检索项 检索词
  土壤学报  2018, Vol. 55 Issue (5): 1276-1285  DOI: 10.11766/trxb201712110499
0

引用本文  

黄萍, 纪拓, 岳松青, 等. 垂直孔施有机物对土壤硝酸盐代谢及苹果叶片光合作用的影响. 土壤学报, 2018, 55(5): 1276-1285.
HUANG Ping, JI Tuo, YUE Songqing, et al. Effects of Application of Organic Materials to Apple Trees through Vertical Holes on Soil Nitrate Metabolism, and Leaf Photosynthesis of Apple. Acta Pedologica Sinica, 2018, 55(5): 1276-1285.

基金项目

国家自然科学基金项目(31772251,31372016)、国家科技支撑计划项目(2014BAD16B02)和山东省重点研发计划项目(2016ZDJS10A01)资助

通讯作者Corresponding author

杨洪强, E-mail: hqyang@sdau.edu.cn

作者简介

黄萍(1993-),女,湖北武汉人,硕士研究生,主要从事果园土壤管理研究。E-mail: 2278218618@qq.com
垂直孔施有机物对土壤硝酸盐代谢及苹果叶片光合作用的影响
黄萍 , 纪拓 , 岳松青 , 李萍 , 荀咪 , 曹辉 , 杨洪强     
山东农业大学园艺科学与工程学院,作物生物学国家重点实验室,山东泰安 271018
摘要:土壤钻孔可改善通气性,施用有机物能增加土壤有机质,将两者相结合,以4年生红富士苹果为试验材料,在根区钻出垂直通气孔后,分别施入玉米秸秆、果树枝、生物炭和发酵果木屑,调查土壤硝酸盐代谢、苹果叶片光合与蒸腾、水分利用效率(WUE)及植株生长量等。结果表明:土壤垂直孔施玉米秸秆或发酵果木屑显著提高土壤硝化-反硝化强度及土壤硝酸还原酶(NR)和亚硝酸还原酶(NiR)活性; 垂直孔施玉米秸秆、果树枝或生物炭显著提高叶片净光合速率、蒸腾速率和WUE; 垂直孔施上述四种有机物料均显著提高40 cm土层土壤的相对含水量,促进新梢加粗和伸长,其中,玉米秸秆的综合效果最显著,它在施用第10个月使土壤硝化强度、反硝化强度、叶片净光合速率和WUE分别提高52.68%、45.81%、57.32%和29.12%。
关键词土壤钻孔    玉米秸秆    苹果    硝酸盐代谢    光合作用    水分利用效率(WUE)    

土壤是果树栽培的基础,“气”是构成土壤肥力的四大要素之一。土壤黏重、紧实度大、孔隙度小以及积水等常导致土壤通气性变差、氧气含量不足等问题出现,进而影响土壤微生物代谢、土壤酶活性和土壤养分转化,抑制根系有氧呼吸,限制对养分和水分的吸收利用,不利于植物健康生长以及作物产量形成[1-2]等。耕翻松土、黏土掺沙和加氧灌溉等措施可改善农田土壤通气状况[2-3],施用生物炭能够增强土壤通气性[4]。土壤钻孔可明显改善草坪土壤通气性,提高土壤微生物活性,促进土壤有机物分解以及根系对养分的吸收[5]。氮素是限制植物生长发育和产量形成的首要因素,氮素代谢需要呼吸产生的能量,呼吸离不开氧气,因此,土壤钻孔在影响土壤通气性、增强土壤含氧量的同时,必然影响土壤氮素代谢。

硝酸盐易被吸收利用也易随水流失,在土壤硝酸还原酶、亚硝酸还原酶等的作用下可转化为氮氧化物,或者通过异化还原成铵态氮(NH4+),或者最终形成氮气(N2)而逸散[6]。果树枝条和作物秸秆是典型的农业废弃物,将果树枝条制成发酵果木屑,施入土壤可降低土壤容重,促进根系生长[7];秸秆还田能有效提高土壤有机质含量,改良土壤结构,增加速效养分含量,提高土壤氮素有效性[8];将秸秆等转化成生物炭施入土壤,能够降低土壤容重,增加土壤持水量,减少氮氧化物排放[9-10],这些有机物通过影响养分组成等土壤理化性状直接或间接地影响了土壤硝酸盐代谢,进而影响植物生长发育。但在常规应用中,无论是作物秸秆、生物炭或发酵果木屑等均被埋在土壤浅层、压在底层或覆盖在土壤表层,目前很少有将它们垂直施入土壤的应用,也不清楚它们对土壤硝酸盐代谢以及对果树光合、蒸腾等影响的差异性。在钻孔改善土壤通气性的条件下,本研究拟将土壤钻孔通气和施用有机物料结合起来,即在根区土壤钻出深而窄的垂直小孔后,分别向孔内施入玉米秸秆、果树枝、生物炭和发酵果木屑,探讨垂直施有机物对土壤硝酸盐代谢和苹果叶片光合速率、蒸腾速率、水分利用效率及植株生长的影响,明确土壤钻孔与施用有机物相结合的效果和作用特点,以期为苹果根区土壤管理提供参考。

1 材料与方法 1.1 供试材料

试验于2015年11月-2016年9月在山东省高校果树生物学重点实验室和山东农业大学南校区的果树试验站进行。供试植株为2012年春季栽培于苹果根窖树穴中的红富士苹果(砧木为平邑甜茶Malus hupehensis Rehd.)。根窖是一种根系观察系统,即在地面挖深3.5 m、宽3.0 m的壕沟,在沟面上每间隔2.0 m挖长1.4 m、宽1.2 m、深2.5 m树穴,树穴靠壕沟的一侧为玻璃面,树穴内填满土,壕沟用水泥浇注封顶,壕沟内处于黑暗状态。根窖树穴内土壤为褐土,pH 6.9,有机质9.8 g·kg-1,全氮1.26 g·kg-1,碱解氮81.20 mg·kg-1,全磷1.01 g·kg-1,有效磷60.34 mg·kg-1,全钾12.65 g·kg-1,速效钾116.50 mg·kg-1

1.2 试验处理

2015年秋季(11月10日)从上述材料中选择长势一致的植株,参照专利“果园土壤通气施肥方法”[11]进行垂直孔施有机物处理,即在每株树四个方向(东西南北)距树干50 cm的土壤处,用上海本田GX-390型汽油机改装的土壤钻孔机均匀钻四个孔,每孔直径15 cm、深度50 cm; 以单株为单位,分别将玉米秸秆(Corn stalk,CS)、果树枝(Fruit tree branches,FTB)、生物炭(Biochar,BC)和发酵果木屑(Fermented sawdust of fruit tree branches,FFB)填入四个孔内。玉米秸秆和果树枝被截成55 cm长,按照每4~5根一束垂直插到孔的底部,用园土填满缝隙,玉米秸秆和果树枝露出地面5 cm; 生物炭和发酵果木屑分别与园土按照1:1比例混合后填满每株树的四个孔,孔口不覆土; 以每株树钻四个孔后回填土壤为对照(CK)。每5棵树为一个处理单位,重复三次。生物炭是将玉米秸秆洗净、风干、粉碎后在600℃下厌氧加热制成; 发酵果木屑是将苹果枝干粉碎为粒径0.5~1 cm的颗粒,经过127℃、0.25 MP压力下处理后拌入EM(有效微生物群,Effective microorganisms)发酵40 d而成。四种有机物养分含量等基本性状见表 1

表 1 所试有机物中的养分含量和pH Table 1 Nutrient contents and pH of tested organic materials

为使各处理及与对照间的有机质和主要养分含量相近,设置试验时根据所试有机物养分含量及用量向处理及对照各孔内分别施入一定量的肥料,其中,CS各孔施入82 g尿素和109 g磷酸二氢钾,FTB各孔施入93 g尿素、175 g磷酸二氢钾和123 g硫酸钾; BC各孔施入90 g尿素、151 g磷酸二氢钾和119 g硫酸钾; FFB各孔施入91 g尿素、154 g磷酸二氢钾和124 g硫酸钾; CK(对照)各孔施入800 g有机肥(有机质含量450.0 g·kg-1、N+P2O5 +K2O总含量50.00 g·kg-1)、61 g尿素、113 g磷酸二氢钾和22 g硫酸钾。施肥后测定显示:每孔内全氮、全磷、全钾和有机质含量在CS处理中分别为6.00、5.65、5.33和51.39 kg·m-3,在FTB处理中分别为6.04、5.56、5.16和51.74 kg·m-3,在BC处理中分别为6.00、5.05、5.67和51.87 kg·m-3,FFB处理分别为6.04、4.99、5.57和51.61 kg·m-3,对照(CK)中分别为6.06、5.67、5.13和51.81 kg·m-3

处理后第6个月(在2016年5月4日,前后5天的平均气温为20.7℃)和第10个月(2016年9月20日,前后5天的平均气温为20.4℃)取样测定。取样时刮掉孔周边的表层浮土,用洛阳铲在距孔壁10 cm处挖取0~20 cm层土壤,剔除杂物、混匀,装入自封袋中,放入带有冰块的保温瓶中,带回实验室置于4℃冰箱内待测。9月20日土壤取样前测定叶片叶绿素相对含量、新梢粗度和长度、光合蒸腾参数以及孔内距地表 20 cm和40 cm处的土壤含水量

1.3 测定方法

土壤硝化和反硝化强度的测定参照文献[12]:称取10 g新鲜土壤,置于三角瓶中,加入NH4+培养液,并用带孔的橡皮塞(或脱脂棉)塞住,置于水浴恒温振荡器上振荡、过滤,分析滤液中的硝态氮(NO3--N)含量,每次取样后补足培养液。用培养前后NO3-浓度的变化来计算土壤硝化强度(以1 kg烘干填料在1 h内产生的NO3-量(mg)表示)。测定土壤反硝化强度时用NO3-培养液替换NH4+培养液,NO3-培养液由0.2 mol·L-1磷酸二氢钾溶液、0.2 mol·L-1磷酸氢二钾溶液、0.03 mol·L-1硝酸钾溶液和0.02 mol·L-1葡萄糖按体积比3:7:30:10配制而成,其他同土壤硝化强度测定。土壤硝酸还原酶(NR)和亚硝酸还原酶(NiR)活性以及土壤铵态氮、亚硝态氮、硝态氮含量测定参照文献[13-14]进行。碱解氮、有效磷和速效钾含量分别用扩散皿法、NaHCO3浸提-钼锑抗比色法和乙酸铵浸提-火焰光度法测定; 全氮、全磷、全钾含量采用H2SO2-H2O2消煮后分别用凯氏定氮仪(K9860,济南海能)、分光光度计(UV-5200,上海元析)和火焰光度计(F-300,上海元析)测定; 有机碳含量采用总有机碳分析仪(Elab-TOC,江苏埃兰)测定。

叶片光合、蒸腾参数在上午9时选枝条中部功能叶,用便携式光合仪(CIRAS-2,PP Systems,美国)测定; 水分利用效率(WUE)由叶片净光合速率(Pn)除以对应的蒸腾速率(Tr)得出。叶绿素相对含量用叶绿素测定仪(SPAD-502PLUS,Spectrum,美国)测定; 土壤含水量用土壤水分速测仪(TZS-1K,浙江托普)测定。

1.4 数据处理

数据分析采用Excel 2007和DPS 7.05统计软件进行,多重比较采用Tukey(图基)法(α=0.05)。

2 结果 2.1 垂直孔施有机物对根区土壤硝化-反硝化作用的影响

图 1可见,无论处理6个月还是10个月,垂直孔施玉米秸秆和发酵果木屑后,土壤硝化强度和反硝化强度均显著提高; 在处理10个月时,玉米秸秆使土壤硝化强度和反硝化强度分别提高52.68%和45.81%,发酵果木屑使土壤硝化强度和反硝化强度分别提高45.55%和35.44%。在垂直孔施生物炭6个月和10个月时,土壤硝化强度均显著提高,而反硝化强度仅在施生物炭6个月时显著提高。垂直孔施果树枝在处理6个月时对土壤硝化强度和反硝化强度的影响不明显,在处理10个月时使土壤硝化强度和反硝化强度分别提高18.88%和27.06%,差异显著。

图 1 垂直孔施有机物处理下根区土壤硝化强度和反硝化强度 Fig. 1 Effects of organic materials applied into vertical holes on soil nitrification and denitrification intensities 注:不同小写字母表示相同时间不同处理间差异显著; CK表示对照处理。下同Note: Different lowercase letters mean significant difference between different treatments at the same time; CK stands for the control treatment. The same below
2.2 垂直孔施有机物对根区土壤硝酸还原酶和亚硝酸还原酶活性的影响

图 2可知,无论在处理后6个月还是10个月,垂直孔施玉米秸秆、生物炭和发酵果木屑均显著提高土壤NR和NiR活性,其中,垂直孔施玉米秸秆在6个月时土壤NR和NiR活性提高幅度最大(分别提高46.43%、18.02%),而垂直孔施发酵果木屑在10个月时土壤NR和NiR活性提高幅度最大(分别提高48.00%、9.30%)。垂直孔施果树枝在6个月时降低土壤NiR活性,在10个月时提高土壤NiR活性而降低NR活性。

图 2 垂直孔施有机物处理下土壤硝酸还原酶和亚硝酸还原酶 Fig. 2 Effects of organic materials applied into vertical holes on soil NR and NiR activities
2.3 垂直孔施有机物对根区土壤无机氮的影响

图 3可知,在处理6个月时,垂直孔施玉米秸秆、果树枝、生物炭和发酵果木屑均降低了土壤铵态氮和亚硝态氮含量,而使硝态氮含量显著提高,提高幅度分别为144.9%、28.36%、71.95%和102.1%。处理10个月时,垂直孔施四种有机物均使土壤亚硝态氮含量降低,而使硝态氮含量显著提高,提高幅度分别为39.18%、18.23%、10.38%、25.65%;垂直孔施玉米秸秆、果树枝和发酵果木屑后,土壤铵态氮含量均显著提高,三者使铵态氮含量的提高幅度分别为41.41%、27.44%和21.60%。

图 3 垂直孔施有机物处理下土壤无机氮含量 Fig. 3 Effects of organic materials applied into vertical holes on soil inorganic nitrogen content
2.4 垂直孔施有机物对土壤相对含水量的影响

图 4可知,垂直孔施有机物6个月后,玉米秸秆、生物炭和发酵果木屑均显著提高了孔内20 cm和40 cm处的土壤相对含水量(SRWC),其中,玉米秸秆处理最显著,分别提高了26.70%、13.90%;果树枝处理仅提高了孔内40 cm处的SRWC。

图 4 垂直孔施有机物处理下孔内20 cm和40 cm土壤相对含水量 Fig. 4 Effects of organic materials applied into vertical holes on soil water content at 20 and 40 cm in the hole

处理10个月后,垂直孔施4种有机物均明显降低了孔内20 cm处SRWC而明显提高了40 cm处的SRWC,孔内20 cm处的SRWC由低至高以及40 cm处的SRWC由高至低均依次是玉米秸秆、果树枝、生物炭和发酵果木屑处理。可见,玉米秸秆对孔内SRWC的作用效果最显著,它使孔内20 cm处的SRWC降低了15.2%,使孔内40 cm处的SRWC提高了7.80%(图 4)。

2.5 垂直孔施有机物对苹果叶绿素相对含量和新梢生长量的影响

表 2可以看出,垂直孔施四种有机物均提高了叶绿素相对含量、新梢粗度和新梢长度,其中,玉米秸秆使新梢粗度提高幅度最大(达17.19%),其次是果树枝和发酵果木屑,它们使新梢粗度分别提高14.06%、7.81%,而生物炭仅使新梢粗度提高5.47%。使新梢长度提高程度最大的也是垂直孔施玉米秸秆,提高幅度为11.63%,其次是果树枝和生物炭,提高幅度分别为7.68%、5.79%。

表 2 垂直孔施有机物对苹果叶绿素、新梢粗度和长度的影响 Table 2 Effects of organic materials applied into vertical holes on chlorophyll, diameter and length of new shoots of apple trees
2.6 垂直孔施有机物对苹果叶片光合参数的影响

表 3可以看出,垂直孔施四种有机物后,叶片净光合速率、蒸腾速率和水分利用效率均有不同程度的提高,其中,玉米秸秆使叶片净光合速率、蒸腾速率和水分利用效率的提高幅度最大,分别达57.32%、22.22%、29.12%;生物炭使叶片净光合速率和蒸腾速率的提高程度仅次于玉米秸秆,其次是果树枝。果树枝和生物炭使叶片水分利用效率的提高幅度相近,均介于玉米秸秆和发酵果木屑之间。

表 3 垂直孔施有机物对苹果叶片净光合速率、蒸腾速率和水分利用效率的影响 Table 3 Effects of organic materials applied into vertical holes on Pn, Tr and WUE of apple leaves
3 讨论

硝化-反硝化作用是自然界氮素循环的重要环节,硝化作用需要较充足的氧气,反硝化作用在无氧或缺氧条件下较容易进行[15-16]。钻孔为土壤气体扩散和交换提供通道,钻孔后填充有机物料较填土(对照)能更好地维持地这一通道,更利于改善土壤通气状况,促进好气微生物活动,从而有利于硝化作用。铵态氮和硝态氮累积(图 3)能为土壤硝化和反硝化细菌提供底物和能源,促进土壤微生物代谢和有机质分解,增强土壤呼吸作用,加快土壤耗氧[17],因而导致土壤局部产生厌氧微区,改变微生物群落结构,使反硝化细菌活性增强和反硝化强度提高,尤其是处理后10个月。因此,垂直孔施用四种有机物在提高土壤硝化强度的同时,也相应提高了土壤反硝化强度。秸秆深还田能够提高土壤的饱和导水率,增强土壤的持水能力[18],随着土壤水分增加,微生物硝化作用逐渐加强[19],同时,玉米秸秆碳氮比高、易于分解,施入土壤可快速转化,能够为异养微生物提供电子受体和能量,有利于硝化-反硝化微生物尤其是反硝化细菌大量繁殖[20],从而促进了土壤反硝化作用,因而,无论在处理后6个月还是10个月,垂直孔施玉米秸秆均最显著提高了土壤硝化强度和反硝化强度(图 1)。

单独钻孔能够改善土壤通气性,提高土壤微生物活性,促进土壤有机物分解[5, 21];生物炭施入土壤也能够改善土壤通气性,提高土壤微生物活性,促进土壤有机物分解,增强土壤对水分和营养元素的吸持[4, 22];秸秆还田可有效改善土壤结构,增强通气与保水能力[23]。硝酸还原酶(NR)和亚硝酸还原酶(NiR)是反硝化作用过程中的重要酶,均来自土壤微生物所产生的活性蛋白,其活性非常容易受到土壤含氧量、温湿度、养分等因素影响[24]。土壤钻孔施入有机物料会对土壤的含氧量、温湿度、养分以及土壤微生物的群落数量、活性和组成等造成一定的影响,而土壤中的NR和NiR活性也必然会受到影响,这些均会改变土壤硝化-反硝化作用,并最终影响土壤硝酸盐代谢。

土壤NH4+和NO3-能够被根系直接吸收和利用,它们之间可通过硝化和反硝化作用相互转化,土壤硝化与反硝化强度也会影响土壤NH4+和NO3-有效性[25]。钻垂直孔施入四种有机物处理后,土壤NH4+和NO3-含量的变化,显示出垂直孔施有机物明显改变了土壤硝酸盐代谢与转化。在四种处理中,施入玉米秸秆的土壤NO3-和NH4+含量均最高,这应当与施入玉米秸秆促进了土壤氮素矿化及微生物对氮素的固定有关,因为玉米秸秆还田可促进微生物氮循环,增加对外源氮素的固定,提高土壤无机氮累积量[26]

在草坪管理中已经证明,打孔(钻孔)可以疏松土壤,促进土壤有机物分解,增加根系对养分的吸收,改善草坪质量[5],而且土壤钻孔可吸引根系向孔穴集中,提高大豆、小麦和玉米等作物生产力[27]。钻孔的作用主要在于促进土壤气体交换,改善土壤渗透性,增加深层土壤蓄水量[21],从而改善土壤环境,促进根系发育。钻孔通气的效果依赖于孔穴结构的维持、孔内填料及其分解状况等[21],玉米秸秆和果树枝分解需要一定时间,能较长时间保持土壤孔穴的完整性,有利于改善根际气体条件,促进水分和养分吸收,提高叶片光合性能,促进代谢产物转运和积累[28],因而也会提高苹果叶片光合速率、水分利用效率和新梢生长量(表 2表 3)。此外,生物炭和发酵果木屑是粉末和颗粒状,容易堆积沉实; 玉米秸秆和果树枝与地面大气连通,并且分解慢、能够支撑孔穴结构,更便于气体交换,因而整体效果也更好。

钻孔施入四种有机物改善了孔穴内的通气性,使浅层土壤水分较快蒸发,从而降低了孔内浅层SRWC,使孔穴内及其周边浅层土壤处于轻度干旱状态,而轻度干旱有利于提高叶片WUE[29]。同时,土壤钻孔施入有机物便于水分向土壤较深层下渗,且有机物有较好的持水性,可提高孔内及其周边较深层SRWC; 而较深层土壤水分更有利于保证果树水分需求,改善叶片光合性能和水分利用效率[30];在四种有机物中,玉米秸秆对孔中20 cm和40 cm处的SRWC影响最显著(图 4),因此,它对叶片光合速率和水分利用效率的提高也最显著。

传统施肥方法通常仅考虑向土壤补充营养物质,未注意土壤通气性问题; 土壤深翻熟化虽兼顾土壤结构改良和补充营养物质,但需要对土壤进行大规模扰动,工程量大、成本高,对根系损伤也大,不适于结果期果园、密植果园和山区果园。钻孔施有机物采用“小型土壤钻孔机”,操作简单、工程量低,对果树根系损伤小,能够增进土壤通气性,促进土壤硝酸盐代谢、增强叶片光合作用、提高叶片水分利用效率,有利于植株生长和产量提高。钻孔施有机物用小型钻孔机取代常规施肥时惯常采用的人工挖坑或开沟,提高了劳动效率,减少了用工量,而且操作方便,非常适合山区果园和密植果园。

4 结论

土壤垂直孔施四种有机物对土壤硝化与反硝化作用、土壤硝酸还原酶、土壤相对含水量、叶片光合与蒸腾作用、叶片水分利用效率及植株生长均有不同程度的影响,其中玉米秸秆的促进效果最显著,它在处理第10个月时,使土壤硝化强度和反硝化强度分别提高52.68%和45.81%,使叶片净光合速率、蒸腾速率、水分利用效率以及新梢粗度分别提高57.32%、22.22%、29.12%和17.19%。

参考文献
[1]
Mcnabb D H, Startsev A D, Nguyen H. Soil wetness and traffic level effects on bulk density and air-filled porosity of compacted boreal forest soils . Soil Science Society of America Journal, 2001, 65(4): 1238-1247. DOI:10.2136/sssaj2001.6541238x (0)
[2]
Bhattarai S P, Su N, Midmore D J. Oxygation unlocks yield potentials of crops in oxygen-limited soil environments . Advances in Agronomy, 2005, 88(5): 313-377. (0)
[3]
雷宏军, 胡世国, 潘红卫, 等. 土壤通气性与加氧灌溉研究进展. 土壤学报, 2017, 54(2): 297-308.
Lei H J, Hu S G, Pan H W, et al. Advancement in research on soil aeration and oxygation (In Chinese). Acta Pedologica Sinica, 2017, 54(2): 297-308. (0)
[4]
Sdc C, Mcnamara N P, Reay D S, et al. The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil–The role of soil aeration . Soil Biology & Biochemistry, 2012, 51(3): 125-134. (0)
[5]
刘晓波, 杨春华, 徐耀华, 等. 打孔对草坪枯草层及坪床土壤微生物活性和有机质含量的影响. 草地学报, 2013, 21(1): 174-179.
Liu X B, Yang C H, Xu Y H, et al. Effect of aeration on turf and the microbial activity and organic matter of soil (In Chinese). Acta Agrestia Sinica, 2013, 21(1): 174-179. (0)
[6]
Giles M E, Morley N J, Baggs E M, et al. Soil nitrate reducing processes-drivers, mechanisms for spatial variation, and significance for nitrous oxide production . Frontiers in Microbiology, 2012, 3: Article 407. (0)
[7]
宁留芳, 杨洪强, 曹辉, 等. 发酵果树枝碎屑对苹果幼树根系特征及叶片光合蒸腾的影响. 园艺学报, 2016, 43(10): 1989-1994.
Ning L F, Yang H Q, Cao H, et al. Effects of fermented crumbs of branches on the root characteristic and leaf photosynthesis and transportation of young apple trees (In Chinese). Acta Horticulturae Sinica, 2016, 43(10): 1989-1994. (0)
[8]
Ghimire R, Lamichhane S, Acharya B S, et al. Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems:A review . Journal of Integrative Agriculture, 2017, 16(1): 1-15. DOI:10.1016/S2095-3119(16)61337-0 (0)
[9]
Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems-A review . Mitigation & Adaptation Strategies for Global Change, 2006, 11(2): 403-427. (0)
[10]
Demirbas A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues . Journal of Analytical & Applied Pyrolysis, 2004, 72(2): 243-248. (0)
[11]
杨洪强, 范伟国, 杨致瑗.果园土壤通气施肥方法: CN104718866A, 2015
Yang H Q, Fan W G, Yang Z Y. Methods of fertilization with aeration in orchard soil(In Chinese): CN104718866A, 2015 (0)
[12]
闫丽娟, 杨洪强, 苏倩, 等. 炭化秸秆对苹果根系一氧化氮生成及根区土壤硝酸盐代谢的影响. 中国农业科学, 2014, 47(19): 3850-3856.
Yan L J, Yang H Q, Su Q, et al. Effects of carbonized straw on the nitric oxide formation and nitrate metabolism in apple roots and its root zone soil (In Chinese). Scientia Agricultura Sinica, 2014, 47(19): 3850-3856. DOI:10.3864/j.issn.0578-1752.2014.19.013 (0)
[13]
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
Bao S D. Soil agro-chemistrical analysis (In Chinese). Beijing: China Agriculture Press, 2000. (0)
[14]
关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986.
Guan S Y. Soil enzyme and its research methods (In Chinese). Beijing: Agriculture Press, 1986. (0)
[15]
白龙, 王跃羲, 刘英, 等. 草坪土壤的N2O产生途径及其对施氮肥的响应. 园艺学报, 2016, 43(10): 1971-1979.
Bai L, Wang Y X, Liu Y, et al. Effects in responses of turfgrass soil on nitrous oxide emission processes to N application (In Chinese). Acta Horticulturae Sinica, 2016, 43(10): 1971-1979. (0)
[16]
Bamard R, Leadley P W, Hungate B A. Global change, nitrification, and denitrification:A review . Global Biogeochemical Cycles, 2005, 19(1): GB1007. (0)
[17]
曾泽彬, 朱波, 朱雪梅, 等. 施肥对夏玉米季紫色土N2O排放及反硝化作用的影响. 土壤学报, 2013, 50(1): 130-137.
Zeng Z B, Zhu B, Zhu X M, et al. Effects of fertilization on N2O emission and denitrification in purple soil during summer maize season in the Sichuan Basin (In Chinese). Acta Pedologica Sinica, 2013, 50(1): 130-137. (0)
[18]
张素瑜, 王和洲, 杨明达, 等. 水分与玉米秸秆秆还田对小麦根系生长和水分利用效率的影响. 中国农业科学, 2016, 49(13): 2484-2496.
Zhang S Y, Wang H Z, Yang M D, et al. Influence of returning corn stalks to field under different soil moisture contents on root growth and water use efficiency of wheat(Triticum aestivum L.) (In Chinese). Scientia Agricultura Sinica, 2016, 49(13): 2484-2496. DOI:10.3864/j.issn.0578-1752.2016.13.004 (0)
[19]
丁军军, 张薇, 李玉中, 等. 不同灌溉量对华北平原菜地N2O排放及其来源的影响. 应用生态学报, 2017, 28(7): 2269-2276.
Ding J J, Zhang W, Li Y Z, et al. Effects of soil water condition on N2O emission and its sources in vegetable farmland of North China Plain (In Chinese). Chinese Journal of Applied Ecology, 2017, 28(7): 2269-2276. (0)
[20]
李平, 郎漫. 硝化和反硝化过程对林地和草地土壤N2O排放的贡献. 中国农业科学, 2013, 46(22): 4726-4732.
Li P, Lang M. Contribution of nitrification and denitrification to the N2O emission from forest and grassland soils (In Chinese). Scientia Agricultura Sinica, 2013, 46(22): 4726-4732. DOI:10.3864/j.issn.0578-1752.2013.22.010 (0)
[21]
侯晓丽, 丁蕴铮, 王焕新, 等. 土壤钻孔通气法对行道树生长的改善. 中国城市林业, 2005, 3(5): 48-50.
Hou X L, Ding W Z, Wang H X, et al. Improving growth of street trees by boring the rhizospheric soil for aeration (In Chinese). Journal of Chinese Urban Forestry, 2005, 3(5): 48-50. DOI:10.3969/j.issn.1672-4925.2005.05.013 (0)
[22]
Lehmann J. A handful of carbon . Nature, 2007, 447(7141): 143-144. DOI:10.1038/447143a (0)
[23]
刘世平, 张洪程, 戴其根, 等. 免耕套种与秸秆还田对农田生态环境及小麦生长的影响. 应用生态学报, 2005, 16(2): 393-396.
Liu S P, Zhang H C, Dai Q G, et al. Effects of no-tillage plus inter-planting and remaining straw on the field on cropland eco-environment and wheat growth (In Chinese). Chinese Journal of Applied Ecology, 2005, 16(2): 393-396. DOI:10.3321/j.issn:1001-9332.2005.02.040 (0)
[24]
Shan J, Xu Z, Rong S, et al. Dissimilatory nitrate reduction processes in typical chinese paddy soils:Rates, relative contributions, and influencing factors . Environmental Science & Technology, 2016, 50(18): 9972. (0)
[25]
Roux X L, Bardy M, Loiseau P, et al. Stimulation of soil nitrification and denitrification by grazing in grasslands:Do changes in plant species composition matter? . Oecologia, 2003, 137(3): 417-425. DOI:10.1007/s00442-003-1367-4 (0)
[26]
Pjavan A, Pmvan B, Mulder L M, et al. Effect of straw application on rice yields and nutrient availability on an alkaline and a pH-neutral soil in a Sahelian irrigation scheme . Nutrient Cycling in Agroecosystems, 2005, 72(3): 255-266. DOI:10.1007/s10705-005-3108-z (0)
[27]
Colombi T, Braun S, Keller T, et al. Artificial macropores attract crop roots and enhance plant productivity on compacted soils . Science of the Total Environment, 2017, 574: 1283-1293. DOI:10.1016/j.scitotenv.2016.07.194 (0)
[28]
孙周平, 郭志敏, 王贺. 根际通气性对马铃薯光合生理指标的影响. 华北农学报, 2008, 23(3): 125-128.
Sun Z P, Guo Z M, Wang H. Effects of different rhizosphere ventilation treatments on photosynthetic and physiological indices of potato (In Chinese). Acta Agriculturae Boreali-Sinica, 2008, 23(3): 125-128. (0)
[29]
Kang S, Shi W, Zhang J. An improved water-use efficiency for maize grown under regulated deficit irrigation . Field Crops Research, 2000, 67(3): 207-214. DOI:10.1016/S0378-4290(00)00095-2 (0)
[30]
毕润霞, 杨洪强, 杨萍萍, 等. 地下穴灌对苹果冠下土壤水分分布及叶片水分利用效率的影响. 中国农业科学, 2013, 46(17): 3651-3658.
Bi R X, Yang H Q, Yang P P, et al. Effect of cavity irrigation underground on the distribution of soil water under the canopy and leaf water use efficiency of apple (In Chinese). Scientia Agricultura Sinica, 2013, 46(17): 3651-3658. DOI:10.3864/j.issn.0578-1752.2013.17.014 (0)
Effects of Application of Organic Materials to Apple Trees through Vertical Holes on Soil Nitrate Metabolism, and Leaf Photosynthesis of Apple
HUANG Ping , JI Tuo , YUE Songqing , LI Ping , XUN Mi , CAO Hui , YANG Hongqiang     
State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
Abstract: 【Objective】 Drilling of holes in soil can improve soil aeration, and application of organic material can increase soil organic matter content. The study was carried out to investigate effects of the two used simultaneously on soil nitrate metabolism, and leaf photosynthesis, water use efficiency (WUE) and plant growth of apple trees. In a field experiment of this study, four different kinds of organic materials were applied, separately, into the vertical holes dug within the root zone of the trees. This study was expected to be able to provide certain reference for development of new technology for soil management in apple orchards【Method】 Four-year-old red Fuji apple trees cultivated in the root cellar were used as test material. Holes, 15 cm in diameter and 50 cm in depth were drilled around the trees within their root zones, and then corn stalks (CS), fruit tree branches (FTB), biochar (BC) and fermented sawdust of fruit tree branches (FFB), which are good in aeration, were applied, separately, into the holes. Nitrification and denitrification, nitrate reductase (NR) and nitrite reductase (NiR) activity, and inorganic nitrogen content in the soils of the root zones, net photosynthetic rate and transpiration rate of leaves, and WUE and growth of the plants were determined, six and ten months after the experiment started.【Result】 The determination, either six or ten months later, shows that application of CS or FFB improved soil nitrification and denitrification intensity, the most significantly especially CS, which did by 52.68% and 45.81%, respectively, 10 months after. BC exhibited similar effects, 6 months after the application. The determination 10 months after the application shows that all the four kinds of organic materials increased significantly soil nitrification and denitrification intensity. Both the determinatons show that all the four kinds of organic materials increased the activity of soil NR and NiR, except FTB, which decreased soil NiR activity in the first six months, and then, increased soil NiR activity, but reduced NR activity in the 10 months. CS was the most significant in the effect, raising soil NR and NiR activities by 46.43% and 18.02%, respectively, in the first six months, while FFB was the most in the 10 month period, raising by 48.00% and 9.30%, respectively. The application of the organic materials in the experiment, regardless of kind, enhanced soil nitrate nitrogen content during the whole period as demonstrated by the determinations 6 and 10 months after the application, while CS, FTB and FFB reduced soil ammonium nitrogen content in the first six months and then raised the content thereafter. The four treatments also significantly increased relative soil water content in the 0~40 cm soil layer, relative chlorophyll content, and diameter and length of new shoots. Among the four, CS came on the top in the effect on relative soil water content in the 0~40 cm soil layer, and diameter and length of new shoots, being 7.80%, 11.63% and 17.19%, respectively, higher than the originals, and followed by FTB, whereas FTB and BC sat in the bottom in the effect on diameter of new shoots, and FFB did the same in the effect on length of new shoots. Besides, CS, FTB and BC significantly increased net photosynthetic rate and transpiration rate of leaves and WUE of trees as demonstrated by the determination 10 months after the treatment, especially CS which increased the parameters by 57.32%、22.22% and 29.12%, respectively, and was followed by BC and FTB.【Conclusion】 The practice of applying organic materials into vertical holes around the trees within their root zones has some positive effects on soil nitrate metabolism, leaf photosynthesis, WUE and plant growth, and the effects vary with kind of the organic material applied. Among the four applied in the experiment, corn stalk was the most effective.
Key words: Drilling holes in soil    Corn stalk    Apple tree    Nitrate metabolism    Photosynthesis    Water use efficiency