

参考文献
[1]
Chang K. World tea production and trade: Current and future development. A publication by the Food and Agricultural Organization of the United Nations, Rome. (2016-05-29)[2017-09-18]. http://www.fao.org (0)
[2]
FAO. Current situation of tea production and marketing in China. Report for the 21st session of fao-igg on tea. (2014)[2017-09-18]. www.fao.org/.../IGGtea21/14-CRS4-MarketReportChinaFullReport.pdf (0)
[3]
Li S X, Wang Z H, StewartA. Responses of crop plants to ammonium and nitrate//Advances in agronomy. New York: Academic Press, 2013: 205-397 (0)
[4]
Tokuda S, Hayatsu M. Nitrous oxide emission potential of 21 acidic tea field soils in Japan . Soil Science and Plant Nutrition, 2001, 47(3): 637-642. DOI:10.1080/00380768.2001.10408427 (0)
[5]
Tokuda S, Hayatsu M. Nitrous oxide flux from a tea field amended with a large amount of nitrogen fertilizer and soil environmental factors controlling the flux . Soil Science And Plant Nutrition, 2004, 50(3): 365-374. DOI:10.1080/00380768.2004.10408490 (0)
[6]
Davidson E, David M, Galloway J, et al. Excess nitrogen in the US environment:Trends, risks, and solutions . Issues in Ecology, 2012, 15: 1-16. (0)
[7]
De Vries F T, Hoffland E, van Eekeren N, et al. Fungal/bacterial ratios in grasslands with contrasting nitrogen management . Soil Biology & Biochemistry, 2006, 38(8): 2092-2103. (0)
[8]
Fowler D, Coyle M, Skiba U, et al. The global nitrogen cycle in the twenty-first century . Philosophical Transactions of the Royal Society B-Biological Sciences, 2013, 368(1621): 1-13. (0)
[9]
Ju X T, Liu X J, Zhang F S, et al. Nitrogen fertilization, soil nitrate accumulation, and policy recommendations in several agricultural regions of China . Ambio:A Journal of the Human Environment, 2004, 33(6): 300-305. DOI:10.1579/0044-7447-33.6.300 (0)
[10]
Le C, Zha Y, Li Y, et al. Eutrophication of lake waters in china:Cost, causes, and control . Environmental Management, 2010, 45(4): 662-668. DOI:10.1007/s00267-010-9440-3 (0)
[11]
Ju X T, Xing G X, Chen X P, et al. Reducing environmental risk by improving Nmanagement in intensive Chinese agricultural systems . Proceedings of the National Academy of Sciences, 2009, 106(9): 3041-3046. DOI:10.1073/pnas.0813417106 (0)
[12]
Owuor P O, Cheruiyot D K A. Effects of nitrogen fertilizers on the aluminium contents of mature tea leaf and extractable aluminium in the soil . Plant and Soil, 1989, 119(2): 342-345. DOI:10.1007/BF02370429 (0)
[13]
Ruan J, Haerdter R, Gerendás J. Impact of nitrogen supply on carbon/nitrogen allocation:A case study on amino acids and catechins in green tea[Camellia sinensis (L.) o. Kuntze] plants . Plant Biology, 2010, 12(5): 724-734. DOI:10.1111/plb.2010.12.issue-5 (0)
[14]
Venkatesan S, Ganapathy M N K. Impact of nitrogen and potassium fertiliser application on quality of ctc teas . Food Chemistry, 2004, 84(3): 325-328. DOI:10.1016/S0308-8146(03)00215-2 (0)
[15]
Alekseeva T, Alekseev A, Xu R, et al. Effect of soil acidification induced by a tea plantation on chemical and mineralogical properties of alfisols in eastern China . Environmental Geochemistry and Health, 2011, 33(2): 137-148. DOI:10.1007/s10653-010-9327-5 (0)
[16]
陈玉真, 王峰, 尤志明, 等. 不同施氮量对茶园土壤氮淋失的影响. 福建农业学报, 2015, 30(4): 394-399.
Chen Y Z, Wang F, You Z M, et al. Effects of different application levels on nitrogen leaching in tea garden soil (In Chinese). Fujian Journal of Agricultural Sciences, 2015, 30(4): 394-399. (0)
[17]
阮建云, 马立锋, 石元值. 茶树根际土壤性质及氮肥的影响. 茶叶科学, 2004, 23(2): 167-170.
Ruan J Y, Ma L F, Shi Y Z. Properties of rhizosphere soil of tea plants and the impact of nitrogen fertilizer (In Chinese). Journal of Tea Science, 2004, 23(2): 167-170. (0)
[18]
Li Y, Zheng X, Fu X, et al. Is green tea still 'green'? . Geo:Geography and Environment, 2016, 3(2). DOI:10.1002/geo2.21 (0)
[19]
Cheng Y, Wang J, Zhang J, et al. Mechanistic insights into the effects of n fertilizer application on N2O-emission pathways in acidic soil of a tea plantation . Plant and Soil, 2015, 389(1/2): 45-57. (0)
[20]
Liu L L, Greaver T L. A global perspective on belowground carbon dynamics under nitrogen enrichment . Ecology Letters, 2010, 13(7): 819-828. DOI:10.1111/ele.2010.13.issue-7 (0)
[21]
Hedges L V, Gurevitch J, Curtis P S. The meta-analysis of response ratios in experimental ecology . Ecology, 1999, 80(4): 1150-1156. DOI:10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 (0)
[22]
Kochian L V, Hoekenga O A, Pineros M A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency . Annual Review of Plant Biology, 2004, 55(1): 459-493. DOI:10.1146/annurev.arplant.55.031903.141655 (0)
[23]
Owuor P O, Othieno C O, Robinson J M, et al. Response of tea quality parameters to time of year and nitrogen fertiliser . Journal of the Science of Food and Agriculture, 1991, 55(1): 1-11. DOI:10.1002/jsfa.2740550102 (0)
[24]
丁瑞兴, 黄骁. 茶园-土壤系统铝和氟的生物地球化学循环及其对土壤酸化的影响. 土壤学报, 1991, 28(3): 229-236.
Ding R X, Huang X. Biochemical cycle of aluminium and fluorine in tea garden soil system and its relationship to soil acidification (In Chinese). Acta Pedologica Sinica, 1991, 28(3): 229-236. (0)
[25]
Li SX, Wang ZH, Stewart BA. Responses of crop plants to ammonium andnitrate N//Donald L. Advances in agronomy. New York: Academic Press, 2013: 205-397 (0)
[26]
Bowman W D, Cleveland C C. Negative impact of nitrogen deposition on soil buffering capacity . Nature Geoscience, 2008, 1(11): 767-770. DOI:10.1038/ngeo339 (0)
[27]
Ruan J L, Sattelmacher B. Effect of nitrogen form and root-zone pHon growth and nitrogen uptake of tea (Camellia sinensis) plants . Annals of Botany, 2007, 99(2): 301-310. DOI:10.1093/aob/mcl258 (0)
[28]
Li Y, Niu S, Yu G. Aggravated phosphorus limitation on biomass production under increasing N addition:A meta-analysis . Global Change Biology, 2016, 22(2): 934-943. DOI:10.1111/gcb.13125 (0)
[29]
Ruan J, Ma L, Shi Y. Potassium management in tea plantations:Its uptake by field plants, status in soils, and efficacy on yields and quality of teas in China . Journal of Plant Nutrition and Soil Science, 2013, 176(3): 450-459. DOI:10.1002/jpln.v176.3 (0)
[30]
Ma J F, Ryan P R, Delhaize E. Aluminium tolerance in plants and the complexing role of organic acids . Trends in Plant Science, 2001, 6(6): 273-278. DOI:10.1016/S1360-1385(01)01961-6 (0)
[31]
Shaojian Z. Crop production on acidic soils:Overcoming aluminium toxicity and phosphorus deficiency . Annals of Botany, 2010, 106(1): 183-184. DOI:10.1093/aob/mcq134 (0)
[32]
Aber J, McDowell W, Nadelhoffer K, et al. Nitrogen saturation in temperate forest ecosystems . Bioscience, 1998, 48(11): 921-934. DOI:10.2307/1313296 (0)
[33]
Liu L L, Greaver T L. A review of nitrogen enrichment effects on three biogenic GHGs:The CO2 sink may be largely offset by stimulated N2O and CH4 emission . Ecology Letters, 2009, 12(10): 1103-1117. DOI:10.1111/ele.2009.12.issue-10 (0)
[34]
Sutton M A, Howard C M, Erisman J W, et al. The european nitrogen assessment:Sources, effects and policy perspectives . Cambridge, United Kingdom: Cambridge University Press, 2011. (0)
[35]
Zhu T, Zhang J, Meng T, et al. Tea plantation destroys soil retention of NO3- and increases N2O emissions in subtropical China . Soil Biology & Biochemistry, 2014, 73: 106-114. (0)
[36]
IPCC. Working group Ⅲ contribution to the fourth assessment report of the intergovernmental panel on climate change//Climate change 2007: Mitigation of climate change. Cambridge, United Kingdom and New York, USA, Cambridge University Press, 2007 (0)
[37]
Zhang W, Tian Z, Zhang N, et al. Nitrate pollution of groundwater in northern china . Agriculture, Ecosystems and Environment, 1996, 59(3): 223-231. DOI:10.1016/0167-8809(96)01052-3 (0)
[38]
Smil V. Nitrogen in crop production:An account of global flows . Global Biogeochemical Cycles, 1999, 13(2): 647-662. DOI:10.1029/1999GB900015 (0)
Effects of Application of Synthetic Nitrogen Fertilizers on Soil Nutrient Supply and Loss of Reactive Nitrogen in Tea (Camellia Sinensis L. Kuntze) Gardens in China
QIAO Chunlian1,2 , Burenbayin3     
1. Institute for Conservation and Utilization of Agro-bioresources in the Dabie Mountains, Xinyang Normal University, Xinyang, Henan 464000, China;
2. International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, China;
3. Insrumental Analysis Center, Xinyang Normal University, Xinyang, Henan 464000, China
Abstract: 【Objective】 Tea (Camellia sinensis L. Kuntze) is a perennial plant widely cultivated in South China. As a high N-demanding cash crop, tea has been applied widely with synthetic N fertilizers to increase its yield. However, application of excessive synthetic N fertilizers in tea gardens might affect chemical properties of the soils and their nutrient supply to tea plants; in addition, it may have some negative impacts on growth of the tea plants and the environment. Although researchers in China have been doing some experiments simulating application of synthetic N fertilizers in tea gardens, so far none of them has been doing to systematically or quantitatively evaluate responses of tea soils to application of synthetic N fertilizer. Through meta-analysis, this paper tries to evaluate quantitatively how application of synthetic N fertilizers affect basic chemical properties and nutrient supply of the soil, and loss of reactive N to the environment.【Method】 In this paper, meta-analysis was done of the 17 papers published in the literature during 2004-2016 involving 15 indicesin 246 items of data and records.【Result】 Results indicated that application of synthetic N fertilizers lowered soil pH significantly by 0.20 units on average. In soils of tea gardens different in tea tree species, application of synthetic N fertilizers significantly decreased soil pH and no significant difference was found between subgroups. Soil acidification in the tea gardens was expedited because the application accelerated nitrification process, triggered loss of base cations, and damaged the soil buffering system, thus resulting H+ release. As a whole, application of synthetic N fertilizers had on significant impact on soil organic carbon (SOC). However, it did increase SOC by 15% (7%~24%) in tea gardens of green tea and by nil in tea gardens of oolong tea. Application of synthetic N fertilizers increased soil total N by 18% (10%~27%), and soil dissolved inorganic N availability by 172% (127%~236%). The responses of soil DIN, NH4+-N and NO3--N concentrations to application of synthetic N fertilizers varied between soils with different tea trees. DIN and NH4+-N concentrations were significantly higher in tea gardens of oolong tea than in those of green tea. NO3--Nconcentration was significantly higher in tea garden of black tea and oolong tea, but remained almost unchanged in those of green tea. Soil phosphorus and potassium was not much affected in the tea gardens of China. In addition, the application lowered soil calcium and magnesium content by 23% (-30%~-16%) and 37% (-48%~-24%), respectively, but raised soil aluminum accumulated by 54% (38%~69%) in the soils. Besides accelerating microbial nitrification processes, the application also stimulated losses of soil reactive N from the soil to the environment as a result of its increasing N2O emission and inorganic N leaching by 292% (140%~575%) and 127% (55%~206%), respectively, or more specifically leaching loss of soil NH4+-N and NO3--N by 422% (280%~617%) and 92% (31%~161%). The stimulated loss of reactive N might pose a great threat to the environmental and ecological safety of the tea planted areas, even the whole country.【Conclusion】 To sum up, application of syntheticN fertilizers significantly enhance the supply of total N and available N in the tea garden soils in China. However, it also causes serious environmental problems in the areas and the whole country by accelerating soil acidification, leaching loss of massive base cations, accumulation of toxic aluminum and loss of reactive N through emission of N2O and leaching, thus affecting sustainable development of tea gardens. Most of the studies so far done have been conducted on a small scale (greenhouse or pots) both in area and time. It is advisable to have some long-term field studies so as to evaluate accurately responses of the tea garden ecosystems in key processes and provide some theoretical and practical bases for understanding N recycling processes in the tea garden ecosystem and scientific N management for sustainable development of tea cultivation in China.
Key words: Synthetic nitrogen fertilizers    Soil acidification    Nutrient supply    Dissolved nitrogen leaching    N2O emission