检索项 检索词
  土壤学报  2019, Vol. 56 Issue (3): 507-515  DOI: 10.11766/trxb201812030523
0

引用本文  

程谊, 张金波, 蔡祖聪. 气候-土壤-作物之间氮形态契合在氮肥管理中的关键作用. 土壤学报, 2019, 56(3): 507-515.
CHENG Yi, ZHANG Jinbo, CAI Zucong. Key Role of Matching of Crop-specific N Preference, Soil N Transformation and Climate Conditions in Soil N Nutrient Management. Acta Pedologica Sinica, 2019, 56(3): 507-515.

基金项目

国家自然科学基金项目(41830642,41671231)和国家重点研发计划项目(2017YFD0200106,2017YFD0800103)资助

通讯作者Corresponding author

张金波,E-mail:zhangjinbo@njnu.edu.cn

作者简介

程谊(1983—),男,安徽绩溪人,博士,副教授,主要从事土壤氮素循环及其农业与生态环境效应研究。E-mail:ycheng@njnu.edu.cn
气候-土壤-作物之间氮形态契合在氮肥管理中的关键作用
程谊 , 张金波 , 蔡祖聪     
南京师范大学地理科学学院,江苏省地理信息资源开发与利用协同创新中心,南京 210023
摘要:采用合理的作物养分管理措施对粮食安全保障、土壤与农业可持续发展和生态环境保护至关重要。正确的养分管理策略应是针对某一特定气候-土壤-作物条件选择特定的肥料品种、用量、施用时间和施用位置。然而,当前的氮肥管理措施大多未考虑作物氮形态喜好特性、土壤氮素转化特点以及气候条件等因素的影响,以致在实际生产中效果欠佳。本文提出最大化满足作物氮形态喜好,氮肥形态、土壤氮素转化特点以及气候条件高度契合才能显著提高氮肥利用率,同时降低施氮量、减少活性氮向环境的扩散;气候-土壤-作物之间氮形态契合程度也是引进新的作物或者实施新的施肥措施的重要依据。本文为因地制宜地制定农业减氮增效措施指出了另一个方向。
关键词作物氮形态喜好    氮肥形态    气候条件    土壤氮素转化特点    氮肥管理    氮肥利用率    

氮素是植物生长发育所必需的营养元素。施用氮肥是获得作物高产和高品质的关键措施。若无化学氮肥的施用,无法维持全球70亿人口的粮食供应,也无法解决我国14亿人口的粮食问题。随着全球人口的不断增加,预计全球氮肥施用量将持续增加[1]。但是,过量的氮肥投入造成了严重的生态环境问题,如地表水体富营养化、地下水硝酸盐污染、土壤酸化、大气污染、温室效应等[2-5]。因此,为解决粮食安全与生态环境安全之间的矛盾,必须建立“科学、经济、环保”施肥为导向的施肥制度。一般而言,首先要确定作物的适宜施氮量,提高氮肥当季利用率;在此基础上,研发优化的氮肥管理措施进一步发挥氮肥的增产作用,减少氮肥施用量[6-7]。概括地,主要管理理念是选择正确的肥料品种、采用正确的肥料用量、在正确的施肥时间施用于正确的位置[8-9]。确实,在全球范围内探索每个地区不同作物的合理施氮量已获得足够的重视,因为其简便易行并直接关系到施肥成本,而肥料种类、施肥时期和施肥位置研究却难受重视,推广也较困难。虽然人们已经意识到提高施肥频率、降低基肥比例(前氮后移)、肥料深施、施用高效肥料(缓控释肥、配施硝化抑制剂、配施脲酶抑制剂)、测土配方施肥、轮作制度调整等氮肥优化措施可以增产、减排[7, 10-11],但是,实际生产中,具体的植物养分管理措施还取决于作物氮形态喜好特性、土壤氮素转化特点以及气候条件等因素。即使是养分充足的肥沃土壤,在排水不良、干旱和其他因素的限制下作物仍然难以高产[8, 12]。这表明优化措施的实际效果因作物、土壤和气候条件不同而出现差异,也意味着将氮肥管理与植物-土壤-气候系统紧密结合有望进一步提高氮肥利用率,减少氮损失。

1 气候与土壤的契合程度

铵态氮和硝态氮是土壤中主要的可利用氮,土壤保持氮的能力主要取决于土壤氮转化特性决定的无机氮主导形态,及其与土壤性质、环境条件的契合程度。铵态氮易通过氨挥发而扩散至大气中,所以在中性、碱性土壤中易损失,而在酸性土壤中易被土壤吸附固定;而硝态氮的损失途径主要是径流、淋溶和反硝化过程,所以其在湿润多雨的地方极易损失,而在干旱地区可保存于土壤中。在干旱地区,地带性土壤一般为碱性,自养硝化速率高,土壤无机氮以硝态氮为主,有利于土壤氮保持[13]。如我国黄土高原地区,过量施用氮肥,产生的硝态氮绝大部分积累于土壤剖面[14-15],需要相当长的时间才能进入地下水体。在湿润地区,地带性土壤一般为酸性,自养硝化作用一般很微弱,土壤无机氮以铵态氮为主,酸性土壤条件可有效抑制氨挥发损失,硝态氮产生少,有效地减少了氮随水迁移的损失,所以有利于土壤氮保持[13]。由此可见,地带性土壤氮转化过程、特点与气候条件契合程度高,表现出较强的无机氮保持能力。非地带性土壤如果不能与气候条件高度契合,则不利于土壤无机氮的保持,如紫色土。由于成土年龄小,我国湿润亚热带地区分布有较大面积的紫色土,继承了成土母质的碱性特点,土壤呈中性或碱性,而不是地带性土壤的酸性,硝化作用强烈,土壤无机氮以硝态氮为主,极易损失。因此,硝态氮是紫色土小流域氮素流失的主要形式[16]。此外,农业利用,特别是氮肥的施用,会明显促进我国湿润亚热带地带性土壤的硝化作用[17],农田土壤无机氮由铵态氮占主导转变成硝态氮占主导,增加硝态氮淋溶和径流损失的风险。例如,对江西12个非农业土壤和10个农业土壤的测定表明,前者铵态氮占无机氮的比例平均为80%,后者平均仅占17%,硝态氮占农田土壤无机氮的83%,淋溶风险可想而知[18]。由此可见,在湿润亚热带和干旱、半干旱地带性土壤上大量施用氮肥对环境影响途径可能存在差异,对于前者,施用大量氮肥首先破坏土壤保氮机制,然后导致活性氮向环境的扩散增加;对于后者则主要是农田生态系统氮素盈余引发环境问题。

2 土壤与植物的契合程度 2.1 确保施入的氮肥形态与作物氮形态喜好高度契合

就氮素形态而言,铵态氮和硝态氮均能被植物吸收。虽然从能量角度而言,植物吸收铵态氮较吸收硝态氮消耗的能量要少[19],但是在长期进化过程中植物与特定环境条件相适应,许多植物对铵态氮和硝态氮这两种不同形态氮源的吸收具有偏向选择性(喜好)。一般而言,大多数旱地作物,如小麦、玉米、蔬菜、烟草等偏好硝态氮,而适应酸性土壤生长的嫌钙植物(如茶叶、蓝莓)和适应低氧化还原势土壤条件下生长的植物(如水稻)偏好铵态氮[20-22]。这可能是植物对其原始营养生境(如铵态氮优势生境或硝态氮优势生境)长期生理适应的结果,一般而言,植物总是趋于偏好其自然生境中最丰富的氮源形态[23-25]。酸性或低氧化还原势生境下硝化作用较弱甚至缺失,铵态氮占据主导地位;而旱作生境下硝化较快,硝态氮占优势地位[26]。因此,理论上在等氮投入情况下,对于喜铵作物施用铵态氮肥较施用硝态氮肥增产效果会更突出,同样地,对于喜硝作物施用硝态氮肥较施用铵态氮肥效果可能更好,这也是最大化满足作物氮需求与氮供应同步。大量研究表明,在等氮条件下施铵态氮或尿素氮肥时喜铵作物的产量确实明显高于施硝态氮肥[20, 27-29],施硝态氮肥时喜硝作物的产量明显高于施铵态氮肥[30-32]。可见,只要满足作物氮形态喜好与氮肥形态高度匹配,就可以显著提高作物产量和氮肥利用率。在实际生产中,就要求针对作物氮形态喜好选择契合程度高的氮肥品种。然而,几十年来,我国乃至全球主要氮肥品种为铵态氮肥和酰胺态氮肥(尿素)[11],在我国,尿素占氮肥总量的比例高达60%,而硝态氮肥比例则不到5%[33-34],以致在实际生产中无论对喜铵作物还是喜硝作物一味施用铵态氮肥或者酰胺态氮肥。施用非硝态氮肥对喜硝作物的生产极其不利,此时作物喜好与氮肥形态契合程度低,作物不能及时有效吸收氮肥,同时,高浓度铵态氮亦容易对喜硝作物产生毒害[31, 35],必然导致氮肥利用率低以及氮大量损失。因此,这要求化肥工业不断优化氮肥品种结构,改变当前以尿素等产品为主的氮肥结构,适时增加硝态氮肥的比例。

2.2 土壤氮转化特性决定无机氮形态与作物氮喜好的契合程度

然而,即使施入的氮肥形态与作物氮喜好契合程度高亦未必产生高的氮肥利用率。因为施入农田的氮肥形态并非一直不变。氮肥进入土壤后会迅速发生一系列的转化过程,如硝化(氨氧化)、微生物同化、反硝化等[36-37],所以氮肥形态与作物氮喜好契合程度可能会受土壤氮转化特性的影响。

对于喜铵作物,如果施入的铵态氮肥在很短时间内转化为硝态氮或者微生物生物量氮,则施入的氮肥形态与作物氮形态喜好的契合程度降低,势必造成低的氮肥利用率和高的氮损失。最近的研究表明,施铵态氮肥时喜铵作物甘蔗的氮肥利用率与施硝态氮肥时相当[38],这很可能是因为施入的铵态氮肥在很短时间内通过硝化过程转化成了硝态氮,降低了氮形态与作物氮形态喜好的契合程度。Zhang等[20]的研究结果印证了这一观点,对于旱作喜铵作物土豆,种植在酸性土壤中施铵态氮肥较硝态氮肥具有更高的氮肥利用率,但在偏碱性土壤中两种形态氮肥间的氮利用率无明显差异,主要原因是酸性土壤硝化速率较慢,铵态氮能够在土壤中存在更长的时间,而硝化较快的偏碱性土壤中施入的铵态氮肥在1周甚至更短的时间内就转化成了硝态氮。同样地,对于喜铵作物水稻,种植在酸性土壤中铵态氮肥的利用率显著高于偏碱性土壤,而硝态氮肥的利用率在酸性和偏碱性土壤中无显著差异[29],这也是因为偏碱性土壤高的硝化速率降低了氮形态与作物氮形态喜好的契合程度。此外,随土壤硝化速率的增加,水稻氮肥利用率逐渐降低且氮损失增加[39]。因此,与酸性土壤相比,碱性土壤中要获得相同的水稻产量需要施用更多的氮肥[29]。这也证实了如果最大化提高土壤氮素转化特点、氮肥形态以及作物氮喜好的契合程度,完全可以实现减氮增效。

对于喜硝作物,如果施入的氮肥形态是铵态氮肥或者尿素,那么这时候作物吸氮量取决于土壤将施入的氮肥转化为硝态氮的能力。例如,Zhang等[20]发现,无论是酸性还是偏碱性土壤,施铵态氮肥时喜硝作物黄瓜的氮肥利用率均低于施硝态氮肥,但是两者之间的差距随土壤pH增加而缩小。这表明随着旱作土壤硝化速率的增加,铵态氮肥的效果越来越接近硝态氮肥,当硝化速率快到一定程度时,施铵态氮肥的效果几乎等同于施硝态氮肥。虽然,旱作土壤较强的硝化能力能在一定程度上将铵态氮肥转变为硝态氮,保证作物产量,但是硝化过程致酸,导致土壤严重酸化[3, 40-41],而且施入的铵态氮肥很容易通过NH3挥发发生大量氮损失,尤其在我国华北平原,NH3挥发损失占氮肥用量的比例高达23%[42]

3 氮肥管理措施应满足气候-土壤-作物之间氮形态高度契合

总体而言,喜铵作物应施铵态氮肥,并种植在硝化速率较低的土壤中为最佳,比如热带-亚热带地区酸性土壤。但是,在硝化速率较高的中性和偏碱性土壤中种植喜铵作物,如水稻并获得高产也并非不可能,这时候需要施用新型高效肥料(缓控释肥、配施硝化抑制剂、配施脲酶抑制剂)来抑制硝化作用以及可能的氨挥发损失[20-21]。当然,许多酸性土壤在长期施肥刺激下,硝化速率并不低,也需要施用高效肥料[43-44]。喜硝作物应以施硝态氮肥为最佳,但是鉴于硝态氮易损失,在高温多雨的热带和亚热带地区施用,应注意降雨驱动的氮损失;如果以铵态氮肥或者尿素为氮源,喜硝作物应种植在硝化速率较高的土壤中,比如干旱和半干旱地区中性或碱性土壤,同时采用肥料深施技术或配施脲酶抑制剂,以降低氨挥发损失。

然而,在实际研究中,人们普遍施用高效肥料以求增产减排,并未因作物和土壤不同而区别对待[7, 10-11]。比如,包膜肥料能显著降低水稻种植期间N2O排放、NH3挥发和NO3-淋溶损失并增产,而对于玉米、小麦、蔬菜等旱作作物,包膜尿素虽然也能降低各种氮损失,但作物产量和氮肥利用率响应却不明显[11]。施用硝化抑制剂能够提高水稻产量以及氮肥利用率,但是对玉米、小麦、蔬菜等旱作作物的增产很小甚至可忽略不计[11]。施用脲酶抑制剂能够显著降低NH3挥发损失,但对水稻的增产较旱作作物和草地更明显[11]。此外,硝化抑制剂虽然能够显著降低N2O排放和NO3-淋溶损失,但不可避免会刺激NH3挥发引起的氮损失。因此,这也要求人们在施用硝化抑制剂的时候须辅以NH3减排措施,如肥料深施、配施脲酶抑制剂等等。但是,实践证明,施用双重抑制剂(脲酶抑制剂和硝化抑制剂)并不能提高旱作作物产量和氮肥利用率[11]。一般认为,高效肥料对水稻增产减排优于玉米、小麦等旱作作物,其原因是水稻种植期间相对恒定的生物物理环境,如气温和土壤湿度,给高效肥料发挥功效创造了条件。但是,事实上这三种高效肥料的基本作用是为了延长铵态氮在土壤中的滞留时间,比如硝化抑制剂抑制铵态氮转化为硝态氮,脲酶抑制剂抑制NH3挥发,包膜尿素控制铵态氮肥缓慢释放,其最终有利于喜铵作物而不是喜硝作物。因此,高效肥料对水稻增产减排优于玉米、小麦等旱作作物的原因很大程度上归结于最大化了作物氮喜好与氮肥形态契合程度。即使对于水稻,高效氮肥的增产效果亦取决于种植土壤的pH。全球尺度上的水稻整合分析研究表明,高效氮肥对酸性土壤(pH≤6.0)无增产效果,而对碱性土壤(pH≥8.0)增产显著[45]。针对我国水稻的整合分析研究也发现,在碱性土壤(pH≥7.5)施用高效氮肥增加产量和氮素吸收量的效果优于酸性(pH≤6.5)和中性(pH 6.5~7.5)土壤[46]。因此,就地域分布而言,在中国北方施用高效氮肥可取得较南方更好的增产效果,其原因正是北方土壤pH较高,NH3挥发损失高且硝化速率较快,高效氮肥能够发挥减少氮素损失的作用[42]。综上所述,在某一地区引进新作物或者实施新施肥措施的时候,必须考虑土壤氮素转化特点、施入的氮肥形态与作物氮喜好契合程度,从而尽可能提高氮肥利用率,降低氮损失。

然而,即使满足土壤氮素转化特点、施入的氮肥形态与作物氮喜好高度契合亦未必产生高的氮肥利用率。在自然生态系统中,植物的生境由其生存地段的土壤和小气候等要素组成,它们为该植物直接提供各种环境资源和个性化的生活条件。环境条件的改变必然改变生长在特定环境下的植物生长状况。例如,采伐干扰后,NO3-浓度明显增加可能会导致喜铵的针叶树种变得难以生存[25]。长期施肥后,茶树生长的酸性土壤硝化速率显著增加,必然会引起喜铵的茶树不能及时有效地吸收氮肥,造成较低的氮肥利用率以及大量的氮损失[43-44]。降雨量大小不仅决定了土壤湿润程度还控制氮损失强度。最近,Liu等[47]发现对于相同肥力的土壤,施硝态氮肥时福建地区小麦的产量和氮肥利用率显著低于四川地区。这很可能是因为福建地区麦季的降雨量(815 mm)远高于四川地区(180 mm),在高降雨驱动下硝态氮损失加剧,因而福建地区可供小麦吸收的硝态氮不足。整合分析研究表明,当年平均降雨量超过1 200 mm时,硝化抑制剂对产量和氮肥利用率的正效应趋于消失[11]。包膜尿素增产的前提是该地区年平均温度和降雨量分别为10~20℃和800~1 200 mm。Abalos等[48]发现抑制剂(脲酶抑制剂和硝化抑制剂)在粗质地的土壤中增产和提高氮肥利用率效果显著优于细质地土壤。与粗质地土壤相比,细质地土壤较难发生NO3-淋溶损失,因此抑制剂的减排增产作用无法发挥。此外,高效肥料在灌溉条件下增产和提高氮肥利用率较雨养条件下更有效[11]。总体而言,氮的损失过程、作物吸收过程和土壤微生物过程(转化和同化)是一种相互竞争关系,它是动态变化的,如下雨产生径流和向下淋溶时,才可能产生硝态氮迁移损失;植物对氮吸收能力增强时,微生物转化和同化则会受到抑制。

笔者所在团队在福建和四川的大田实验结果初步验证了通过提升“气候-土壤-作物系统氮形态契合度”来提高作物氮素利用效率和降低活性氮环境排放的可行性(图 1[47]:在湿润地区的酸性土壤中,自养硝化速率较低,土壤无机氮以铵态氮为主,酸性土壤条件可以有效地抑制氨挥发损失,硝态氮产生少,有效地减少了氮的随水迁移损失;此时种植喜铵作物(如水稻),就能较好实现气候-土壤-作物系统氮形态的高度契合(图 1[47];而在中性或碱性土壤中,硝化作用强烈,土壤无机氮以硝态氮为主,在降雨量较少的季节种植喜硝作物(如冬小麦)并施硝态氮肥(图 1[47],这亦是很大程度上提高了特定气候下氮形态与作物氮形态喜好的契合程度。

注:图中箭头粗细、方形框大小和作物长势分别表示两个地区氮素转化和各个去向速率大小、氮库大小和作物产量高低   Note: Thickness of the arrows, size of the square frames and crop growth represents transformation rate and fate of soil N, size of nitrogen pool and yield of the crop, respectively, relative to area 图 1 气候-土壤-作物系统氮形态契合程度对水稻和小麦产量以及氮素损失的影响[47] Fig. 1 Effects of matching degree of crop-specific N preference, soil N transformation and climate conditions on yields and N losses in rice and wheat planted systems[47]
4 结语与展望

采用合理的作物养分管理措施对粮食安全保障、土壤与农业可持续发展和生态环境保护至关重要。最佳的养分管理措施必须考虑作物氮形态喜好特性、土壤氮转化特点和气候条件。在实际的氮素管理中,尽可能提高作物氮形态喜好、氮肥形态、土壤氮素转化特点以及气候条件间的契合程度,可以显著提高氮肥利用率、降低施氮量、减少活性氮向环境的扩散。气候-土壤-作物之间氮形态契合程度也是引进新的作物或者实施新的施肥措施的重要依据。将来的研究需要建立气候-土壤-作物-氮肥系统综合管理技术,并将农田养分管理更加精准化、信息化,从而找到适合特定地区特定作物的最佳养分管理措施,实现土壤与农业的可持续发展。

参考文献
[1]
Tilman D, Fargione J, Wolff B, et al. Forecasting agriculturally driven global environmental change . Science, 2001, 292(5515): 281-284. DOI:10.1126/science.1057544 (0)
[2]
Ju X T, Xing G X, Chen X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3041-3046. DOI:10.1073/pnas.0813417106 (0)
[3]
Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands . Science, 2010, 327(5968): 1008-1010. DOI:10.1126/science.1182570 (0)
[4]
熊舞, 夏永秋, 周伟, 等. 菜地氮肥用量与N2O排放的关系及硝化抑制剂效果. 土壤学报, 2013, 50(4): 743-751.
Xiong W, Xia Y Q, Zhou W, et al. Relationship between nitrogen application rate and nitrous oxide emission and effect of nitrification inhibition in vegetable farming system (In Chinese). Acta Pedologica Sinica, 2013, 50(4): 743-751. (0)
[5]
夏永秋, 杨旺鑫, 施卫明, 等. 我国集约化种植业面源氮发生量估算. 生态与农村环境学报, 2018, 34(9): 782-787.
Xia Y Q, Yang W X, Shi W M, et al. Estimation of non-point N source emission in intensive cropland of china (In Chinese). Journal of Ecology and Rural Environment, 2018, 34(9): 782-787. (0)
[6]
蔡祖聪, 颜晓元, 朱兆良. 立足于解决高投入条件下的氮污染问题. 植物营养与肥料学报, 2014, 20(1): 1-6.
Cai Z C, Yan X Y, Zhu Z L. A great challenge to solve nitrogen pollution from intensive agriculture (In Chinese). Journal of Plant Nutrition and Fertilizer, 2014, 20(1): 1-6. (0)
[7]
Xia L L, Lam S K, Chen D L, et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis . Global Change Biology, 2017, 23(5): 1917-1925. DOI:10.1111/gcb.13455 (0)
[8]
陈防, 张过师. 农业可持续发展中的"4R"养分管理研究进展. 中国农学通报, 2015, 31(23): 245-250.
Chen F, Zhang G S. Research Progress of '4R' Nutrient stewardship in sustainable agricultural development (In Chinese). Chinese Agricultural Science Bulletin, 2015, 31(23): 245-250. DOI:10.11924/j.issn.1000-6850.casb15020092 (0)
[9]
Snyder C S. Enhanced nitrogen fertiliser technologies support the '4R' concept to optimise crop production and minimise environmental losses . Soil Research, 2017, 55(6): 463-472. DOI:10.1071/SR16335 (0)
[10]
Qiao C L, Liu L L, Hu S J, et al. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input . Global Change Biology, 2015, 21(3): 1249-1257. DOI:10.1111/gcb.2015.21.issue-3 (0)
[11]
Li T Y, Zhang W F, Yin J, et al. Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem . Global Change Biology, 2018, 24(2): e511-e521. DOI:10.1111/gcb.2018.24.issue-2 (0)
[12]
巨晓棠, 张福锁. 关于氮肥利用率的思考. 生态环境, 2003, 12(2): 192-197.
Ju X T, Zhang F S. Thinking about nitrogen recovery rate (In Chinese). Ecology and Environment, 2003, 12(2): 192-197. DOI:10.3969/j.issn.1674-5906.2003.02.018 (0)
[13]
Zhang J B, Zhu T B, Cai Z C, et al. Nitrogen cycling in forest soils across climate gradients in Eastern China . Plant and Soil, 2011, 342(1/2): 419-432. (0)
[14]
赵琳, 李世清, 李生秀, 等. 半干旱区生态过程变化中土壤硝态氮累积及其在植物氮素营养中的作用. 干旱地区农业研究, 2004, 22(4): 15-20.
Zhao L, Li S Q, Li S X, et al. Accumulation of soil nitrate nitrogen in the process of ecological and its effects in plant nitrogen nutrition in semiarid areas (In Chinese). Agricultural Research in the Arid Areas, 2004, 22(4): 15-20. (0)
[15]
Zhou J, Gu B, Schlesinger W H, et al. Significant accumulation of nitrate in Chinese mi-humid croplands . Scientific Reports, 2016, 6: 25088. DOI:10.1038/srep25088 (0)
[16]
韩建刚, 李占斌. 紫色土丘陵区不同土地利用类型小流域氮素流失规律初探. 水利学报, 2011, 42(2): 160-165.
Han J G, Li Z B. Process characteristics of nitrogen loss by runoff in different land use watersheds in purple soil hilly region (In Chinese). Journal of Hydraulic Engineering, 2011, 42(2): 160-165. (0)
[17]
Zhong W H, Cai Z C. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay . Applied Soil Ecology, 2007, 36(2/3): 84-91. (0)
[18]
Zhang J B, Zhu T B, Meng T Z, et al. Agricultural land use affects nitrate production and conservation in humid subtropical soils in China . Soil Biology and Biochemistry, 2013, 62: 107-114. DOI:10.1016/j.soilbio.2013.03.006 (0)
[19]
Salsac L, Chaillou S, Morot-Gaudry J F, et al. Nitrate and ammonium nutrition in plants . Plant Physiology and Biochemistry, 1987, 25: 805-812. (0)
[20]
Zhang J B, Wang J, Müller C, et al. Ecological and practical significances of crop species preferential N uptake matching with soil N dynamics . Soil Biology and Biochemistry, 2016, 103: 63-70. DOI:10.1016/j.soilbio.2016.08.009 (0)
[21]
Zhang J B, Cai Z C, Müller C. Terrestrial N cycling associated with climate and plant-specific N preferences:A review . European Journal of Soil Science, 2018, 69(3): 488-501. (0)
[22]
Zhao X Q, Shen R F. Aluminum-nitrogen Interactions in the soil-plant system . Frontiers in Plant Science, 2018, 9(Article 807): 1-15. (0)
[23]
Turnbull M H, Schmidt S, Erskine P D, et al. Root adaptation and nitrogen source acquisition in natural ecosystems . Tree Physiology, 1996, 16(11/12): 941-948. (0)
[24]
Claussen W, Lenz F. Effect of ammonium or nitrate nutrient on net photosynthesis, growth, and activity of the enzymes nitrate reductase and glutamine synthetase in blueberry, raspberry and straw berry . Plant and Soil, 1999, 208(1): 95-102. DOI:10.1023/A:1004543128899 (0)
[25]
崔晓阳, 宋金凤. 原始森林土壤NH4+/NO3-生境特征与某些针叶树种的适应性. 生态学报, 2005, 25(11): 3082-3092.
Cui X Y, Song J F. Soil NH4+/NO3- nitrogen characteristics in primary forests and the adaptability of some coniferous species (In Chinese). Acta Ecologica Sinica, 2005, 25(11): 3082-3092. DOI:10.3321/j.issn:1000-0933.2005.11.040 (0)
[26]
Subbarao G V, Ito O, Sahrawat K L, et al. Scope and strategies for regulation of nitrification in agricultural systems-Challenges and opportunities . Critical Reviews in Plant Sciences, 2006, 25(4): 303-335. DOI:10.1080/07352680600794232 (0)
[27]
Garnett T P, Smethurst P J. Ammonium and nitrate uptake by Eucalyptus nitens:Effects of pH and temperature . Plant and Soil, 1999, 214(1/2): 133-140. DOI:10.1023/A:1004740204876 (0)
[28]
Jalloh M A, Chen J H, Zhen F R, et al. Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress . Journal of Hazardous Materials, 2009, 162(2/3): 1081-1085. (0)
[29]
Wang J, Zhao Y, Zhang J B, et al. Nitrification is the key process determining N use efficiency in paddy soils . Journal of Plant Nutrition and Soil Science, 2017, 180(6): 648-658. DOI:10.1002/jpln.v180.6 (0)
[30]
Anderson D S, Teyker R H, Rayburn A L. Nitrogen form effects on early corn root morphological and anatomical development . Journal of Plant Nutrition, 1991, 14(11): 1255-1266. DOI:10.1080/01904169109364282 (0)
[31]
Britto D T, Siddiqi M Y, Glass A D M, et al. Futile transmembrane cycling:A cellular NH4+ hypothesis to explain ammonium toxicity in plants . Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(7): 4255-4258. DOI:10.1073/pnas.061034698 (0)
[32]
Liu M, Qiao N, Zhang Q, et al. Cropping regimes affect NO3- versus NH4+ uptake by Zea mays and Glycine max . Plant and Soil, 2018, 426(1/2): 241-251. (0)
[33]
张卫峰, 王雁峰, 李亮科. 国内外氮肥供需形势及中国面临的问题. 专题分析报告, 2008(7): 1-5.
Zhang W F, Wang Y F, Li L K. Supply and demand of nitrogen fertilizer in domestic and overseas and the problems of China (In Chinese). Thematic Analysis Report, 2008(7): 1-5. (0)
[34]
徐京磐. 我国化肥产业状况浅析-深化转型发展务必奋勇发力. 氮肥技术, 2017, 38(6): 1-5.
Xu J P. Preliminary discussion on situation of chemical fertilizer industry-Intensification is necessary to deepen transformation and development (In Chinese). Nitrogen Fertilizer Technology, 2017, 38(6): 1-5. (0)
[35]
de Graaf M C C, Bobbink R, M Roelofs J G, et al. Differential effects of ammonium and nitrate on three heathland species . Journal of Plant Ecology, 1998, 135: 185-196. DOI:10.1023/A:1009717613380 (0)
[36]
贺纪正, 张丽梅. 土壤氮素转化的关键微生物过程及机制. 微生物学通报, 2013, 40(1): 98-108.
He J Z, Zhang L M. Key processes and microbial mechanisms of soil nitrogen transformation (In Chinese). Microbiology China, 2013, 40(1): 98-108. (0)
[37]
Kuypers M M, Marchant H K, Kartal B. The microbial nitrogen-cycling network . Nature Reviews Microbiology, 2018, 16(5): 263-276. DOI:10.1038/nrmicro.2018.9 (0)
[38]
Boschiero B N, Mariano E, Trivelin P C O. "Preferential" ammonium uptake by sugarcane does not increase the 15N recovery of fertilizer sources . Plant and Soil, 2018, 429: 253-269. DOI:10.1007/s11104-018-3672-z (0)
[39]
Yang Y J, Meng T Z, Qiao X Q, et al. Evidence for nitrification ability controlling nitrogen use efficiency and N losses via denitrification in paddy soils . Biology and Fertility of Soils, 2017, 53(3): 349-356. DOI:10.1007/s00374-017-1185-1 (0)
[40]
Cai Z J, Wang B R, Xu M G, et al. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China . Journal of Soils and Sediments, 2015, 15(2): 260-270. DOI:10.1007/s11368-014-0989-y (0)
[41]
徐仁扣. 土壤酸化及其调控研究进展. 土壤, 2015, 47(2): 238-244.
Xu R K. Research progresses in soil acidification and its control (In Chinese). Soils, 2015, 47(2): 238-244. (0)
[42]
Ju X T, Zhang C. Nitrogen cycling and environmental impacts in upland agricultural soils in North China:A review . Journal of Integrative Agriculture, 2017, 16(12): 2848-2862. DOI:10.1016/S2095-3119(17)61743-X (0)
[43]
Yao H Y, Gao Y M, Nicol G W, et al. Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils . Applied and Environmental Microbiology, 2011, 77(13): 4618-4625. DOI:10.1128/AEM.00136-11 (0)
[44]
Cheng Y, Wang J, Zhang J B, et al. Mechanistic insights into the effects of N fertilizer application on soil N2O emission pathways in acidic soil of a tea plantations . Plant and Soil, 2015, 389(1/2): 45-57. (0)
[45]
Linquist B A, Lijun L, van Kessel C, et al. Enhanced efficiency nitrogen fertilizers for rice systems:Meta-analysis of yield and nitrogen uptake . Field Crops Research, 2013, 154: 246-254. DOI:10.1016/j.fcr.2013.08.014 (0)
[46]
苑俊丽, 梁新强, 李亮, 等. 中国水稻产量和氮素吸收量对高效氮肥响应的整合分析. 中国农业科学, 2014, 47(17): 3414-3423.
Yuan J L, Liang X Q, Li L, et al. Response of rice yield and nitrogen uptake to enhanced efficiency nitrogen fertilizer in China:A meta-analysis (In Chinese). Scientia Agricultura Sinica, 2014, 47(17): 3414-3423. DOI:10.3864/j.issn.0578-1752.2014.17.009 (0)
[47]
Liu S Y, Chi Q D, Cheng Y, et al. Importance of matching soil N transformations, crop N forms preference and climate in enhancing crop yield and reducing N loss . Science of the Total Environment, 2019, 657: 1265-1273. DOI:10.1016/j.scitotenv.2018.12.100 (0)
[48]
Abalos D, Jeffery S, Sanz-Cobena A, et al. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency . Agriculture Ecosystems and Environment, 2014, 189: 136-144. DOI:10.1016/j.agee.2014.03.036 (0)
Key Role of Matching of Crop-specific N Preference, Soil N Transformation and Climate Conditions in Soil N Nutrient Management
CHENG Yi , ZHANG Jinbo , CAI Zucong     
School of Geography Sciences, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
Abstract: Appropriate crop nutrient management synchronizing soil nutrient supply with crop nutrient demand is critical for global food security, soil and agriculture sustainability, and ecological environmental protection. Rational nutrient stewardship should be embodied in application of climate-soil-crop-specific types of fertilizers, at the right rate, right time and right place. However, most of the current N nutrient management practices often fail to take into account the influences of N species preferences of crops, soil N transformation characteristics and climate conditions, thus affecting the effects of the soil N nutrient management practices. Meanwhile, any mismatching of these factors would increase N losses through ammonia volatilization, denitrification, runoff and leaching. Nitrogen transformation is liable to get affected by climatic conditions and responds to plant N uptake characteristics in natural ecosystems. For instance, in subtropical acidic soils, NH4+-N dominated inorganic N pool is mainly a result of low nitrification and relative high nitrate immobilization, which reduces the risk of N loss via leaching or runoff. In contrast, in neutral and alkaline soils in arid and semiarid regions, NO3--N is the dominant inorganic N form, as a result of high nitrification and relative low nitrate immobilization and denitrification, which reduces the risk of N loss via ammonia volatilization under high pH condition. Some crops, such as rice, already adapted to low redox potential and tea, originating from acidic soils, prefer NH4+-N, and most crops growing in dryland, like wheat, tobacco and maize, and a variety of vegetables prefer NO3--N. Therefore, a closed N cycle with minimal N loss in ecosystem might be achieved through rationalizing N nutrient management, exhibiting that the N available in the soil matches the N of the plant's preference in form. If the applied NH4+-based fertilizers are always maintained in the form of NH4+ in the soil, "preference" for NH4+ of NH4+ preferring crops can often be translated into higher 15N recovery by the crops. In contrast, if the N applied doesn't match the crop's preference in form, availability of the applied N to the crop depends on ability of the soil to transform the applied N into the preferred N in form. Hence, soil N transformation regulating soil N forms plays an important role in optimizing matching degree N sources with plant's species-specific N preferences. This paper points out that to satisfy crop N preference, it is essential to have N form in fertilizer, soil N transformation characteristics and climate conditions well coupled and only in this case, can N use efficiency be significantly improved, N application rate lower, and loss of active N via emission into the environment be reduced. Therefore, it could be concluded that (1) NH4+-preferring crops perform best in acidic soils, in low nitrification rate, in humid regions and applied with NH4+-based fertilizers as the sole N source; and (2) NO3--preferring crops perform best in neutral and alkaline soils, in high nitrification rate, in arid and semiarid regions, and applied with NO3--based fertilizer as the main N source. So, these relationships should be taken into account when new N fertilizer management strategies are developed and new species of crops are introduced (e.g. application of nitrification inhibitors to rice paddy fields (prefer NH4+) can increase N uptake and yield). It is expected that this study would provide a scientific basis for development of knowledge-based N fertilizer management practices for a certain crop, soil and climate system. To establish critical values to evaluate coupling degree of the N sources, soil N transformation characteristics, crop N preference and climate conditions, further studies should be conducted.
Key words: Crop N preference    N fertilizer form    Climate conditions    Soil N transformation characteristics    N fertilizer management    N use efficiency