2. 土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所),南京 210008;
3. 中国科学院大学资源与环境学院,北京 100049;
4. 中国科学院地理科学与资源研究所,生态网络观测与模拟院重点实验室,北京 100101;
5. 遵义师范学院资源与环境学院,贵州遵义 563002;
6. 邢台学院资源与环境学院,河北邢台 054001
土壤是全球第三大碳库,每年大约有4%的C排放至大气中[1]。同时,土壤也是N2O的最大排放源[2]。土壤碳库或氮库储量的微小变化可能会对大气中CO2和N2O的浓度产生很大影响[3]。已有研究表明气候[4]、土壤和植被类型[5-6]、地形[7]、景观[8-9]、土壤侵蚀[10]、土地利用和管理措施[11-12]等因素均影响土壤碳库或氮库储量。在此背景下,农业土壤固碳或农业土壤温室气体释放成为广受关注的焦点之一。水耕人为土(水稻土)在水耕熟化过程中土壤有机碳(SOC)有积累趋势[13-14],碳汇作用明显[15]。尽管如此,水耕人为土也是温室气体尤其是CH4和N2O的重要排放源[16]。从现有的相关研究来看,百年以上尺度下水分状况对SOC和全氮(TN)分布与变化规律的影响研究较少。有研究显示土壤碳氮比(C/N)变化会引起土壤微生物活性及矿化率变化,进而影响土壤质量和土壤碳氮循环[17-19]。与仅考虑土壤碳氮本身的变异特点相比,C/N更能全面地阐述土壤碳氮变化的特点[20]。为此本研究选择南方地区的水耕人为土从数十年至千年尺度的时间序列作为研究对象,旨在揭示水耕人为土SOC、TN和C/N对土壤水分状况的敏感性,更好地理解其碳汇和氮源作用。
1 材料与方法 1.1 研究区概况本研究选取我国南方地区的水耕人为土从数十年至千年尺度的时间序列(表 1),分别为发育于江西省进贤县酸性第四纪红黏土母质的水耕人为土时间序列(RC10,0 a;RC11,100 a;RC12,100~300 a;RC13,300 a),发育于浙江省慈溪市石灰性海相沉积物母质的水耕人为土时间序列(CX01,0 a;CX02,50 a;CX03,300 a;CX04,700 a;CX05,1 000 a),发育于广东省中山市冲积物母质的水耕人为土时间序列(A0,0 a;A1,30 a;A2,50 a;A3,200 a)和发育于江苏省宝应县湖相沉积物母质的水耕人为土时间序列(B1,0 a;B2,5 a;B3,20 a;B4,50 a)。研究区年均气温分别为17.3℃、16.3℃、21.8℃和14.4℃,年均降水量分别为1 549、1 325、1 738和966 mm。水耕人为土时间序列建立和判定的依据分别参照文献[21-23]。其中,进贤序列稻田耕作的历史年限是基于地形部位结合已调查的土壤种稻年限与当地村寨历史综合判定[21];慈溪序列稻田耕作的历史年限是基于《慈溪水利志》[24]和《慈溪海堤集》[25]中慈溪市历代海塘图记载的不同地段海塘修筑年代大致推算得出[22];中山序列稻田耕作的历史年限是基于河口三角洲堆积方向与实地调查得出[23];宝应序列稻田耕作的历史年限是基于沼泽开垦排水顺序和实地调查得出[23]。采样点信息及水耕人为土水分类型见表 1。
|
|
表 1 土壤采样点信息及土壤类型 Table 1 General information and soil types of the soil sampling sites |
根据三水分类法,水耕人为土水分类型可以分为地表水型、地下水型和良水型[26]。地表水型,在水稻生长季节耕层呈还原态,其下仍为氧化态,水稻收获后土壤逐步落干,全剖面均呈氧化态;地下水型,大部分时间处于还原状态,尤以夏季为甚;良水型,氧化还原状况随着季节不同而有很大变动,同一土壤中,还有氧化还原状态的剖面分异:水耕人为土灌水后,耕层和犁底层上部处于水分饱和状态,整个耕层处于还原状态,但犁底层有滞水作用,因此心土层水分仍不饱和,使土壤处于氧化状态[27-28]。
进贤序列和慈溪序列水耕人为土分别为地表水型和良水型。而中山序列和宝应序列在种稻初期为地下水型,后为提高稻田产量,当地兴建一些水利措施对稻田进行排水,降低其地下水位减少渍害,水分类型逐步转化为良水型。进贤序列和慈溪序列在20世纪90年代之前施肥主要为有机肥和草木灰,后来化肥逐渐成为最主要的施肥方式。中山序列和宝应序列主要施肥方式为有机肥和草木灰。
1.3 样品采集与分析结合史料分析与实地考察,选取不同母质发育的水耕人为土时间序列典型土壤剖面,按照土壤发生层采样法采集土样,所有土样均在水稻收割排水后采集。土壤样品采集后在室内自然风干,挑出枯枝落叶、根系和大于2 mm的非土壤物质,四等分法取土,先后过10和60目尼龙筛,装好备用。TN、容重、颗粒组成和SOC等基本理化性质测定方法参照《土壤调查实验室分析方法》[29]。
1.4 有机碳密度(SOCD)和全氮密度(TND)的计算SOCD计算公式为:
| $\text{SOCD}=\sum\limits_{i=1}^{n}{\left( 1-{{\theta }_{i}}/1000 \right)\times {{\rho }_{i}}\times \text{SO}{{\text{C}}_{i}}\times {{T}_{i}}/100}$ | (1) |
TND计算公式为:
| $\text{TND}=\sum\limits_{i=1}^{n}{\left( 1-{{\theta }_{i}}/1000 \right)\times {{\rho }_{i}}\times T{{N}_{i}}\times {{T}_{i}}/100}$ | (2) |
式中,SOCD和TND分别为有机碳密度和全氮密度(kg·m-2),它分别表示单位面积某一深度土壤内SOC和TN的总量;θi为第i层 > 2 mm砾石含量(g·kg-1);ρi为第i层土壤容重(g·cm-3);SOCi和TNi分别为第i层SOC和TN含量(g·kg-1);Ti为第i层土层厚度(cm);n为参与计算的土壤层次总数。计算SOCD和TND时采取100 cm土壤厚度(不足100 cm厚度的取实际值)。
2 结果 2.1 种稻后土壤碳氮的变化进贤序列(地表水型)、慈溪序列(良水型)和中山序列(地下水-良水型)种稻土壤SOC平均含量分别为8.64、6.84和17.02 g·kg-1,与起源土壤相比平均分别增加了107%、43%和77%,表明3个序列土壤种稻后SOC均出现明显累积。进贤序列种稻土壤的SOC含量均随土壤深度的增加而下降。耕种年限约100 a的水耕人为土与起源土壤相比,耕作层SOC含量增加明显,但犁底层以下增加不明显。随着耕种年限的增加,SOC在犁底层之下也有较明显的增长。慈溪序列未垦滩涂剖面的SOC分布比较均一。不同耕种年限剖面的SOC分布特征类似,表现为耕作层SOC含量最高,耕作层之下SOC含量明显降低。种稻后,耕作层SOC可以在50 a增加到一个比较高的数值(21.8 g·kg-1),之后增加缓慢。除剖面CX04和CX05的埋藏腐泥层(分别在90~ 112 cm和85~100 cm处)外,SOC很难在犁底层之下积累。中山序列种稻土壤耕作层SOC可以在种稻30 a内就增加到一个比较高的数值(20.9 g·kg-1),之后地下水位逐渐下降,水分类型由地下水型转化为良水型,耕作层SOC又有所下降。宝应序列(地下水-良水型)种稻土壤的SOC平均含量为33.59 g·kg-1,与起源土壤相比有明显的降低(较起源土壤平均降低了33%)。这说明此序列土壤种稻后SOC有较大的损失。土壤种稻后5 a内地下水位没有明显变化,SOC也没有降低。随着耕种年限的增加,地下水位逐渐下降,SOC在15 a内显著下降。
进贤序列、慈溪序列和中山序列种稻土壤TN平均含量分别为0.89、1.46和1.31 g·kg-1,与起源土壤相比平均分别增加了117%、27%和85%。进贤序列种稻土壤TN的剖面分布和SOC剖面分布相似,TN含量均随土壤深度的增加而下降。与起源土壤相比,耕种年限较短的水耕人为土耕作层TN含量增加明显,但犁底层以下增加不明显。耕种时间较长的水耕人为土在犁底层之下也有较明显的增长。慈溪序列种稻土壤的TN含量均很高,其剖面和SOC剖面差异较大。未垦滩涂剖面中TN的平均含量达到1.15 g·kg-1,而SOC平均含量只有4.78 g·kg-1。未垦滩涂剖面TN分布比较均一,不同耕种年限的水耕人为土主要表现为耕作层TN最高,随着深度的增加逐渐降低,但上下层差异不大,且埋藏腐泥层中的TN并未较其他土层高。中山序列种稻土壤耕作层和犁底层TN含量在30 a内就增加到一个较高的数值,之后基本保持稳定。犁底层之下(40~80 cm)TN增加的幅度要高于上层,种稻30 a之后仍有明显增加。宝应序列种稻土壤的TN平均含量为2.60 g·kg-1,与起源土壤相比有明显的降低(较起源土壤平均降低了23%)。这说明此序列土壤种稻后TN有较大的损失。土壤种稻后5 a内地下水位没有明显变化,TN并没有降低。随着耕种年限的增加,地下水位逐渐下降,TN在之后15 a内显著下降。
4个序列起源土壤表层的C/N差异显著(3.4~13.7),随着耕种年限的增加水耕人为土耕作层C/N的差异逐渐减小,有明显的趋同性(4个序列耕种年限最长的水耕人为土耕作层C/N范围为10.77~11.71)。除慈溪序列外,进贤、中山和宝应序列水耕人为土下层的C/N随着种稻年限的增加,最终发育成数值接近,上下层相对均一的C/N剖面构型。
2.2 SOCD和TND对耕种时间和水分状况的响应不同水分类型水耕人为土SOCD(0~100 cm,下同)差异较大。地表水型和良水型水耕人为土SOCD远低于地下水型水耕人为土。同水分类型水耕人为土随着耕种年限的增加,呈现一定的规律性。进贤序列水耕人为土(地表水型)300 a内SOCD一直随着耕种年限的增加而增加,但增加速率较低(平均增加速率仅3 g·m-2·a-1)。慈溪序列(良水型)水耕人为土SOCD在50 a内增加明显(平均增加速率约10 g·m-2·a-1),之后随着耕种年限的增加基本保持稳定。中山和宝应序列(地下水-良水型)水耕人为土SOCD的演变特征迥异。宝应序列,起源土壤为湿地沼泽,SOC含量极高,种稻后5 a内并没有明显下降。但随着耕种年限的增加地下水位下降,SOCD在15 a内急剧降低(降低幅度约54%,平均损失速率约182 g·m-2·a-1),之后随着耕种年限的增加没有明显的降低。而中山序列在种稻后的50 a内SOCD有明显的增加(增加幅度约100%,平均增加速率约27 g·m-2·a-1),之后随着地下水位逐渐下降SOCD有所下降。进贤、中山和宝应序列水耕人为土TND(0~100 cm,下同)的演变特征和其SOCD的演变特征基本一致。慈溪序列TND的演变特征和其SOCD的演变特征差异很大,在300 a内增加明显(平均增加速率约0.23 g·m-2·a-1),之后随着耕种年限的增加有较明显的降低(平均损失速率约0.11 g·m-2·a-1)。
|
图 2 不同水分状况水耕人为土SOCD和TND(0~100 cm)的演变特征 Fig. 2 Evolution characteristics of SOCD and TND(0~100 cm)in Hydragric Anthrosols relative to water regime |
慈溪序列SOC和TN的关系和其他序列差异较大。此序列水耕人为土TN的平均含量明显高于全国水耕人为土的平均含量(1.18 g·kg-1,n=1 788,数据来源于全国第二次土壤普查成果资料[30])。但SOC平均含量却明显低于全国水耕人为土平均含量(11.13 g·kg-1,n=1 877,数据来源于全国第二次土壤普查成果资料[30])。说明该序列水耕人为土中可能含有较多的无机氮。从慈溪序列SOC和TN的演变特征上可以看出,犁底层之下除埋藏腐泥层外SOC较起源土壤均未增加,但TN在0~300 a内有明显增加,之后(300~1200 a)随着种稻年限的增加而降低。与其他序列相比,该序列高度熟化水耕人为土剖面下层SOC也明显偏低。对无机氮含量高的土壤而言,土壤无机氮的富集和亏损是否会影响SOC矿化分解当前还未知,区分土壤无机氮形态对土壤碳排放的影响非常必要。考虑到无机氮中的NO3-在厌氧条件下可能会发生反硝化作用[31],生成N2、N2O和其他氮氧化物气体逸出土壤,进入大气圈。今后也要注意评估无机氮含量高的水耕人为土在长期耕种过程中土壤氮富集或亏损对环境的影响。
一般而言,渍害是影响稻麦高产稳产的重要障碍因素[32]。在长期耕作过程中,为提高产量,通常会兴建各种水利措施对渍害严重的水耕人为土进行排水,降低地下水位。地下水型水耕人为土逐渐向高产的良水型水耕人为土转化。中山和宝应序列起源土壤的SOCD差异显著,但土壤的水分状况接近。经过长时间耕作后,SOCD和C/N趋于相同。这说明水分状况对水耕人为土固碳能力影响很大。宝应序列在水分状况发生明显改变的15 a内(地下水位从0.25 m下降至0.65 m)SOCD的平均损失速率可达到182 g·m-2·a-1。当SOC含量极高的时候,地下水位下降会引起土壤碳库的快速亏损,在今后的研究中要重视。从太湖、江汉和珠江三角洲的统计数据来看[33],当地下水型水耕人为土转化为高产的良水型水耕人为土后,可能会造成耕作层17%~31%的SOC损失。此外,全国范围内的“水改旱”工程也会引起土壤水分状况的巨大变化,需要重视其所造成的土壤碳库损失,我国农田土壤的固碳形势不容乐观。
|
图 3 不同水分类型耕作层SOC的统计特征(数据来自文献[33]) Fig. 3 Statistics of SOC content in the plow layer relative to water regime(data cited from reference [33]) |
李忠佩等[14]研究显示,在水耕条件下,发育于红壤的水耕人为土SOC和TN的积累过程可大致分为快速增长和趋于稳定阶段,这两个阶段以耕种30 a为界限。在前30 a,其增加趋势与利用年限呈极显著的直线相关,其后SOC和TN含量随耕作年限增加增长速度明显减慢并趋于稳定。从本研究来看,慈溪序列在50 a内SOCD达到一个较高水平,之后趋于稳定。宝应序列在15 a之内SOCD会下降到一个较低水平,之后趋于稳定。中山序列在50 a内SOCD会达到一个较高水平,之后因地下水位的下降略有降低。可以推断按现在的正常管理利用水平,这两种水分类型水耕人为土约在15~50 a内就会形成相对稳定的SOC平衡。相比较而言,进贤序列水耕人为土在种稻100 a之后,耕作层之下SOC仍随着耕种年限的增加而增加。结合其SOCD的演变趋势来看,地表水型水耕人为土在300 a内可一直作为相对稳定的农田有机碳汇。但该水分类型水耕人为土固碳速率偏低。一方面可能是因为地表水型水耕人为土多为中低产稻田,有机物质的主要输入方式为作物根茬,输入量低。另一方面可能是因为地表水型水耕人为土一年当中处于淹水还原的时间要明显低于良水型和地下水型水耕人为土[28]。加上地表水型水耕人为土排水良好,在非种稻期间容易产生干湿交替现象,也会加剧SOC的矿化分解[34]。
土壤C/N可反映SOC的积累与分解状况。地下水型水耕人为土剖面下层的C/N通常较地表水型和良水型水耕人为土高(图 1)。这说明长期处于还原状态的土壤通常具有更高的土壤碳库饱和水平。就水耕人为土而言,土壤质地也会影响淹水时SOC矿化速率。但本研究中,4个序列水耕人为土的黏粒含量均较高(平均含量均超过300 g·kg-1),这可能会弱化土壤质地的影响作用。本研究中不同水分状况水耕人为土的C/N均表现出明显的趋同性,质地相近高度熟化的水耕人为土可能存在相近的碳氮耦合平衡,这应在今后的深入研究中重点加以考虑。当土壤碳库未达到饱和状态时,土壤SOC会逐渐累积,最终达到一种和水分状况相适应的动态平衡。当土壤水分状况明显改变时,已有的土壤碳动态平衡会被打破。如果土壤碳库过多,会有明显的损失,然后迅速达到新的平衡。需要特别指出的是,在当前普遍追求高产的背景下,氮肥的大量投入而有机肥源匮乏的实际耕作措施有可能会诱发原本稳定的C/N的下降,不仅会影响土壤固碳能力,还会造成土壤酸化、板结和水体污染等生态环境问题。要注意增加有机肥源,提高氮素利用率从而减少氮肥投入,保持水耕人为土土壤碳氮平衡。
|
图 1 不同水分状况水耕人为土时间序列碳氮剖面分布 Fig. 1 C and N distributions in Hydragric Anthrosol profiles relative to chronosequence and water regime |
水耕人为土SOC的演变特征和固碳能力受水分状况和起源土壤SOC含量的影响很大。不同水分类型水耕人为土耕作层C/N随着耕种年限的增加均表现出明显的趋同性,高度熟化的水耕人为土耕作层可能存在相近的碳氮耦合平衡。地表水型水耕人为土在300 a内可一直作为相对稳定的农田有机碳汇,但固碳速率偏低。按现在的正常管理利用水平,良水型和地下水型水耕人为土约在15~50 a内就会达到土壤碳库的饱和,形成相对稳定的SOC平衡。对地下水位高的水耕人为土而言,农业排水等高产措施会导致其地下水位下降,这会引起土壤碳库的迅速亏损。需重视能引起土壤水分状况明显改变的农业高产措施和农业政策等对农田有机碳库的影响。
| [1] |
Li Q, Yu P, Li G, et al. Overlooking soil erosion induces underestimation of the soil closs in degraded land . Quaternary International, 2014, 349: 287-290. DOI:10.1016/j.quaint.2014.05.034
( 0) |
| [2] |
Saikawa E, Prinnl R G, Dlugokencky E, et al. Global and regional emissions estimates for N2O . Atmospheric Chemistry and Physics, 2014, 14: 4617-4641. DOI:10.5194/acp-14-4617-2014
( 0) |
| [3] |
Wang D, Wu G, Zhu Y. Grazing exclusion effects on above-and below-ground C and N pools of typical grassland on the Loess Plateau, China . Catena, 2014, 123: 113-120. DOI:10.1016/j.catena.2014.07.018
( 0) |
| [4] |
Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pool and world life zones . Nature, 1982, 298: 156-159. DOI:10.1038/298156a0
( 0) |
| [5] |
Fu X, Shao M, Wei X, et al. Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China . Geoderma, 2010, 155: 31-35. DOI:10.1016/j.geoderma.2009.11.020
( 0) |
| [6] |
Han F, Hu W, Zheng J, et al. Estimating soil organic carbon storage and distribution in a catchment of Loess Plateau, China . Geoderma, 2010, 154: 261-266. DOI:10.1016/j.geoderma.2009.10.011
( 0) |
| [7] |
Yimer F, Ledin S, Abdelkadir A. Soil organic carbon and total nitrogen stocks as affected by topographic aspect and vegetation in the Bale Mountains, Ethiopia . Geoderma, 2006, 135: 335-344. DOI:10.1016/j.geoderma.2006.01.005
( 0) |
| [8] |
Lozano-García B, Parras-Alcantara L. Variation in soil organic carbon and nitrogen stocks along a toposequence in a traditional mediterranean olive grove . Land Degradation & Development, 2014, 25: 297-304.
( 0) |
| [9] |
Lozano-García B, Parras-Alc antara L. Land use and management effects on carbon and nitrogen in mediterranean cambisols . Agriculture Ecosystems & Environment, 2014, 179: 208-214.
( 0) |
| [10] |
Ma W, Li Z, Ding K, et al. Soil erosion, organic carbon and nitrogen dynamics in planted forests:A case study in a hilly catchment of Hunan Province, China . Soil & Tillage Research, 2016, 155: 69-77.
( 0) |
| [11] |
Zhang C, Liu G, Xue S, et al. Soil organic carbon and total nitrogen storage as affected by land use in a small watershed of the Loess Plateau, China . European Journal of Soil Biology, 2013, 54: 16-24. DOI:10.1016/j.ejsobi.2012.10.007
( 0) |
| [12] |
Gelaw A M, Singh B R, Lal R. Soil organic carbon and total nitrogen stocks under different land uses in a semi- arid watershed in Tigray, Northern Ethiopia . Agriculture Ecosystems & Environment, 2014, 188: 256-263.
( 0) |
| [13] |
Cheng Y Q, Yang L Z, Cao Z H, et al. Chronosequential changes of selected pedogenic properties in paddy soils as compared with non-paddy soils . Geoderma, 2009, 151: 31-41. DOI:10.1016/j.geoderma.2009.03.016
( 0) |
| [14] |
李忠佩, 张桃林, 陈碧云, 等. 红壤稻田土壤有机质的积累过程特征分析. 土壤学报, 2003, 40(3): 344-352. Li Z P, Zhang T L, Chen B Y, et al. Soil organic matter dynamics in a cultivation chronosequence of paddy fields in subtropical China (In Chinese). Acta Pedologica Sinica, 2003, 40(3): 344-352. DOI:10.3321/j.issn:0564-3929.2003.03.004 ( 0) |
| [15] |
李忠佩, 吴大付. 红壤水稻土有机碳库的平衡值确定及固碳潜力分析. 土壤学报, 2006, 43(1): 46-52. Li Z P, Wu D F. Organic C content at steady state and potential of C sequestration of paddy soils in subtropical China (In Chinese). Acta Pedologica Sinica, 2006, 43(1): 46-52. DOI:10.3321/j.issn:0564-3929.2006.01.007 ( 0) |
| [16] |
Myhre G, Shindell D, Breon F M, et al. Anthropogenic and natural radiative forcing//Stocker T F, Qin D, Plattner G K, et al. Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013: 714
( 0) |
| [17] |
Mu Z J, Huang A Y, Kimura Sonoko D, et al. Linking N2O emission to soil mineral N as estimated by CO2 emission and soil C/N ratio . Soil Biology & Biochemistry, 2009, 41: 2593-2597.
( 0) |
| [18] |
Chaopricha N T, Marín-spiotta E. Soil burial contributes to deep soil organic carbon storage . Soil Biology & Biochemistry, 2014, 69: 251-264.
( 0) |
| [19] |
Rabbi S M F, Wilson B R, Lockwood P V, et al. Soil organic carbon mineralization rates in aggregates under contrasting land uses . Geoderma, 2014, 216: 10-18. DOI:10.1016/j.geoderma.2013.10.023
( 0) |
| [20] |
赵明松, 张甘霖, 王德彩, 等. 徐淮黄泛平原土壤有机质空间变异特征及主控因素分析. 土壤学报, 2013, 50(1): 1-11. Zhao M S, Zhang G L, Wang D C, et al. Spatial variability of soil organic matter and its dominating factors in Xuhuai alluvial plain (In Chinese). Acta Pedologica Sinica, 2013, 50(1): 1-11. ( 0) |
| [21] |
Han G Z, Zhang G L. Changes in magnetic properties and their pedogenetic implications for paddy soil chronosequences from different parent materials in South China . European Journal of Soil Science, 2013, 64: 435-444. DOI:10.1111/ejss.12050
( 0) |
| [22] |
Chen L M, Zhang G L, Effland W R. Soil characteristic response times and pedogenic thresholds during the 1000-year evolution of a paddy soil chronosequence . Soil Science Society of America Journal, 2011, 75: 1807-1820. DOI:10.2136/sssaj2011.0006
( 0) |
| [23] |
Zhang G L, Gong Z T. Pedogenic evolution of paddy soils in different soil landscapes . Geoderma, 2003, 115: 15-29. DOI:10.1016/S0016-7061(03)00072-7
( 0) |
| [24] |
《慈溪水利志》编纂委员会. 慈溪水利志. 杭州: 浙江人民出版社, 1991. Compilatory Committee on Water Conservancy of Cixi. Water conservancy record of Cixi (In Chinese). Hangzhou: Zhejiang Peoples Publishing House, 1991. ( 0) |
| [25] |
王清毅. 慈溪海堤集. 北京: 方志出版社, 2004. Wang Q Y. The evolution history of sea wall in Cixi (In Chinese). Beijing: Fangzhi Publishing House Press, 2004. ( 0) |
| [26] |
Kanno I. A new classification system of rice soils in Japan . Japanese Society of Pedology, 1962, 6: 2-10.
( 0) |
| [27] |
龚子同, 陈志诚, 史学正, 等. 中国土壤系统分类:理论.方法.实践. 北京: 科学出版社, 1999. Gong Z T, Chen Z C, Shi X Z, et al. Chinese soil taxonomy:Theory, methodology, practice (In Chinese). Beijing: Science Press, 1999. ( 0) |
| [28] |
程汝饱, 周晓洪, 张希然.广东省东江流域几种水分类型水稻土的水热状况和Eh变化//中国土壤系统分类新论.北京: 科学出版社, 1994: 387-392 Cheng R B, Zhou X H, Zhang X R. Changes in hydrothermal regime and Eh of several paddy soils in east river basin of Guangdong Province(In Chinese)//New discussion on Chinese Soil Taxonomy. Beijing: Science Press, 1994: 387-392 ( 0) |
| [29] |
张甘霖, 龚子同. 土壤调查实验室分析方法. 北京: 科学出版社, 2012. Zhang G L, Gong Z T. Soil survey laboratory methods (In Chinese). Beijing: Science Press, 2012. ( 0) |
| [30] |
中国土壤普查办公室. 中国土种志(1-6). 北京: 中国农业出版社, 1995. Soil Survey Office of China. Soil species in China (In Chinese). Beijing: China Agriculture Press, 1995. ( 0) |
| [31] |
Reddy K R, Patrick W H Jr. Denitrification losses in flooded rice fields . Fertilizer Research, 1986, 9: 99-116. DOI:10.1007/BF01048697
( 0) |
| [32] |
徐琪, 陆彦椿, 律兆松. 水分状况对水稻土发生与稻麦丰产的影响. 土壤通报, 1992, 23(5): 193-196. Xu Q, Lu Y C, Lü Z S. Effect of water condition on the genes of paddy soils and the high yield of rice and wheat (In Chinese). Chinese Journal of Soil Science, 1992, 23(5): 193-196. DOI:10.3321/j.issn:0564-3945.1992.05.001 ( 0) |
| [33] |
中国土壤学会. 土壤科学与社会可持续发展:土壤科学与农业可持续发展(上). 北京: 中国农业大学出版社, 1994: 123-131. Soil Science Society of China. Soil science and agricultural sustainable development (In Chinese). Beijing: China University of Science and Agriculture University Press, 1994: 123-131. ( 0) |
| [34] |
Wu J, Brookes P C. The proportional mineralisation of microbial and organic matter caused by air-drying and rewetting of a grassland soil . Soil Biology & Biochemistry, 2005, 37: 507-515.
( 0) |
2. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
3. College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100049, China;
4. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
5. College of Resources and Environments, Zunyi Normal University, Zunyi, Guizhou 563002, China;
6. College of Resources and Environment, Xingtai University, Xingtai, Hebei 054001, China
2019, Vol. 56



0)