检索项 检索词
  土壤学报  2018, Vol. 55 Issue (4): 797-803  DOI: 10.11766/trxb201712290372
0

引用本文  

饶晓娟, 付彦博, 黄建, 等. 增氧灌溉对棉花营养特征及土壤肥力的影响. 土壤学报, 2018, 55(4): 797-803.
RAO Xiaojuan, FU Yanbo, HUANG Jian, et al. Effects of Oxygenated Irrigation on Nutritional Characteristics of Cotton and Soil Fertility. Acta Pedologica Sinica, 2018, 55(4): 797-803.

基金项目

国家重点研发计划项目(2016YFC0501405)、国家自然科学基金项目(41261076)和新疆农业职业技术学院资助课题(XJNZYKJ2016025)共同资助

通讯作者Corresponding author

王治国, E-mail:wangzhiguo214@126.com

作者简介

饶晓娟(1979—),女,江苏人,博士,副教授,主要从事土壤生态研究。E-mail:raoxiaojuan@qq.com
增氧灌溉对棉花营养特征及土壤肥力的影响
饶晓娟1,2 , 付彦博1 , 黄建1 , 冯耀祖1 , 王治国1     
1. 新疆农业科学院土壤肥料与农业节水研究所,乌鲁木齐 830091;
2. 新疆农业职业技术学院,新疆昌吉 831100
摘要:以新陆早41号为材料,通过模拟试验和田间小区试验,研究增氧对灌溉水溶解氧的影响,以及增氧灌溉对棉田土壤养分、土壤微生物数量、棉花养分吸收和产量的影响。增氧灌溉模拟试验设计4个充氧浓度(CK-0%、O2-21%、O2-30%、O2-50%),连续测定主管道和滴灌带不同监测点位灌溉水溶解氧浓度;田间试验设计3种增氧灌溉方式,物理增氧PO、化学增氧CO和常规滴灌CK。结果表明,增氧灌溉能够明显提高灌溉系统内灌溉水的溶解氧浓度,并且随着溶解氧浓度的增加衰变增加,灌溉水溶解氧浓度增加至12~14 mg L-1较为适宜;增氧灌溉显著促进棉花增产,PO、CO棉花产量分别较对照增加11.39%、11.42%;增氧灌溉能促进棉花对土壤养分的吸收,从而降低土壤中养分含量,棉田土壤速效氮、有效磷、速效钾、有机质含量均有所降低,CO处理土壤速效氮、有机质含量与对照之间的差异达到显著水平,分别降低27.23%、9.61%,PO处理速效钾含量与对照之间的差异达到显著水平,较对照降低5.78%;增氧灌溉对棉田土壤细菌、真菌、微生物数量有促进作用,PO、CO处理细菌数分别较对照提高28.38%、21.05%,微生物总量分别提高27.86%、20.63%,处理间差异均达到显著水平。说明棉花根系对氧敏感,增氧灌溉能够进一步挖掘棉花生产潜能,不同增氧措施均能在一定程度上促进棉花生长和促进棉花对土壤养分的吸收,能加速土壤有机质分解和养分释放。
关键词增氧灌溉    溶解氧    棉花产量    土壤养分    微生物数量    

新疆棉花膜下滴灌技术的应用,使土壤肥力的“水”、“肥”“热”三个主要因子综合协调发挥了较大作用,使得棉花种植产量达到了一个较高的水平,进一步增加棉花的产量达到了一个技术瓶颈,而增氧灌溉技术成为了解决这一技术瓶颈的有效方法之一。

由于灌溉、降雨、排水不利、土壤质地和土壤紧实造成土壤缺氧,影响根系呼吸,使呼吸活动超过氧气的有效范围时,植物根系和地上部器官的细胞中就时常发生氧气不足的现象[1-3],抑制作物根系有氧呼吸,从而影响作物生长发育[4-6]。增氧能够有效改善作物生长的土壤环境,促进作物对养分的吸收。尹晓霞和蔡焕杰[7]采用文丘里加气法向温室番茄根区加气,可以促进番茄干物质累积量;Frankenberger[8]利用过氧化尿素不仅能够提高土壤溶液中的活性氧含量,改善作物根际土壤环境,还有效地促进水稻根系对营养物质的吸收;李元等[9]利用空气压缩机向大棚甜瓜根系供气,可以促进土壤微生物数量和多样性的变化,提高土壤酶活性。然而增氧灌溉对棉田土壤养分和微生物数量的影响效果不明。本研究在膜下滴灌条件下进行增氧灌溉,向棉花根区增氧灌溉,研究增氧灌溉对灌溉系统溶解氧、棉田土壤养分和微生物数量以及棉花养分吸收的影响,为大田棉花膜下增氧滴灌技术提供理论依据。

1 材料与方法 1.1 试验区概况

试验区位于新疆乌鲁木齐市以北22 km的国家灰漠土试验站内,海拔高度890 m,年均气温6 ℃,年降水量200 mm,年蒸发量1 980 mm,属干旱半干旱荒漠气候。试验土壤为新疆北疆典型土类(灰漠土),基础理化性质:有机质含量13.5 g kg-1、速效氮51.6 mg kg-1、有效磷22.2 mg kg-1、速效钾435 mg kg-1

1.2 试验设计

2014—2016年,在国家灰漠土试验站内进行田间小区试验,小区面积33 m2

增氧灌溉模拟试验设计充气氧浓度分别为不充气CK-0%、充气氧浓度O2-21%、充气氧浓度O2-30%、充气氧浓度O2-50%条件下,连续测定主管道和滴灌带不同监测点位灌溉水溶解氧浓度。

田间试验设计3个处理,分别为微纳米气泡发生装置物理增氧PO、过氧化尿素化学增氧CO,不增氧对照CK,每个处理设置3个重复,共9个小区。PO处理充气氧浓度为O2-21%(空气),采用“B & W微纳米气泡发生装置”制备微纳米气泡水[10],压力为0.15 MPa,进气速率为1.5 L min-1,该设备为本洲(北京)新技术推广有限公司生产。CO处理采用过氧化尿素[11]溶解于施肥罐,该肥料为上虞洁华化工有限公司生产,含N 30%、活性氧16.5%;PO、CK处理施用尿素(N 46%),用量与CO处理过氧化尿素相当。PO、CO、CK处理灌溉水中溶解氧浓度分别为10.97、11.06、9.91 mg L-1

供试棉花种子为新陆早41号,种植模式为一膜四行,每个小区三膜,采用膜下滴灌,各增氧灌溉处理随灌溉水输入到各小区,整个生育期共灌水14次,化控2次,其他田间管理同大田。

1.3 样品采集与分析

分别于苗期、蕾期、花期、蕾期、铃期,在滴灌带左右10 cm处,每个处理随机用土钻取5个点的土样,取样深度为0~20 cm耕层土壤样品,样品混合后,用四分法取1/4土样装入灭菌袋包扎密封,于4 ℃保存,用于土壤微生物数量测定;剩余部分土样装土样袋内,用于测定土壤速效氮、有效磷、速效钾和有机质含量。在棉花铃期灌溉后,各处理中随机连根拔出5株棉花,按照部位进行杀青烘干,检测植物氮磷钾含量。

溶解氧含量采用美国YSI公司生产的“YSI5000”测定,该仪器具有自动温度补偿功能,带搅拌器;土壤速效氮含量采用碱解扩散法,有效磷含量采用0.5 mol L-1 NaHCO3浸提比色法,速效钾含量采用NH4OAc浸提火焰光度法,有机质含量采用重铬酸钾法测定[11];土壤细菌、真菌、放线菌数量采用稀释平板涂抹法,制备土壤系列稀释液(稀释度10-1~10-6),涂固体培养基平板,恒温28~30 ℃下培养3~6 d。对3个相邻稀释度土壤溶液中的细菌数(CFU)计数,计算每克干土中细菌数(单位用CFU g-1表示,下同)。细菌培养基选用牛肉膏蛋白胨培养基;真菌培养基采用孟加拉红培养基;放线菌培养基采用改良的高氏一号培养基[12]

1.4 数据处理

采用Microsoft Excel软件进行数据处理,用DPS 7.05软件进行数据统计分析。

2 结果 2.1 增氧灌溉对灌溉水溶解氧的影响

在充气氧浓度分别为CK-0%、O2-21%、O2-30%、O2-50%条件下,连续测定主管道和滴灌带监测点位灌溉水溶解氧浓度,主管道0~100 m处溶解氧浓度分别由10.18、11.70、16.95和19.30 mg L-1递减至9.57、10.56、14.86和16.32 mg L-1,100 m衰减量分别达到5.99%、9.74%、12.33%和15.44%(图 1)。在主管道50 m处连接滴灌带,在滴头流量为3.2 L h-1时,0~50 m处滴头的溶解氧浓度分别由10.04、10.98、16.54和17.70 mg L-1递减至9.02、9.34、13.81和14.48 mg L-1,50 m衰减量分别达到10.16%、14.94%、16.51%和18.19%。说明随着灌溉水溶解氧浓度的增加灌溉水溶解氧衰变量增加,并且随着滴灌带距离的增加灌溉水溶解氧衰变量增加;充气氧浓度为O2-21%和O2-30%的处理增氧灌溉水溶解氧衰减量较小,能耗较低,为田间试验物理增氧灌溉采用充气氧浓度为O2-21%(空气)进行曝气增氧提供数据支撑。

图 1 不同氧浓度条件下供水管道(a)与滴灌带(b)不同监测点距离溶解氧浓度变化 Fig. 1 Variation of dissolved oxygen concentration at different monitoring points in water supply pipeline (a) and drip tape(b) under different oxygen concentrations
2.2 增氧灌溉对棉田土壤速效养分和有机质的影响

通过灌溉水增氧灌溉后,棉田土壤速效氮和有机质含量均有所降低(表 1)。与对照相比,PO、CO处理速效氮分别降低4.01%、27.23%,有机质分别降低3.46%、9.61%,其中CO处理有机质含量与对照差异显著。棉田土壤有效磷和速效钾含量也均有所降低。与对照相比,PO、CO处理有效磷分别降低9.45%、0.42%,速效钾分别降低5.78%、2.23%,PO处理速效钾与对照差异显著。可见,通过增氧灌溉能够促进棉花对土壤中速效养分和有机质的吸收,从而降低土壤中速效氮、速效钾和有机质的含量。

表 1 增氧灌溉对棉田土壤速效养分和有机质的影响 Table 1 Effect of oxygenated irrigation on contents of soil available nutrients and organic matter in cotton field
2.3 增氧灌溉对棉田土壤微生物数量的影响

增氧增加了棉田土壤中细菌、真菌、微生物数量,抑制了放线菌数量(表 2),从细菌数量分析可知,PO、CO分别较对照提高了28.38%、21.05%,处理间差异达到显著水平(p<0.05);放线菌数量分析显示PO、CO分别较对照降低了11.05%、42.82%,CK︰PO︰CO为1︰0.9︰0.7,CO与对照之间的差异达到显著水平;真菌数量分析可知,CK︰PO︰CO为1︰0.98︰1.05,CO较对照提高了4.97%,但与对照无显著差异(p>0.05);微生物总量PO、CO分别较对照提高了27.86%、20.63%,与对照之间的差异均达到显著水平(p<0.05),CK︰PO︰CO为1︰1.28︰1.21。说明增氧灌溉能够显著促进土壤微生物总量,对土壤中细菌数量促进作用显著,但对土壤真菌影响不显著,对土壤放线菌有一定的抑制作用,其机理有待于进一步研究。

表 2 增氧灌溉对棉田土壤微生物数量的影响 Table 2 Effect of oxygenated irrigation on soil microbial biomass in cotton field
2.4 增氧灌溉对棉花养分吸收和产量的影响

分析铃期棉花各部位氮磷钾吸收量可知(表 3),根吸收氮和钾的量物理增氧处理显著高于其他处理,大小依次为物理增氧>对照>化学增氧;茎吸收氮和钾的量增氧处理均高于对照,依次为化学增氧>物理增氧>对照;其他部位氮磷钾吸收量差异不显著;地上部氮磷钾吸收量趋势为,氮吸收量物理增氧>化学增氧>对照,磷吸收量为物理增氧>对照>化学增氧,钾吸收量为物理增氧>化学增氧>对照;增氧灌溉促进了棉花对氮磷钾的吸收。

表 3 增氧灌溉对棉花氮磷钾吸收量及其分配的影响 Table 3 Effect of oxygenated irrigation on absorption and distribution of N, P, K of cotton (mg plant-1)

图 2为增氧灌溉对棉花产量的影响。从图中可以看出,棉花产量排序为:CO>PO>CK,增氧处理PO、CO与对照之间的产量差异达到显著水平,产量基本在1 900~2 150 kg hm-2,与CK相比较,PO、CO产量分别增加11.39%、11.42%,可见物理增氧和化学增氧均可以显著促进棉花产量。

图 2 增氧灌溉对棉花产量的影响 Fig. 2 Effect of oxygenated irrigation on cotton yield
3 讨论 3.1 增氧灌溉提高灌溉水溶解氧含量

增氧灌溉能够明显提高灌溉系统内灌溉水的溶解氧浓度,但在灌溉系统中衰变很大,并且随着溶解氧浓度的增加衰变增加。此前研究已发现,灌溉水溶解氧浓度增加至12~14 mg L-1,可以改善土壤氧环境[13]。通过制氧机提高充气氧浓度,再进行微纳米气泡装置曝气,可以使灌溉水的溶解氧浓度达到36.9 mg L-1以上[10, 14],吕梦华等[15]利用充氧微纳米气泡装置使水中溶解氧浓度提高至20 mg L-1和30 mg L-1,随着溶解氧浓度的提高,白萝卜增产效果更明显。

3.2 增氧灌溉改善土壤环境

Benjamin等[16]认为部分作物的根系需要充足的氧气(O2)供给以满足植物养分和水分的吸取;作物根呼吸需要消耗大量的O2,而且作物根的生长对O2缺乏特别敏感,土壤中O2不足会影响作物根系和土壤呼吸,降低ATP的生产,减少根系对水分和养分的吸收以及对冠体的营养传输,增加根部O2会增加根系对P和K肥的吸收。Heuberger[4]和Brzezinska[17]等认为根际通气能够增强根区土壤酶活性,改善根区土壤微环境,提高植株根系的有氧呼吸,改善根系的水肥吸收效率,有利于作物生长发育,提高作物产量。根际通气能够增强盆栽玉米的根系活力,能够促进作物吸收土壤内的养分,促进植株的生长发育[18],显著提高基质速效养分质量分数,碱解氮较对照提高12.95%~28.87%,有效磷较对照提高12.02%~20.46%[19]。不少研究发现,根际增氧,增强了土壤有氧呼吸,提高了根系吸收养分和水分的能力[20]。李元等[9]认为加气灌溉改善了土壤水气环境,促进了土壤微生物数量和多样性,但影响土壤微生物的因素很多,如土壤养分、土壤质地、pH、温度、渗透压等[21]。本研究发现增氧灌溉对土壤中细菌、真菌、微生物数量有促进作用,同时增氧灌溉降低土壤中速效养分含量,增加棉花氮磷钾吸收量,从而可以判定是由于增氧灌溉促进棉花对土壤中速效养分吸收和有机质分解导致土壤养分降低;进一步说明增氧灌溉改善棉田灌溉后的根区氧环境,促进棉花对养分的吸收,提高养分利用率。张雁南[22]的研究结果表明增氧滴灌能促进灵武长枣植株吸收矿质营养,与本文研究结论相同。而增氧灌溉对棉花的增效机理及量化特征有待于进一步的研究。

3.3 增氧灌溉提高棉花产量

增氧灌溉可以在一定程度上提高棉花产量,本文研究采用的两种增氧方式PO、CO分别较对照CK棉花产量增产11.39%、11.42%,产量差异达到显著水平。Bhattarai等[23-24]在2006年的研究中通过增加土壤氧气研究棉花对盐渍土的抗性,发现与对照相比,增加土壤氧气棉花产量可以提高18%;后期研究中发现利用Mazzei(空气注射器)将空气加入棉花根区进行灌溉,棉花的根长、根重、土壤呼吸和光合作用明显增加,故棉花产量增加了14%~28%。

4 结论

棉花根系对氧敏感,增氧灌溉能够挖掘棉花生产潜能,是进一步提高棉花产量的有效途径之一;增氧灌溉能促进棉花对土壤速效养分吸收,促进土壤微生物数量的增加,加速土壤有机质分解和养分释放,从而促进了棉花生长和产量增加。

参考文献
[1]
Drew M C. Oxygen deficiency and root metabolism injury and acclimation under hypoxia and anoxia . Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 223-250. DOI:10.1146/annurev.arplant.48.1.223 (0)
[2]
Geigenberger P. Response of plant metabolism to too little oxygen . Current Opinion in Plant Biology, 2003, 6: 247-256. DOI:10.1016/S1369-5266(03)00038-4 (0)
[3]
MeKee K L. Growth and physiological responses of geotropically mangrove seedlings to root zone hypoxia . Tree Physiology, 1996, 16(11/12): 883-889. (0)
[4]
Heuberger H, Livet J, Schnitzler W. Effect of soil aeration on nitrogen availability and growth of selected vegetables-preliminary results . Acta Horticulturae, 2001, 563: 147-154. (0)
[5]
Thongbai P, Milrov S, Bange M, et al. Agronomic responses of cotton to low soil oxygen during water logging//Proceedings of the 10th Australian Agronomy Conference. Hobart, Australia: The Regional Net Work, 200l (0)
[6]
陈红波, 李天来, 孙周平, 等. 根际通气对日光温室黄瓜栽培基质酶活性和养分含量的影响. 植物营养与肥料学报, 2009, 15(6): 1470-1474.
Chen H B, Li T L, Sun Z P, et al. Effects of rhizosphere aeration on enzyme activities and nutrient content of matrix for cucumber in protected cultivation (In Chinese). Plant Nutrition and Fertilizer Science, 2009, 15(6): 1470-1474. DOI:10.11674/zwyf.2009.0632 (0)
[7]
尹晓霞, 蔡焕杰. 加气灌溉对温室番茄根区土壤环境及产量的影响. 灌溉排水学报, 2014, 33(3): 33-37.
Yin X X, Cai H J. Effects of aeration irrigation on soil environment and yield of tomato in greenhouse (In Chinese). Journal of Irrigation and Drainage, 2014, 33(3): 33-37. (0)
[8]
Frankenberger W T. Factors affecting the fate of urea peroxide added to soil . Bulletin of Environmental Contamination and Toxicology, 1997, 59: 50-57. DOI:10.1007/s001289900442 (0)
[9]
李元, 牛文全, 张明智, 等. 加气灌溉对大棚甜瓜土壤酶活性与微生物数量的影响. 农业机械学报, 2015, 46(8): 121-129.
Li Y, Niu W Q, Zhang M Z, et al. Effects of aeration on rhizosphere soil enzyme activities and soil microbes for muskmelon in plastic greenhouse (In Chinese). Journal of Agricultural Machinery, 2015, 46(8): 121-129. DOI:10.6041/j.issn.1000-1298.2015.08.018 (0)
[10]
蒋程瑶, 赵淑梅, 程燕飞, 等. 微/纳米气泡水中的氧环境对叶菜种子发芽的影响. 北方园艺, 2013(2): 28-30.
Jiang C Y, Zhao S M, Cheng Y F, et al. Effect of oxygen condition in micro/nano-bubble water on leafy vegetables seed germination (In Chinese). Northern Horticulture, 2013(2): 28-30. (0)
[11]
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000: 263-268.
Bao S D. Soil and agricultural chemistry analysis (In Chinese). Beijing: China Agriculture Press, 2000: 263-268. (0)
[12]
关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986: 38-71.
Guan S Y. Soil enzyme and its research method (In Chinese). Beijing: Agriculture Press, 1986: 38-71. (0)
[13]
饶晓娟, 王治国, 付彦博, 等. 不同氧浓度下灌溉系统中溶解氧变化规律初探. 排灌机械工程学报, 2017, 35(11): 981-986.
Rao X J, Wang Z G, Fu Y B, et al. Preliminary study on the change of dissolved oxygen in irrigation system under different oxygen concentration (In Chinese). Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(11): 981-986. (0)
[14]
大下誠一. マイクロ. ナノバブル技術の現状.食品と開発, 2010, 45(7):4-5
Oshita S. Status of micro bubble technology (In Japanese). Food and Development, 2010, 45(7):4-5 (0)
[15]
吕梦华, 翟黄胜, 王楠, 等. 充氧微纳米气泡水在白萝卜栽培中的应用效果研究. 新疆农业科学, 2014, 51(6): 1090-1096.
Lü M H, Zhai H S, Wang N, et al. Effect of oxygenated micro/nano-bubble water on white radish cultivation (In Chinese). Xinjiang Agricultural Sciences, 2014, 51(6): 1090-1096. (0)
[16]
Benjamin K S, Ameur M M, Joann K W, et al. Root-derived respiration and nitrous oxide production as affected by crop phenology and nitrogen fertilization . Plant and Soil, 2010, 326(1/2): 369-379. (0)
[17]
Brzezinska M, Stepniewski W, Stepniewska Z, et al. Effect of oxygen deficiency on soil dehydrogenate activity in a pot experiment with triticale cv. Jago vegetation . International Agrophysics, 2001, 15: 145-149. (0)
[18]
郭超, 牛文全. 根际通气对盆栽玉米生长与根系活力的影响. 中国生态农业学报, 2010, 18(6): 1194-1198.
Guo C, Niu W Q. Effects of rhizosphere ventilation on growth and root activity of potted maize (In Chinese). Chinese Journal of Eco-Agriculture, 2010, 18(6): 1194-1198. (0)
[19]
李天来, 陈红波, 孙周平, 等. 根际通气对基质气体、肥力及黄瓜伤流液的影响. 农业工程学报, 2009, 25(11): 301-305.
Li T L, Chen H B, Sun Z P, et al. Effects of rhizosphere aeration on matrix gas, matrix nutrition and xylem sap incucumber (In Chinese). Transactions of the CSAE, 2009, 25(11): 301-305. DOI:10.3969/j.issn.1002-6819.2009.11.056 (0)
[20]
牛文全, 郭超. 根际土壤通透性对玉米水分和养分吸收的影响. 应用生态学报, 2010, 21(11): 2785-2791.
Niu W Q, Guo C. Effect of rhizosphere soil permeability on water and nutrient uptake by maize (In Chinese). Chinese Journal of Applied Ecology, 2010, 21(11): 2785-2791. (0)
[21]
徐琪, 杨林章, 董元华. 中国稻田生态系统. 北京: 中国农业出版社, 1998.
Xu Q, Yang L Z, Dong Y H. Rice field ecosystem in China (In Chinese). Beijing: China Agriculture Press, 1998. (0)
[22]
张雁南. 增氧灌溉对灵武长枣生长与土壤养分状况的影响. 银川: 宁夏大学, 32016.
Zhang Y N. Effects of oxygen irrigation on growth and soil nutrient status of Zizyphus jujube Mill. cv. Lingwu changzao (In Chinese). Yinchuan: Ningxia University, 32016. (0)
[23]
Bhattarai S P, Lance P, Midmore D J. Root aeration improves yield and water use efficiency of tomato in heavy clay and saline soils . Scantier Horticultures, 2006, 108(3): 278-288. DOI:10.1016/j.scienta.2006.02.011 (0)
[24]
Bhattarai S P, Midmore D J. Oxygation enhances growth, gas exchange and salt tolerance of vegetable soybean and cotton in a saline vertisol . Journal of Integrative Plant Biology, 2009, 51(7): 675-688. DOI:10.1111/jipb.2009.51.issue-7 (0)
Effects of Oxygenated Irrigation on Nutritional Characteristics of Cotton and Soil Fertility
RAO Xiaojuan1,2 , FU Yanbo1 , HUANG Jian1 , FENG Yaozu1 , WANG Zhiguo1     
1. Research Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
2. Xinjiang Vocational College of Agriculture, Changji, Xinjiang 831100, China
Abstract: 【Objective】 In this study a simulation experiment and a field experiment was carried out, using the cotton variety of Xinluzao 41 to explore effect of oxygenation of irrigation water on content of dissolved oxygen in the irrigation water and effect of oxygenated irrigation on soil nutrient, soil microbes, and nutrient uptake and yield of cotton, the yield of cotton、soil Nutrients and soil microbial quantity in cotton field was studied.【Method】 In the simulation experiment, irrigation water was oxygenated with the aid of a micro bubble generator to four different levels of dissolved oxygen in concentration, that is, CK without oxygenation, O2 21%, O2 30%, and O2 50%. Concentration of dissolved oxygen in the irrigation water was continuously monitored in the main pipe and drip-irrigation pipes. In the field experiment, irrigation water was oxygenated by physical means (PO), by chemical means (CO) and by no means (CK).【Result】 Results show that in oxygenated irrigation, oxygen concentration in the irrigation water increased significantly with oxygenation, but decreased with length of the pipe, and decay intensified with increasing dissolved oxygen concentration, so 12~14 mg L-1 was; The optimal concentration of dissolved oxygen for oxygenation of irrigation water oxygenated irrigation significantly increased yield of the cotton, which was 11.39% and 11.42% higher in Treatment PO and CO than CK; oxygenated irrigation enhanced nutrient uptake of the cotton, thus lowering the nutrient contents (NPK) and organic manure content as well in the soil; Treatment CO was significantly or 27.23% and 9.61% lower than CK in soil ready available N and soil organic manure content, and Treatment PO was significantly or 5.78% lower than CK in soil readily available K; Oxygenated irrigation also promoted growth of bacteria, fungi amd microorganisms in the cotton field. Treatment PO and CO was 28.38% and 21.05%, respectively, higher in soil bacterial population and 27.86% and 20.63%, respectively, higher in soil total microbial biomass than CK. The difference between treatments was significant. Correlation analysis of soil nutrient and soil microbial population shows that the population of actinomyces is significantly and positively relatd to the contents of available N and organic matter; the population of soil bacteria is to the total amount of microorganism; and the content of available N is to the content of organic matter.【Conclusion】 All the findings in this study demonstrate that cotton roots are very sensitive to oxygen and that oxygenated irrigation can further exploit the yield potential of cotton, and no matter how much the irrigation water is oxygenated, promote to a varying extent growth and nutrient uptake of cotton.
Key words: Oxygenated irrigation    Dissolved oxygen    Cotton yield    Soil nutrients    Microbial biomass