检索项 检索词
  土壤学报  2018, Vol. 55 Issue (4): 857-867  DOI: 10.11766/trxb201711190549
0

引用本文  

付传城, 章海波, 涂晨, 等. 滨海苹果园土壤碳氮空间分布及动态变化研究. 土壤学报, 2018, 55(4): 857-867.
FU Chuancheng, ZHANG Haibo, TU Chen, et al. Spatial Distribution and Dynamics of Soil Organic Carbon and Total Nitrogen in Apple Orchards in Coastal Regions. Acta Pedologica Sinica, 2018, 55(4): 857-867.

基金项目

国家重点研发计划项目(2016YFE0106400)和中国科学院前沿科学重点研究项目(QYZDJ-SSW-DQC015)资助

通讯作者Corresponding author

骆永明, E-mail:ymluo@yic.ac.cn

作者简介

付传城(1989—),男,山东济宁人,博士研究生,主要从事海岸带碳氮循环与可持续发展研究。E-mail: ccfu@yic.ac.cn
滨海苹果园土壤碳氮空间分布及动态变化研究
付传城1,2 , 章海波1,3 , 涂晨1 , 李连祯1 , 周倩1,2 , 李远1,4 , 骆永明1,2,4     
1. 中国科学院海岸带环境过程与生态修复重点实验室(烟台海岸带研究所),山东烟台 264003;
2. 中国科学院大学资源与环境学院,北京 100049;
3. 浙江农林大学环境与资源学院, 浙江省土壤污染生物修复重点实验室,杭州 311300;
4. 中国科学院土壤环境与污染修复重点实验室(南京土壤研究所),南京 210008
摘要:土壤有机碳(SOC)和土壤全氮(STN)是土壤肥力和土壤质量的重要组成部分,对维持农田和果园生产力至关重要。以我国典型温带滨海果园—胶东苹果园为对象,采集了不同种植年限果园的488件表层土壤样品,探讨滨海果园SOC、STN含量和密度(SOCD、STND)及碳氮比(C/N)的空间分布、动态变化及其影响因素,为滨海地区及我国苹果园的生产、管理提供基础数据和科学依据。结果表明:胶东苹果园SOC和STN平均含量为10.78和1.42 g kg-1,平均密度为2.81和0.37 kg m-2,平均C/N为7.70;苹果园SOC、STN、SOCD、STND和C/N块基比分别为0.432、0.340、0.420、0.387和0.391,均表现出中等强度的空间异质性。苹果园SOC、STN和C/N的时空分布受种植年限影响显著。随种植年限延长,SOC呈先增加、再下降的趋势,而STN持续增加,相应地C/N呈先降、后增加再降的趋势。土壤类型、地形条件和土壤酸化对胶东果园碳氮均有不同程度的影响。相对于内陆地区的辽宁西部、北京郊区、陕西渭北和新疆伊犁等地果园,山东胶东滨海苹果园SOC、STN含量和密度较高,C/N偏低,具有较快的周转速度和自身的时空变化特征。
关键词滨海苹果园    土壤有机碳    全氮    空间分布    种植年限    

土壤有机碳(SOC)和全氮(STN)是土壤肥力和土壤质量的重要指标,是维持农业土壤生产力,保持土壤可持续利用的关键因子[1]。我国是世界苹果第一生产大国,栽培面积和产量分别占世界的42%和54%[2]。我国苹果园分布跨越不同气候带,在内陆和滨海形成了各具特色的主产区。然而,我国苹果园总体上管理粗放,片面追求产量,不够重视均衡施肥[3],导致了土壤有机质含量低、氮磷含量过高等问题[4-6]。因此,探究苹果园土壤碳氮的时空分布与变化特征对指导果园土壤管理,促进果业可持续发展具有重要意义。

前人对我国不同区域苹果园碳氮水平及分布做了大量研究工作。Ge等[7]研究指出,我国苹果园SOC和STN含量普遍偏低,不同区域差异较大。黄土高原苹果园SOC和STN具有中等空间相关性[8],并随着种植年限呈先增后降的变化趋势[9-10]。然而,我国苹果园的气候条件、土壤类型和管理方式差异很大,果园土壤碳氮的时空分布特征可能具有区域性,滨海苹果园土壤碳氮空间分布及动态变化规律尚未系统研究,其与内陆果园的异同尚缺乏了解。为此,本研究以地处黄渤海之滨的胶东半岛苹果园为研究区,基于地统计学方法分析SOC、STN含量和密度(SOCD、STND)及碳氮比(C/N)的空间异质性,揭示SOC、STN含量和密度及C/N比值随种植年限的变化特征,探讨影响胶东苹果园SOC、STN含量和密度及C/N分布的影响因素,进而通过与内陆地区苹果园的比较,进一步阐明滨海果园碳氮时空分布与变化特征,为胶东滨海苹果园乃至全国果园土壤可持续管理提供基础数据和科学依据。

1 材料与方法 1.1 研究区概况

胶东半岛地处东经119°45’-122°75’,北纬35°50’-38°85’之间(图 1),包括青岛、烟台和威海三市,总面积30 825 km2,人口约1900万。胶东半岛属暖温带半湿润季风气候,四季分明,光照充足,年降雨量约为650~850 mm,年均温约12℃,平均无霜期约210 d。胶东半岛属丘陵地貌,海拔介于0~1 132 m之间,地带性土壤类型为棕壤。胶东苹果种植面积约为22.85万km2,主要分布在平原和相对缓平的丘陵之上。

图 1 研究区位置与土壤采样点分布 Fig. 1 Map of the study area and distribution of soil sampling sites
1.2 样品采集与分析

样品采集于2014年4月至6月,共采集苹果园土壤488件(图 1)。果园种植年限信息通过咨询果农获取。采样深度为0~20 cm,在每个样点以10 m为半径,采集5个子样,充分混合后,用四分法取出1 kg的样品装于聚乙烯塑料袋,注明编号,带回实验室,自然风干。采样中心位置采用Garmin GPS 60CSx记录。

样品风干后,剔除动植物残体、石块及可见侵入体等,用陶瓷研钵研磨至分别完全通过2 mm(10目),和0.149 mm(100目)的尼龙筛。SOC和STN含量分析采用100目土样,碳氮分析仪(Vario MAX CN Macro Elemental Analyzer)测定。对石灰性土壤样品,分析前先采用0.5 molL-1盐酸去除碳酸盐,并用超纯水洗涤,冷冻干燥保存。土壤pH分析采用10目土样,土水比为1︰2.5,用pH计(Mettler Toledo Five Easy Plus FE20)测定。具体分析方法参考文献[11]。分析时,设置10%样品重复,以检验分析质量。

土壤有机碳密度(SOCD,kg m-2)、全氮密度(STND,kg m-2)按照如下公式[12]进行计算:

SOCD=SOC×BD×H×(1-δ)/100

STND=STN×BD×H×(1-δ)/100

式中,BD为土壤容重(g cm-3),采用Song等[13]建立的回归模型进行估算:BD=1.377×e(-0.004 8×SOC)H为土层厚度(20cm),δ为大于2mm砾石的体积比(%),依据《烟台市土壤》[14]进行估算。

1.3 数据处理

经典统计分析、相关分析和单因素方差分析利用IBM SPSS 20软件完成。在SOC、STN和C/N随年限的动态变化分析中,对各年限数据取平均值后再进行制图和拟合。运用地统计学手段进行SOC、SOCD、STN、STND和C/N空间异质性分析,半方差函数的拟合在GS+ 9.0软件上进行。将GS+中获得的最优拟合参数导入ArcGIS 10.2软件的地统计模块(Geostatistical Analyst)中,运用普通克里格插值法(Ordinary Kriging)获得SOC、STN和C/N的空间分布图。海拔、坡度、坡向等均基于30m×30m分辨率的DEM数据,采用ArcGIS 10.2软件计算得到。

2 结果与讨论 2.1 果园土壤碳、氮的含量和密度

表 1可见,胶东苹果园SOC、STN的平均含量为10.78~1.42 g kg-1,平均密度为2.81、0.37k gm-2,平均C/N为7.70。与我国其他典型苹果园相比,胶东苹果园SOC、STN的含量和密度处于相对较高水平,但C/N偏低,其含量和密度均高于辽西和渭北果园,但低于京郊和伊犁果园。胶东苹果园处于温带湿润丘陵地区,地势起伏幅度较小,土壤质地较疏松;受渤黄海海洋性气候影响,水热相对充足,但蒸发量约是降雨量的2倍,水土流失较弱,果树生长较快,总体上有利于土壤碳氮的积累。目前,SOC含量处于较高水平;就氮而言,由于常年氮肥施用量大,而有机肥使用少,STN的积累速率快于SOC。葛顺峰等[4]认为土壤C/N比处于21~23有利于提高氮素的利用率,并促进苹果植株的生长。胶东果园C/N远低于此范围,说明该区土壤碳氮比例失调,可供微生物利用的碳源较少,微生物活性可能较低,可能会影响氮素的转化。

表 1 胶东苹果园SOC、STN含量和密度及C/N的统计特征及其与我国内陆主要果园的比较 Table 1 Statistics of SOC, SOCD, STN, STND and C/N in the orchardsof Jiaodong Peninsula and their comparison with those in the typical inland orchards of China
2.2 果园土壤碳氮的空间分布

空间分析结果(表 2)显示,胶东果园SOC、SOCD、STN、STND和C/N均符合指数模型,块基比分别为0.432、0.340、0420、0.387和0.391,均介于0.25~0.75之间,属中等强度的空间异质性[19]。这表明五者均受到结构性因素(如土壤类型、成土母质、地形条件等)和随机性因素(如肥料施用、翻耕灌溉、种植年限等)的共同影响[19]。这与郭宏[8]和张彬[20]等在相同尺度下对典型黄土高原果园的分析结果一致,说明滨海果园与内陆果园SOC和STN具有相似的空间异质性,且控制空间异质性的因素也是一致的。胶东果园SOC、SOCD、STN、STND和C/N的空间分布如图 2所示,SOC和STN分布趋势一致,反映在两者的显著相关性上(r=0.800,p < 0.01),同时暗示着C/N具有相对的稳定性[21]。胶东果园SOC分布以10.00~12.00 g kg-1区间为主,SOCD以2.40~3.00 k gm-2为主,STN以1.20~1.60 g kg-1为主,STND以0.30~0.42 k gm-2为主,C/N以7.0~8.0区间为主。

表 2 胶东苹果园SOC、STN含量和密度及C/N的最优半方差函数拟合参数 Table 2 Fitting parameters of the optimal semivariograms of SOC, SOCD, STN, STND and C/N in the orchards of Jiaodong Peninsula

图 2 胶东苹果园SOC、STN含量和密度及C/N的空间分布 Fig. 2 Spatial distribution of SOC, SOCD, STN, STND and C/N in the orchards of Jiaodong Peninsula
2.3 果园土壤碳氮的动态变化

因胶东苹果园SOC、STN和SOCD、STND的动态变化规律基本一致,故本文仅以SOC和STN指示土壤碳氮的动态变化。胶东苹果园SOC、STN和C/N随种植年限的变化趋势如图 3所示。SOC含量随种植年限的增加呈现上升趋势,但上升的过程是有起伏的,可能与土壤类型及果园管理措施的差异有关。在种植约30年时SOC呈现下降趋势,此时间节点与苹果树的“枯果期”基本一致。我国果园多处在瘠薄土壤上,立地条件较差[22]。且果园改建对土壤扰动强烈,使得有机质暴露,有利于微生物对有机质的矿化分解[23],因此果园利用初期SOC含量较低。随着经营年限的延长,以凋落物和有机肥形式输入的碳素,使微生物呼吸作用增强,在释放新增碳的同时,也释放出已贮存的有机质[24],因而SOC含量不断上升。SOC含量的升高促进了团聚体的形成,进而也增强了有机质的稳定性[25]。对于树龄超过30年的果园土壤,处于退化阶段,果树细根的生物量减小[26],根系分泌物减少,果树的光合生理功能也变弱[9]。此外,老果园常因产量低而疏于施肥[27],这些因素均可导致老龄果园SOC含量的下降。

图 3 胶东苹果园SOC、STN和C/N比值随种植年限的变化 Fig. 3 Variation of SOC, STN and C/N in the orchards of Jiaodong Peninsula with age

胶东果园STN含量随着年限的延长而呈上升趋势,但增长率不断减小。氮肥、有机肥的施用及凋落物输入是果园STN的主要来源,其含量是矿化与积累的平衡结果。果树生长需要吸收大量氮素,尤其在盛果期,但因施肥量大,使得STN含量并没有降低。在我国苹果生产中,氮肥利用率仅为30%~50%[28]。盈余的氮素一部分被淋洗或挥发外,其余在土壤中渐渐积累,使得STN含量不断增加。随着年限延长,长期单一、过量施用氮肥导致土壤蓄积养分能力下降[29],因此STN增长率逐渐下降。此外,老果园施肥不受重视,果树归还量降低,导致STN含量不再显著提高。

SOC和STN积累并非同步,因此C/N变化规律与SOC和STN不同。随着年限的延长,土壤C/N呈先下降、后上升、再下降的趋势。幼龄果园因生产需要而氮肥投入大,氮素积累,因而C/N降低。随着年限进一步延长,SOC不断积累,土壤微生物数量会增加,氮素矿化率提高,因而C/N增加[30]。而在枯果期,果园SOC含量开始下降,土壤微生物数量相应降低,氮素利用率下降,故而C/N再次下降[30]

甘卓亭等[9]研究报道,内陆苹果园碳氮表现出随种植年限动态变化。然而,不同于胶东苹果园,可能由于受水分条件限制,内陆苹果园的生产周期一般较短,如渭北塬区20年限苹果园基本处于退化阶段,其碳氮含量也随之减少[9-10]。黄土高原和北京昌平、通州等地区果园SOC也随种植年限变化[31],但不如胶东地区果园显著,这可能与不同区域果园管理措施、区域气候条件和土壤特征有关。胶东果园水热相对充足,植被生产力高,土壤微生物活动更旺盛,因此土壤的碳氮动态变化会强于内陆果园,其碳氮周转的速率会更快。

2.4 果园土壤碳氮时空分布的影响因素

在现代果园管理措施中,常采用“清园”管理,导致地表凋落物残体很少。因而,施肥被认为是影响土壤碳氮含量的主要因素[32]。不同地区苹果园施肥量及肥料种类差异较大[33-34],增大了土壤碳氮的空间变异性,使得果园土壤碳氮的空间分布和动态变化变得更加复杂。据报道,胶东果园施用化学氮肥水平在612.6 kghm-2,局部地区高达1 000 kg hm-2以上,而有机肥投入却明显不足[33]。渭北果园氮肥用量在672 kg hm-2,北京昌平果园氮肥用量约为1 000 kg hm-2,同样有机肥投入比例较低[27, 34]。这意味着不同地区果园的集约化程度不同,共同的是大量使用化肥,有机肥投入量过少[27, 33-34]。这影响着不同区域果园碳氮的均衡性和时空特征。此外,灌溉、地膜覆盖、生草和翻耕等措施也可能在不同程度上影响果园土壤的碳氮含量水平及时空变化[32]

种植年限是衡量果园管理强度的重要指标,代表了果园的开垦历史、管理强度,因而会对SOC、STN含量和密度及C/N有显著影响。同时,不同果园因种植年限不同而使其SOC、STN含量和C/N不同,进而在空间上呈现出异质性。由图 4可见,2014年胶东果园典型土壤(以土属为单元)SOC和STN含量较1980年增长约1倍,说明长期施肥等管理措施提高了果园的碳氮水平。在不同种植年限之间,胶东苹果园碳氮水平也表现出显著的差异(图 2),同样也印证了施肥等田间管理对碳氮含量及密度的影响。

图 4 胶东苹果园典型土壤类型SOC和STN含量在2014年与1980年之间的对比 Fig. 4 Comparison between the years of 1980 and 2014 in SOC andSTN content in the orchards of Jiaodong Peninsula 注:1麻砂质棕壤,2麻砂质棕壤性土,3中性粗骨土,4麻砂质中性粗骨土,5暗泥质中性粗骨土Note:1Hapli-Udic Argosols, 2Hapli-Udic Cambosols, 3~5Lithic Usti-Orthic Primosols

胶东果园SOC和STN含量在不同土属之间表现出显著性差异(p < 0.05)(图 5),F值分别为2.06和1.85,说明土壤类型影响碳氮的时空分布。在土壤分类体系中,土属主要根据成土母质及区域水文控制的盐分类型等地方性因素划分,主要反映出母质和地形的影响。胶东果园土壤的成土母质主要包括残积坡积物、酸性岩坡积洪积物和洪积冲积物等类型,果园SOC和STN含量既继承于母质,又受母质控制的土壤性质(如质地)的影响,从而表现出与成土母质的关联性。

图 5 基于土属统计的胶东苹果园SOC、STN含量和C/N比值的分布 Fig. 5 Distribution of SOC, STN content and C/N in the orchards of Jiaodong Peninsula on a soil family basis 注:1麻砂质棕壤,2麻砂质棕壤性土,3灰泥质棕壤性土,4洪冲积壤质潮棕壤,5褐土,6淋溶褐土,7中性粗骨土,8麻砂质中性粗骨土,9暗泥质中性粗骨土,10钙质粗骨土,11砂质潮土,12壤质潮土,13砂壤质潮土,14黑姜土 Note:1Hapli-Udic Argosols, 2~3Hapli-Udic Cambosols, 4Mottlic Hapli-Udic Argosols, 5~6Hapli-Ustic Argosols, 7~9 Lithic Usti-Orthic Primosols, 10 Carbonatic Udi-Orthic Primosols, 11~13 Ochri-Aquic Cambosols, 14 Shajiang Calci-Aquic Vertosols

土壤分布具有地带性特征,而果园种植也受到地带性土壤类型的影响。胶东果园和辽西果园等滨海果园以棕壤为主,渭北果园以黄绵土为主,伊犁果园多以潮土为主。这几类土壤性质差别很大,即使在同等的管理强度下,肥力水平也各不相同。土壤类型也影响土壤有机质的稳定性,进而可影响碳氮矿化的速率[35]

气候在土壤碳氮的积累过程中扮演重要角色。一方面,气候影响果园植被的生产力和生物量,控制输入土壤的碳氮量;另一方面,气候通过土壤水分、温度等来影响微生物对碳氮的分解和转化,因此温度和降雨的综合作用决定了果园土壤碳氮分布的地带性特征[32]。胶东苹果园与我国其他内陆果园存在着显著的气候条件差别。胶东苹果园深受渤黄海海洋性气候的影响,水热条件相对充足,碳氮的周转速度较快。胶东半岛自身由于海陆、陆地下垫面分布不均匀,造成了冷热水平和垂直分布的差异,使得滨临渤海果园比滨临黄海果园每年有100 mm降水量的差异,这可能会影响碳氮的时空分布特征,需要进一步研究。

胶东果园SOC、STN和C/N与地形因子的相关性见表 3。总体而言,SOC、STN和C/N比值与胶东地形因子有关。SOC和STN与海拔呈极显著正相关(p < 0.01),相关系数分别为0.161和0.172;SOC和TN与坡度呈显著负相关(p < 0.05)。与张彬等[20]对黄土高原果园的研究结果相比,胶东果园碳氮受地形因子的影响较弱,这主要与胶东果园丘陵、低山为主,地形起伏不大以及水土流失较弱有关。

表 3 胶东苹果园SOC、STN和C/N与地形因子、土壤pH的相关性 Table 3 Pearson correlation of SOC, STN and C/N with terrain indices and soil pH

胶东苹果园土壤pH平均为5.88,且随种植年限快速降低;相比于第二次土壤普查时的数值,胶东果园土壤严重酸化[7]。胶东果园土壤SOC与pH存在显著正相关(r=0.102,p < 0.05)(表 3),但土壤STN与pH呈极显著负相关关系(r=-0.124,p < 0.01),可能与化学氮肥在硝化过程中产生大量H+和NO3-导致土壤pH降低有关[34]。土壤C/N比值和pH呈极显著正相关(r=0.265,p < 0.01)。土壤pH的高低会影响土壤微生物的活动,因为大多数土壤微生物都对酸敏感[36]。土壤的细菌和放线菌适宜生活在中性至微碱性的土壤环境中,当土壤pH过低时,它们的活性会受到严重影响,使得土壤有机质矿化速率下降[37]。低pH可限制硝化微生物的生长,抑制土壤硝化作用,进而影响氮素的周转[38]。与胶东滨海果园不同,黄土高原等内陆果园土壤pH多为碱性,碳酸盐对酸缓冲能力强,因而在现阶段,内陆苹果园土壤酸化对土壤碳氮含量及密度分布的影响可能不显著。

3 结论

胶东滨海果园SOC和STN含量和密度较高,总体上果园土壤肥力质量较高。胶东果园SOC、STN含量和密度及C/N表现出中等强度的空间分布变异性,受到果树种植和管理年限的显著影响。在种植年限30年之内,SOC和STN含量持续增加。土壤类型、酸碱性、地形、施肥等自然和人为因素共同影响着SOC和STN含量和密度及其变化。滨海与内陆苹果园的土壤碳氮空间分布和动态变化存在异同性。

参考文献
[1]
Gong W, Yan X Y, Wang J Y, et al. Long-term manuring and fertilization effects on soil organic carbon pools under a wheat–maize cropping system in North China Plain . Plant and Soil, 2009, 314(1/2): 67-76. (0)
[2]
刘颖, 王克健, 谢让金, 等. 基于冠层高光谱信息的苹果树花量估测. 中国农业科学, 2016, 49(18): 3608-3617.
Liu Y, Wang K J, Xie R J, et al. Estimating the number of apple tree flowers based on hyperspectral information of a canopy (In Chinese). Scientia Agricultura Sinica, 2016, 49(18): 3608-3617. DOI:10.3864/j.issn.0578-1752.2016.18.015 (0)
[3]
杨玥, 同延安, 路永莉, 等. 陕西省苹果园土壤肥力与施肥现状评估. 干旱地区农业研究, 2016, 34(5): 166-171, 179.
Yang Y, Tong Y A, Lu Y L, et al. Evaluation on the situation of fertilization and soil fertilityin apple fields in Shaanxi Province (In Chinese). Agricultural Research in the Arid Areas, 2016, 34(5): 166-171, 179. DOI:10.7606/j.issn.1000-7601.2016.05.25 (0)
[4]
葛顺峰, 许海港, 季萌萌, 等. 土壤碳氮比对平邑甜茶幼苗生长和碳氮分配的影响. 植物生态学报, 2013, 37(10): 942-949.
Ge S F, Xu H G, Ji M M, et al. Effects of soil C︰N on growth and distribution of nitrogen and carbon of Malus hupehensis seedlings (In Chinese). Chinese Journal of Plant Ecology, 2013, 37(10): 942-949. (0)
[5]
Li L Z, Wu H F, van Gestel C A M, et al. Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China . Environmental Pollution, 2014, 188: 144-152. DOI:10.1016/j.envpol.2014.02.003 (0)
[6]
白茹. 陕西渭北苹果园土壤矿质氮累积及影响因素的研究. 陕西杨凌: 西北农林科技大学, 2006.
Bai R. Mineral N accumulation and the impact factors in apple orchards of Weibei areas in Shaanxi Province (In Chinese). Yangling, Shaanxi: Northwest A & F University, 2006. (0)
[7]
Ge S F, Xu H G, Ji M M, et al. Characteristics of soil organic carbon, total nitrogen, and C/N ratio in Chinese apple orchards . Open Journal of Soil Science, 2013, 3: 213-217. DOI:10.4236/ojss.2013.35025 (0)
[8]
郭宏, 刘天鹏, 杜毅飞, 等. 黄土高原县域苹果园土壤养分空间变异特征研究. 水土保持研究, 2015, 22(3): 21-27.
Guo H, Liu T P, Du Y F, et al. Spatial variability of soil nutrients in the apple orchards on the scale of county in the Loess Plateau (In Chinese). Research of Soil and Water Conservation, 2015, 22(3): 21-27. (0)
[9]
甘卓亭, 张掌权, 陈静, 等. 黄土塬区苹果园土壤有机碳分布特征. 生态学报, 2010, 30(8): 2135-2140.
Gan Z T, Zhang Z Q, Chen J, et al. Spatial distribution of soil organic carbon in apple orchards on Loess Tableland (In Chinese). Acta Ecologica Sinica, 2010, 30(8): 2135-2140. (0)
[10]
杜静静, 张永清, 马大龙, 等. 不同种植年限苹果园土壤理化性质与酶活性研究. 中国农学通报, 2013, 29(34): 90-95.
Du J J, Zhang Y Q, Ma D L, et al. Study on the soil physical-chemical properties and enzyme activities in apple orchardswith different planting years (In Chinese). Chinese Agricultural Science Bulletin, 2013, 29(34): 90-95. DOI:10.11924/j.issn.1000-6850.2013-0920 (0)
[11]
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科学技术出版社, 2000: 9-34, 85-96.
Lu R K. Analytical methods for soil and agro-chemistry (In Chinese). Beijing: China Agricultural Science and Technology Press, 2000: 9-34, 85-96. (0)
[12]
Zhang H B, Luo Y M, Wong M H, et al. Soil organic carbon storage and changes with reduction in agricultural activities in Hong Kong . Geoderma, 2007, 139(3): 412-419. (0)
[13]
Song G H, Li L Q, Pan G X, et al. Topsoil organic carbon storage of China and its loss by cultivation . Biogeochemistry, 2005, 74(1): 47-62. DOI:10.1007/s10533-004-2222-3 (0)
[14]
烟台市土壤普查办公室. 烟台市土壤. 北京: 中国农业出版社, 1987: 75-283.
Office for the Second National Soil Survey of Yantai. Yantai soil (In Chinese). Beijing: China Agriculture Press, 1987: 75-283. (0)
[15]
仉服春, 高洪岐, 贺强, 等. 绥中县苹果园土壤养分状况与果实缺钙症的发生. 北方果树, 2017(2): 20-22.
Zhang F C, Gao H Q, He Q, et al. Characters of soil nutrient contentand calcium deficiencyin Suizhong apple orchard (In Chinese). Northern Fruits, 2017(2): 20-22. (0)
[16]
张强, 魏钦平, 刘旭东, 等. 北京昌平苹果园土壤养分、pH与果实矿质营养的多元分析. 果树学报, 2011, 28(3): 377-383.
Zhang Q, Wei Q P, Liu X D, et al. Multivariate analysis of relationship between soil nutrients, pH and fruit mineral nutrition in Fuji apple orchards of Changping, Beijing (In Chinese). Journal of Fruit Science, 2011, 28(3): 377-383. (0)
[17]
李柳莹, 王延平, 韩明玉, 等. 洛川苹果园土壤的理化特征分析. 西北农林科技大学学报(自然科学版), 2016, 44(4): 185-194.
Li L Y, Wang Y P, Han M Y, et al. Physical and chemical properties of soil in apple orchards of Luochuan (In Chinese). Journal of Northwest Agriculture and Forestry University(Natural Science Edition), 2016, 44(4): 185-194. (0)
[18]
刘君. 伊犁河谷苹果园土壤养分状况调查. 浙江农业科学, 2013(5): 544, 549.
Liu J. Investigation of soil nutrients in apple orchards of the Yili Valley (In Chinese). Zhejiang Agricultural Science, 2013(5): 544, 549. (0)
[19]
Cambardella C A, Moorman T B, Parkin T B, et al. Field-scale variability of soil properties in central Iowa soils . Soil Science Society of America Journal, 1994, 58(5): 1501-1511. DOI:10.2136/sssaj1994.03615995005800050033x (0)
[20]
张彬, 杨联安, 杨粉莉, 等. 礼泉县苹果园土壤养分空间变异特征及综合评价. 土壤通报, 2016, 47(4): 860-867.
Zhang B, Yang L A, Yang F L, et al. Spatial variability and comprehensive evaluation of soil nutrients in apple orchard in Liquan County (In Chinese). Chinese Journal of Soil Science, 2016, 47(4): 860-867. (0)
[21]
刘伟, 程积民, 高阳, 等. 黄土高原草地土壤有机碳分布及其影响因素. 土壤学报, 2012, 49(1): 68-76.
Liu W, Cheng J M, Gao Y, et al. Distribution of soil organic carbon in grassland on Loess Plateau and its influencing factors (In Chinese). Acta Pedologica Sinica, 2012, 49(1): 68-76. DOI:10.11766/trxb201009060364 (0)
[22]
赵帅翔, 张卫峰, 姜远茂, 等. 黄土高原苹果过量施氮因素分析. 植物营养与肥料学报, 2017, 23(2): 484-491.
Zhao S X, Zhang W F, Jiang Y M, et al. Factors leading to excessive nitrogen fertilization on apple in the Loess Plateau (In Chinese). Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 484-491. DOI:10.11674/zwyf.16166 (0)
[23]
李如剑, 王蕊, 李娜娜, 等. 黄土区果园和刺槐林生态系统土壤有机碳变化及影响因素. 环境科学, 2015, 36(7): 2662-2668.
Li R J, Wang R, Li N N, et al. Changes of soil organic carbon and its influencing factors of apple orchards and black locusts in the small watershed of Loess Plateau, China (In Chinese). Environmental Science, 2015, 36(7): 2662-2668. (0)
[24]
王义祥, 叶菁, 王成己, 等. 不同经营年限对柑橘果园土壤有机碳及其组分的影响. 生态环境学报, 2014, 23(10): 1574-1580.
Wang Y X, Ye J, Wang C J, et al. Effect of different cultivation years on soil organic carbon pools in citrus orchards (In Chinese). Ecology and Environmental Sciences, 2014, 23(10): 1574-1580. DOI:10.3969/j.issn.1674-5906.2014.10.002 (0)
[25]
石宗琳, 王加旭, 梁化学, 等. 渭北不同园龄苹果园土壤团聚体状况及演变趋势研究. 土壤学报, 2017, 52(2): 387-399.
Shi Z L, Wang J X, Liang H X, et al. Status and evolution of soil aggregates in apple orchardsdifferent in age in Weibei (In Chinese). Acta Pedologica Sinica, 2017, 52(2): 387-399. (0)
[26]
甘卓亭, 刘文兆. 渭北旱坂不同龄苹果细根空间分布特征. 生态学报, 2008, 28(7): 3401-3407.
Gan Z T, Liu W Z. Distribution of the fine roots of different aged apple trees in Weibei rainfed tableland of the Loess Plateau (In Chinese). Acta Ecologica Sinica, 2008, 28(7): 3401-3407. (0)
[27]
赵世翔, 张雪辰, 王蒙, 等. 农田转变为果园后土壤有机碳含量的变化. 西北农林科技大学学报(自然科学版), 2014, 42(2): 215-221.
Zhao S X, Zhang X C, Wang M, et al. Changes in soil organic carbon after the conversion of farmland to orchard (In Chinese). Journal of Northwest Agriculture and Forestry University(Natural Science Edition), 2014, 42(2): 215-221. (0)
[28]
武良, 张卫峰, 陈新平, 等. 中国农田氮肥投入和生产效率. 中国土壤与肥料, 2016(4): 76-83.
W uL, Zhang W F, Chen X P, et al. Nitrogen fertilizer input and nitrogen use efficiency in Chinese farmland (In Chinese). Soil and Fertilizer Sciences in China, 2016(4): 76-83. DOI:10.11838/sfsc.20160413 (0)
[29]
王静, 呼丽萍, 李昶, 等. 种植年限对樱桃园土壤养分和酶活性的影响. 水土保持通报, 2013, 33(4): 155-158, 165.
Wang J, Hu L P, Li C, et al. Effect of planting period on soil nutrient and soil enzyme activities in cherry orchards (In Chinese). Bulletin of Soil and Water Conservation, 2013, 33(4): 155-158, 165. (0)
[30]
甘卓亭, 张蓓蓓, 张掌权, 等. 渭北塬区不同龄苹果园土壤微生物空间分布特征. 生态学报, 2015, 35(21): 6965-6973.
Gan Z T, Zhang B B, Zhang Z Q, et al. Spatial distribution of soil microorganisms in apple orchards of different ages on the Weibei rainfedtableland of the Loess Plateau, China (In Chinese). Acta Ecologica Sinica, 2015, 35(21): 6965-6973. (0)
[31]
杨世琦, 张爱平, 杨淑静, 等. 典型区域果园土壤有机质变化特征研究. 中国生态农业学报, 2009, 17(6): 1124-1127.
Yang S Q, Zhang A P, Yang S J, et al. Variations of soil organic matter in typical orchard regions (In Chinese). Chinese Journal of Eco-Agriculture, 2009, 17(6): 1124-1127. (0)
[32]
王义祥, 翁伯琦, 邢世和, 等. 果园土壤有机碳及其影响因素的研究进展. 福建农业学报, 2011, 26(6): 1113-1122.
Wang Y X, Weng B Q, Xing S H, et al. Advance in soil organic carbon stock and the impact factors on orchard ecosystem research (In Chinese). Fujian Journal of Agricultural Sciences, 2011, 26(6): 1113-1122. (0)
[33]
葛顺峰. 苹果园土壤碳氮比对植株-土壤系统氮素平衡影响的研究. 山东泰安: 山东农业大学, 2014.
Ge S F. Effects of soil C/N ratio on nitrogen balance of plant-soil system in apple orchard (In Chinese). Tai'an, Shandong: Shandong Agricultural University, 2014. (0)
[34]
杜连凤, 吴琼, 赵同科, 等. 北京市郊典型农田施肥研究与分析. 中国土壤与肥料, 2009(3): 75-78.
Du L F, Wu Q, Zhao T K, et al. Investigation of fertilizer application in different farmlands in suburbs of Beijing (In Chinese). Soil and Fertilizer Sciences in China, 2009(3): 75-78. (0)
[35]
刘满强, 胡锋, 陈小云. 土壤有机碳稳定机制研究进展. 生态学报, 2007, 27(6): 2642-2650.
Liu M Q, Hu F, Chen X Y. A review on mechanisms of soil organic carbon stabilization (In Chinese). Acta Ecologica Sinica, 2007, 27(6): 2642-2650. (0)
[36]
徐仁扣. 土壤酸化及其调控研究进展. 土壤, 2015, 47(2): 238-244.
Xu R K. Research progresses in soil acidification and its control (In Chinese). Soils, 2015, 47(2): 238-244. (0)
[37]
郭莉莉, 袁珍贵, 朱伟文, 等. 土壤酸化对土壤生物学特性影响的研究进展. 湖南农业科学, 2014(12): 30-32, 35.
Guo L L, Yuan Z G, Zhu W W, et al. Research progress in soil acidification effect on soil biological characteristics (In Chinese). Hunan Agricultural Science, 2014(12): 30-32, 35. (0)
[38]
孙波, 郑宪清, 胡锋, 等. 水热条件与土壤性质对农田土壤硝化作用的影响. 环境科学, 2009, 30(1): 206-213.
Sun B, Zheng X Q, Hu F, et al. Effects of temperature, rainfall and soil properties on farmland soil nitrification (In Chinese). Environmental Science, 2009, 30(1): 206-213. (0)
Spatial Distribution and Dynamics of Soil Organic Carbon and Total Nitrogen in Apple Orchards in Coastal Regions
FU Chuancheng1,2 , ZHANG Haibo1,3 , TU Chen1 , LI Lianzhen1 , ZHOU Qian1,2 , LI Yuan1,4 , LUO Yongming1,2,4     
1. Key Laboratory of Coastal Environment Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A & F University, Hangzhou 311300, China;
4. Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
Abstract: 【Objective】 Soil organic carbon (SOC) and soil total nitrogen (STN) are two key indicators of soil fertility and quality, and closely related to soil productivities of farmlands and orchards. As the largest apple producer in the world, China has orchards distributed in all the corners of the country across different climate zones, in a huge variety of soils and under different management practices. Therefore, the orchards vary sharply in spatio-temporal distribution of soil C and N between different regions. However, as for spatial distribution and dynamics of SOC and STN in the apple orchards of the coastal regions, little system study has been made and little is known about differences and commons between the orchards in inland and coastal regions.In order to optimize management of the orchards, spatial distribution and dynamics of contents and densities of SOC and STN in large-scale apple orchards typical of the coastal region were studied.【Method】 A total of 488 soil samples were collected from the surface soil layers of apple orchards differentin age in Jiaodong, Shandong Province, East China for analysis of SOC, STN, SOCD (soil organic carbon density), STND (soil total N density), spatial distribution of C/N ratios, and their dynamics and affecting factors.【Result】 Results show that the average SOC and STN content in the orchards of that region was 10.80 and 1.42 g kg-1, respectively, the average SOCD and STND was 2.81 and 0.37 kg m-2, respectively, and the average soil C/N ratio was 7.70. Compared with the inland apple orchards located inWest Liaoning, suburbs of Beijing, Weibei of Shaanxi and Ili of Xinjiang, the apple orchardsin Jiaodong were generally higher in SOC and STN, but lower in C/N ratio. The apple orchards in Jiaodong are often located in temperate humid hilly areas, quite loose in soil texture, and enjoy rich hydrothermal resources, endowed by the maritime climate of the Yellow Sea. All the natural conditions, generally speaking, are favorable to accumulation of soil carbon and nitrogen. The Nugget/Sill ratio of SOC, STN, SOCD, STND and C/N was 0.432, 0.340, 0.420, 0.387 and 0.301, respectively, indicating that the spatial heterogeneityis moderate in level, as affected jointly by structural and stochastic factors in the area. The conclusion is quite consistent with that of the researches on SOC and STN in inland orchards. With the orchards established, SOC and STN appeared to be on a rising trend, but after 30 years of cultivation, SOC began to decline, while STNkept on rising, though at a slower pace. SOC and STN did not synchronize in accumulation, with C/N ratio declining first, then rising and declining again. SOC and STN in the apple orchards of Jiaodong were also affected by soil type, which is determined by its parent material and inherits certain properties of its parent materials. Moreover, the distribution of soils has its zonality, which also makes the orchards in Jiaodong different from the inland ones in SOC and STN. Terrain is only a minor factor affecting SOC and STN in the orchards of Jiaodong, which is mainly because the orchards there sit mainly on low hills and mounds, low in undulation and soil water loss. But the strong soil acidification in the orchards of Jiaodong may affect the activity of soil microbes, and in turn, the cycling of soil C and N. However, in inland orchards the soils are mostly alkaline ones, which have strong acid buffering capacity, so the impact of soil acidification is insignificant therein.【Conclusion】 The apple orchardsin Jiaodong are generally high in carbon and nitrogen content and hence soil fertility and they have their own especific characteristics of spatio-temporal variation, and much higher soil C and N turnover rates and more dramatic dynamic variation, compared with inland orchards.
Key words: Apple orchards in coastal regions    SOC    STN    Spatial distribution    Cultivation age