检索项 检索词
  土壤学报  2020, Vol. 57 Issue (2): 446-456  DOI: 10.11766/trxb201810180282
0

引用本文  

贺美, 王迎春, 王立刚, 等. 深松施肥对黑土活性有机碳氮组分及酶活性的影响. 土壤学报, 2020, 57(2): 446-456.
HE Mei, WANG Yingchun, WANG Ligang, et al. Effects of Subsoiling Combined with Fertilization on the Fractions of Soil Active Organic Carbon and Soil Active Nitrogen, and Enzyme Activities in Black Soil in Northeast China. Acta Pedologica Sinica, 2020, 57(2): 446-456.

基金项目

国家重点研发计划项目(2017YFD0201801,2016YFE0101100)、国家自然科学基金项目(31770486)资助

通讯作者Corresponding author

王立刚, E-mail:wangligang@caas.cn

作者简介

贺美(1990—),女,河南漯河人,硕士研究生,主要从事黑土耕地碳氮循环研究。E-mail:hemei0911@126.com
深松施肥对黑土活性有机碳氮组分及酶活性的影响
贺美1 , 王迎春1 , 王立刚1 , 李成全2 , 王利民2 , 李玉红2 , 刘平奇1     
1. 中国农业科学院农业资源与农业区划研究所,北京 100081;
2. 黑龙江省绥化市青冈县农业技术推广中心,黑龙江绥化 151600
摘要:探究不同深松施肥措施对黑土活性有机碳氮组分及酶活性的影响对黑土有机质保育有重要意义。于东北黑土典型地区-黑龙江省绥化市试验点开展为期2年春玉米种植试验,共设5个处理:免耕+单施化肥(T1)、深松25 cm+单施化肥(T2)、深松25 cm+化肥有机肥配施(T3)、深松35 cm+单施化肥(T4)和深松35 cm +化肥有机肥配施(T5)处理,分析黑土活性有机碳氮组分和相关土壤酶活性的变化。结果表明:深松、施肥及其交互作用均显著影响土壤活性有机碳氮组分,对颗粒有机碳和颗粒有机氮影响最显著(P < 0.001)。相对T1处理,单纯改变深松深度(T2和T4处理)会显著降低土壤活性有机碳氮组分,尤其颗粒有机碳和颗粒有机氮下降幅度最大; 深松+化肥有机肥配施则可以显著增加土壤活性有机碳氮组分含量,与施化肥的T2处理相比,T3处理土壤有机碳、易氧化有机碳、颗粒有机碳和颗粒有机氮含量分别增加8.37%、35.10%、46.64%和42.39%(P < 0.05);深松能够提高土壤碳氮稳定性,相比T1免耕处理,深松25cm和深松35 cm土壤微生物生物量碳/有机碳、颗粒有机碳/有机碳比例均显著降低(P < 0.05),深松35 cm下土壤颗粒有机氮/总氮比例也显著降低(P < 0.05)。深松对土壤乙酰基β-葡萄糖胺酶、纤维素酶、β-葡萄糖苷酶和木聚糖酶活性均没有显著影响,而增施有机肥(T3相对T2处理)显著提高了土壤纤维素酶活性。综合而言,深松25 cm+化肥有机肥配施措施能够保持土壤活性有机碳氮组分含量,是该地区黑土地保育和有机质提升的推荐技术。
关键词黑土    深松    土壤活性碳组分    土壤活性氮组分    酶活性    

土壤有机碳(Soil organic carbon,SOC)为微生物代谢提供能量和底物,并且能够维持土壤肥力,在农业生态系统中发挥举足轻重的作用[1]。黑土享有“土中之王”美誉,以富含有机质和高肥力著称,我国黑土资源主要分布在东北地区[2-3]。黑土区是我国重要的商品粮基地和经济作物主产区,在国家粮食安全和生态安全方面均发挥了重大作用[4]。然而,由于近几十年来的过度开垦及用养失调,黑土区农田土壤有机质呈下降态势[5]。绥化市位于黑龙江省中南部,是该省重要的黑土区之一,长期以来大面积的机械化作业及化肥农药的使用,使得该地区农田土壤耕层变浅、犁底层上移,土壤板结严重、耕地蓄水渗水及透气功能下降等,极大地威胁区域粮食生产及生态安全[6-8]。因此,改善黑土耕层构造,提高黑土有机质含量及耕地质量迫在眉睫。

众多研究均表明深松可有效打破犁底层、延展土壤的通透性; 而化肥和有机肥可有效提高SOC含量及其有效性[9-10]。土壤总有机碳的变化在短期内不易显现,但其活性组分例如溶解性有机碳(Dissolved organic carbon,DOC)、微生物生物量碳(Microbial biomass carbon,MBC)、易氧化有机碳(Readily organic carbon,ROC)和颗粒有机碳(Particulate organic carbon,POC)等对田间管理措施响应较快,被认为是早期土壤质量变化的敏感指标[11],微生物生物量氮(Microbial biomass nitrogen,MBN)与颗粒有机氮(Particulate organic nitrogen,PON)是土壤活性有机养分的组分。戚瑞敏[12]、黄威[13]等研究均发现长期施肥尤其是有机肥显著增加了土壤活性有机碳氮组分的含量。目前对不同耕作方式下土壤活性有机碳氮组分的研究结论尚不统一,如Das[14]和Balota [15]等均发现免耕相对常规耕作能够提高微生物量,提升幅度分别为17%和98%,其结果差异较大。赵颖等[16]在辽宁省棕壤农田研究表明,相对常规耕作,深松能够显著提高土壤MBC及MBN56.8%和77.0%,田慎重等[17]发现,耕作方式从旋耕转变为深松后,土壤0~30 cm活性有机碳(Labile organic carbon,LOC)含量提高,但是LOC/SOC比例却显著降低。在砂姜黑土农田的一项研究发现[18],相对旋耕,深松后土壤MBC无显著变化,而MBN则显著降低了37.9%。土壤中不同碳氮组分的改变是土壤化学和生物特性共同作用的结果,但目前深松结合施肥及二者交互作用对碳氮组分的影响尚不清楚。

土壤微生物在有机质分解和养分生物化学循环中起关键作用[19],其活性也是评估农田管理措施对土壤健康影响的指标之一。通常用微生物合成和分泌的胞外酶表征其活性,这些酶类可以调控土壤生物化学过程如不稳定碳组分的形成和分解。SOC的转化涉及到一系列生物化学过程动态,水解酶被认为是控制SOC分解的必不可少的调节者,是SOC形成和分解的最佳代表。纤维素酶分解纤维素为纤维二糖、果糖和葡萄糖,β-葡萄糖苷酶可以进一步分解不稳定的纤维素和其他碳水化合物聚合物形成低分子量组分[20]。酶活性通常被碳氮有效性限制,研究表明耕作可通过改变底物有效性及微环境条件影响微生物活性[21],例如相对常规耕作,免耕条件下微生物因具有良好的微气候栖息环境而丰度更高。田间管理措施和土壤外源碳氮添加会引发酶类产生不同的响应,进而影响碳氮循环生态过程[22-23]

近年来我国学者在耕作、施肥方面对土壤性状影响方面做了大量研究[24-25],但是有关不同深度深松对黑土土壤活性有机碳氮组分有效性及土壤酶活性的影响鲜有报道,而明确不同深松措施下黑土碳氮有效性特征对于农田生态系统土壤碳氮调控管理措施及制定科学有效的管理方式有重要意义。因此,本研究设置免耕、不同深松深度配合有机肥施用的试验研究,旨在探索不同深松施肥措施对活性有机碳氮组分及其有效性和土壤酶活性的影响,为黑土区合理耕层构造,改善土壤质量提供科学依据。

1 材料与方法 1.1 试验区概况

研究区位于黑龙江省绥化市青冈县芦河镇保家村(46°35′24.9″N,126°08′53.26″E),属于温带大陆性季风气候,全年无霜期140 d左右[9]。2014年和2015年均温和年降水量分别是2.75℃、4.95℃和560.6 mm、614.9 mm。供试土壤类型属黏壤质黑土,呈弱碱性,试验前土壤理化性质见表 1

表 1 试验地土壤基础理化性状 Table 1 Physical and chemical properties of the soil in the experimental site
1.2 试验设计

试验于2014年4月开始,共设置5个处理:T1,免耕+单施化肥; T2,深松25 cm +单施化肥; T3,深松25 cm +有机无机配施; T4,深松35 cm +单施化肥; T5,深松35 cm +有机无机配施。深松作业是利用深松机具在不翻转和打乱原有耕层土壤的条件下,进行一定深度松土的一种耕作方式,具有打破犁底层,改善土壤水、肥、气、热条件等优势。本试验中免耕处理施肥方式为撒施,其余处理则采用深松农机具进行深松作业后均匀沟施肥料。各处理化肥用量均与当地农民习惯施肥量保持一致,为氮(N)250 kg·hm-2、磷(P2O5)135 kg·hm-2、钾(K2O)100 kg·hm-2。T3和T5处理有机肥采用商品化的颗粒有机肥(有机质含量≥40%,氮磷钾≥5%),用量为1500 kg·hm-2。供试春玉米品种为“利民33”,行距均值约67 cm。每处理3个重复,共15个小区,各小区面积50 m2(10 m×5 m)。

1.3 样品采集与分析

于2015年玉米收获后,采集0~20 cm表层土样,5点法采样混合,用冰盒带回实验室。一部分风干后挑出碎石、植物根系残渣并过2 mm筛,用以土壤pH、SOC、TN、POC与ROC含量的测定; 另一部分过2 mm筛后冷藏,用以MBC、MBN、DOC和酶活性的测定。各指标的测定均在48 h内完成。具体测定方法为:SOC采用重铬酸钾氧化法[26]; TN采用凯氏定氮法; DOC采用0.5 mol·L-1硫酸钾浸提法[27]; POC、PON采用5 g·L-1六偏磷酸纳分散法[28]; MBC、MBN采用三氯甲烷熏蒸法[29]; ROC采用333 mmol·L-1高锰酸钾氧化法[30]; 木聚糖酶(BXYL)、纤维素酶(CBH)、乙酰基β-葡萄糖胺酶(NAG)和β-葡萄糖苷酶(BG)活性均采用荧光微型板检测技术[31]

1.4 数据处理

试验数据采用Microsoft Excel 2010、SAS9.1和OriginPro9.1进行数据统计、分析与制图,基于最小显著差数法(Least Significant Difference)进行方差检验。

2 结果 2.1 土壤活性有机碳氮组分含量

SOC含量与各活性碳组分含量以T3处理最高(表 2)。T3处理SOC含量较T2、T5处理高7.82%、5.32%,差异显著(P < 0.05),而T5处理较T4处理高7.45%(P < 0.05)。T5处理MBC含量较T4处理高18.45%(P < 0.05)。T1处理POC含量较T2和T4处理高40.56%和77.62%(P < 0.05),T3和T5处理POC含量较T2和T4处理高46.64%和57.36%(P < 0.05)。T2与T3处理、T4与T5处理DOC含量均无显著差异。T3处理ROC含量较T2、T5处理高35.10%、69.40%,而T2、T4和T5处理ROC含量无显著差异(P < 0.05)。TN含量以免耕T1处理含量最高,深松35cm单施化肥的T4处理最低。T3和T5处理PON含量分别显著高于相同耕作下单施化肥的T2和T4处理,各处理MBN含量无显著差异。从表 3可以看出,不同土壤活性有机碳氮组分对农田施肥管理响应不同,其中深松显著影响土壤POC,DOC,ROC和TN含量(P < 0.05)。施肥极显著影响SOC、MBC、POC、TN、PON含量(P < 0.01)、显著影响DOC含量(P < 0.05)。施肥与深松的交互则对POC和PON影响最为突出(P < 0.01)。

表 2 各处理下土壤活性有机碳氮组分变化特征 Table 2 Variation of the fractions of soil activated organic carbon and soil activated organic nitrogen componentswith treatment

表 3 深松与施肥及其交互作用对土壤活性有机碳氮组分的影响 Table 3 Effects of subsoiling and fertilization and their interaction on the fractions of soil activated organic carbon and soil activated organic nitrogen components
2.2 土壤活性有机碳氮组分分配比率

土壤活性有机碳与总有机碳的比例可以反映土壤有机碳的稳定程度和有效性,比例越高则表示该碳组分越容易被微生物利用,有效性越高[11]。不同处理碳组分有效性有明显差异(表 4),免耕下MBC/SOC比例显著高于其余各处理(P < 0.05),POC/SOC比例以T3处理最高为25.49%,T4处理最低为15.46%。DOC/SOC各处理无显著差异。ROC/SOC以T3处理最高为20.62%,显著高于其余各处理(P < 0.05)。施肥和深松与施肥的交互作用对POC/SOC以及PON/TN均有极显著影响(P < 0.01)。

表 4 不同处理对土壤活性有机碳氮组分分配比率的影响 Table 4 Distribution ratios of the fractions of soil activated organic carbon and soil activated organic nitrogen components in the soil with treatment
2.3 土壤酶活性

土壤酶活性以β-葡萄糖苷酶(BG)最高,乙酰基β-葡萄糖胺酶(NAG)活性最低(表 5)。各处理土壤NAG酶活性无显著差异。土壤纤维素酶(CBH)活性大小表现为T5 > T3 > T4 > T1 > T2,其中T5与T3处理CBH酶活性为90.50 nmol·g-1·h-1和88.76 nmol·g-1·h-1,分别较T1与T2处理高44.72%、47.87%和47.55%、50.76%(P < 0.05)。BG酶活性与木聚糖酶(BXYL)活性各处理均无显著差异。双因素方差分析结果表明,施肥显著影响土壤CBH酶活性,深松与施肥的交互作用显著影响土壤CBH酶活性。

表 5 各处理下土壤酶活性变化特征 Table 5 Variation of soil enzyme activities with treatment/(nmol·g-1·h-1)
2.4 各指标间的相关性

综合所有处理的活性有机碳氮组分、酶活性等数据进行主成分分析(PCA)发现(图 1),前两个轴(PC1,PC2)共同解释了60.58%的变异,第一主成分轴贡献率为41.24%。T1和T3处理在PC1轴上得分较高,T4与T5处理则在PC2轴得分较高,说明免耕(T1)与深松25 cm有机无机配施(T3)对于土壤活性有机碳氮组分的维持贡献较大,而深松35 cm有机无机配施(T5)对微生物活性贡献较大。不同处理碳氮组分含量与酶活性存在明显差异,碳氮组分以T1与T3处理含量较高,4种酶活性则以T5处理高。相关性分析表明(表 6),SOC与MBC、DOC、PON呈极显著相关(P < 0.01),与POC、TN显著相关(P < 0.05)。MBC与POC、TN、PON极显著相关(P < 0.01),与DOC、MBN显著相关(P < 0.05)。POC与PON极显著相关(P < 0.01),与DOC、TN、MBN显著相关(P < 0.05)。DOC与PON显著相关(P < 0.05)。TN与PON极显著相关(P < 0.01)。NAG与其他三种酶均显著相关(P < 0.05),CBH与BXYL极显著相关(P < 0.01)。

图 1 土壤活性有机碳氮组分与土壤酶活性之间的主成分分析(PCA) Fig. 1 Principal component analysis(PCA)of the relationships of the fractions of soil activated organic carbon and soil activated organic nitrogen components with soil enzyme activities

表 6 土壤活性有机碳氮组分与土壤酶活性之间的皮尔逊相关系数 Table 6 Pearson correlation coefficients of soil activated organic carbon, and soil activated organic nitrogen components with soil enzyme activities
3 讨论 3.1 不同深松施肥措施对黑土活性有机碳氮组分的影响

在农田生态系统中,土壤耕作被认为是加速土壤有机碳矿化分解、影响土壤化学和生物学性质的重要因素,其强度与频率是影响土壤碳库周转的关键[32-34]。张四海等[35]研究表明保护性耕作提高了土壤真菌的比例,使得微生物群落组成朝着有利于土壤碳库积累的方向进行,土壤微生物的生物量增加2.2%~140%。王旭东等[36]研究不同耕作方式对黄土高原黑垆土有机碳库组成发现,免耕和深松均增加了0~10 cm SOC、MBC和DOC的含量; 张磊等[37]利用短期试验研究发现,耕作农田土壤微生物生物量碳含量始终显著高于免耕土壤(P < 0.01)。Calderón等[38]发现耕作对土壤活性碳库没有显著的影响,不同耕作方式对土壤活性碳组分的影响不一,这可能与不同耕作引起的土壤结构与微环境变化、供试土壤理化与生物特性等多重因素有关。本试验中黑土深松后(2年)土壤活性有机碳氮组分均有一定程度降低,且土壤DOC/SOC、MBC/SOC、POC/SOC比例均有所降低,这与前人研究[1736]发现深松后0~10 cm土壤碳库活度、碳库活度指数以及碳库管理指数均有所降低,难氧化有机碳量在SOC中占比升高较为一致,但是深松25 cm与深松35 cm在促进土壤SOC稳定方面没有显著差异,这可能与试验年限长短有关。从目前的试验结果看,深松35 cm处理含碳量和各活性碳库组分含量均低于同等施肥下深松25 cm的处理,可能与深松35 cm对耕层土壤结构的扰动更加剧烈,土壤结构破碎及其有机碳库的消耗也相对较多有关。研究表明,有机物料还田可以供给微生物足够的底物从而加速土壤原有机碳的矿化和植物残体及有机物料的腐解,释放更多的活性碳组分促进土壤碳循环[39]。本试验中,深松结合有机无机肥料配施土壤活性有机碳氮组分则有所提升,除深松35 cm下单施化肥(T4)处理和有机无机配施处理(T5)ROC含量无显著差异外,有机无机肥料配施下土壤SOC和各碳组分含量均高于仅施化肥的处理,这也证实了前人的研究结论[40]。本研究中免耕处理总有机碳和各活性碳库组分(除ROC外)均高于和显著高于深松25 cm单施化肥(T2)及深松35cm单施化肥(T4)的处理,而免耕处理(T1)和T2处理SOC、DOC和ROC含量差异不显著的主要原因可能是试验年限较短及土壤有机碳背景值较高,这还需要长时间的试验来探究。Liu等[41]研究以常规耕作处理为对照,得出保护性耕作后土壤MBC/SOC显著增高的结论,与本研究结果的差异主要缘由是耕作处理不一致且研究区域土壤条件不一致。本试验得出深松35 cm显著降低了土壤颗粒有机氮含量及其在土壤氮库中的比值,随着土壤深松程度加强,PON下降速率较土壤全氮快,PON/TN比也随之降低。本研究相关性分析表明(图 1),土壤活性有机碳氮组分之间关联性较大,土壤碳氮循环酶活性在空间上排序均较相近,深松后活性氮在全氮中比例的降低可能通过微生物代谢等间接影响土壤活性碳组分比例。

3.2 不同深松施肥措施对黑土酶活性的影响

酶类是土壤生态系统中生物化学反应的催化剂,与土壤有机碳的分解速率及土壤有机碳库周转模式密切相关[42],土壤微生物活性极易受环境因子影响。有研究认为深松和免耕均能提高土壤酶活性[43],如深松耕还田能够显著提高华北平原农田土壤脲酶、蔗糖酶的活性,免耕提高了黄土高原西部旱区农田土壤脲酶活性11.6%、碱性磷酸酶活性12.4%和蔗糖酶活性20.9%[44]。不过也有研究发现[45],连续4年免耕覆盖,玉米农田土壤酶活性基本趋于稳定,且Liang等[46]研究表明NAG、CBH和BG酶活性可随作物生育期而变化,其对农田管理措施的响应也较为复杂。本实验表明深松35 cm处理(T5)CBH酶活性显著高于深松25 cm(T2)和免耕处理(T1),深松后土壤透气性增强,土壤中好氧微生物比例迅速提高从而增加土壤酶活性。温度和施肥及其交互作用均能显著影响土壤酶活性,而各处理NAG、BG和BXYL酶活均无显著差异,推测其原因为本试验中各处理土壤温度差异不明显,并且本研究中所有有机肥并非农家有机肥,而是商品有机肥,其有机质的含量较低也可能是造成增施有机肥后酶活性差异不明显的原因。与免耕提高土壤酶活性的结论相反[47],本试验中免耕处理下土壤酶活性均较低,推测可能与土壤理化环境以及种植作物种类有关,王群等[48]研究发现土壤微生物数量随着土壤容重增加而降低,当容重增加(由1.2 g·cm-3增加1.4 g·cm-3)时,细菌、放线菌和真菌数量平均减少41.62%、22.25%、30.14%,免耕处理土壤容重相对较高,这可能是造成免耕下酶活性偏低的原因之一。施肥对酶活性的影响因土壤条件、作物种类和肥料类型与用量不同而差异明显,Wang等[49]研究发现在半干旱草原土壤,化肥N投入增加会提高土壤团聚体NAG酶活性,但是降低BG酶活性。朱敏等[50]认为长期施用有机肥不改变微生物群落结构,这可以解释施用有机肥处理间酶活性没有显著差异,但是各处理土壤呼吸速率及土壤温湿度均不一致,这些均会对土壤酶的产生及其活性高低构成不同程度的影响,其原因有待更长时间和更深尺度的试验来回答。施肥及施肥与深松交互作用显著影响CBH酶活性,可能由于CBH酶主要来源于细菌和真菌,微生物群落的微小变动均会对其产生显著影响,故而施肥对纤维素酶的作用凸显了出来。

4 结论

黑土深松显著降低土壤活性有机碳氮组分含量,相对免耕处理,深松25 cm(T2)显著降低MBC、POC、DOC和PON含量7.94%~40.56%(P < 0.05),深松35cm(T4处理)显著降低SOC、MBC、POC、DOC、TN和PON含量9.44%~77.62%(P < 0.05)。深松能够提高土壤碳氮稳定性,深松25 cm和深松35 cm均显著降低土壤MBC/SOC、POC/SOC比例(P < 0.05),深松35 cm显著降低PON/TN比例(P < 0.05)。相对免耕处理,深松下有机无机肥料配施显著提高土壤纤维素酶活性。深松、施肥及其交互作用均显著影响土壤活性有机碳氮组分含量,对POC和PON影响最为突出(P < 0.001)。综合而言,深松25 cm下有机无机肥料配施为最优的深松耕作施肥措施。

参考文献
[1]
Dungait J A J, Hopkins D W, Gregory A S, et al. Soil organic matter turnover is governed by accessibility not recalcitrance . Global Change Biology, 2012, 18(6): 1781-1796. DOI:10.1111/j.1365-2486.2012.02665.x (0)
[2]
秦子鎛, 刘子琪, 曾庆亚, 等. 玉米秸秆还田对东北黑土土壤碳排放的影响研究. 吉林农业科学, 2011, 36(3): 37-38.
Qin Z B, Liu Z Q, Zeng Q Y, et al. Effect of putting the corn stalks on black land on carbon emissions in Northeast China (In Chinese). Journal of Jilin Agricultural Sciences, 2011, 36(3): 37-38. DOI:10.3969/j.issn.1003-8701.2011.03.011 (0)
[3]
张兴义, 隋跃宇, 宋春雨. 农田黑土退化过程. 土壤与作物, 2013, 2(1): 1-6.
Zhang X Y, Sui Y Y, Song C Y. Degradation process of arable mollisols (In Chinese). Soil and Crop, 2013, 2(1): 1-6. (0)
[4]
王立刚, 杨黎, 贺美, 等. 全球黑土区土壤有机质变化态势及其管理技术. 中国土壤与肥料, 2016(6): 1-7.
Wang L G, Yang L, He M, et al. Changing of soil organic matter in arable soil of global mollisols and its management technology (In Chinese). Soil and Fertilizer Sciences in China, 2016(6): 1-7. (0)
[5]
方华军, 杨学明, 张晓平. 东北黑土有机碳储量及其对大气CO2的贡献. 水土保持学报, 2003, 17(3): 9-12.
Fang H J, Yang X M, Zhang X P. Organic carbon stock of black soils in Northeast China and its contribution to atmospheric CO2 (In Chinese). Journal of Soil and Water Conservation, 2003, 17(3): 9-12. DOI:10.3321/j.issn:1009-2242.2003.03.003 (0)
[6]
李爽, 何利伟, 董树清. 绥化市黑土区水土流失危害及防治对策. 中国水土保持, 2008(5): 23-24.
Li S, He L W, Dong S Q. Soil erosion hazard in the black soil area of Suihua city and its prevention and control measures (In Chinese). Soil and Water Conservation in China, 2008(5): 23-24. DOI:10.3969/j.issn.1000-0941.2008.05.009 (0)
[7]
阎百兴, 杨育红, 刘兴土, 等. 东北黑土区土壤侵蚀现状与演变趋势. 中国水土保持, 2008(12): 26-30.
Yan B X, Yang Y H, Liu X T, et al. Present status of soil erosion and evolution tendency of black soil region of Northeast (In Chinese). Soil and Water Conservation in China, 2008(12): 26-30. DOI:10.3969/j.issn.1000-0941.2008.12.009 (0)
[8]
刘宝元, 阎百兴, 沈波, 等. 东北黑土区农地水土流失现状与综合治理对策. 中国水土保持科学, 2008, 6(1): 1-8.
Liu B Y, Yan B X, Shen B, et al. Current status and comprehensive control strategies of soil erosion for cultivated land in the Northeastern black soil area of China (In Chinese). Science of Soil and Water Conservation, 2008, 6(1): 1-8. DOI:10.3969/j.issn.1672-3007.2008.01.001 (0)
[9]
贺美, 王迎春, 王立刚, 等. 不同耕作措施对黑土碳排放和活性碳库的影响. 土壤通报, 2016, 47(5): 1195-1202.
He M, Wang Y C, Wang L G, et al. Effect of different tillage managements on carbon dioxide emission and content of activated carbon in black soil (In Chinese). Chinese Journal of Soil Science, 2016, 47(5): 1195-1202. (0)
[10]
高菊生, 黄晶, 董春华, 等. 长期有机无机肥配施对水稻产量及土壤有效养分影响. 土壤学报, 2014, 51(2): 314-324.
Gao J S, Huang J, Dong C H, et al. Effects of long-term combined application of organic and chemical fertilizers on rice yield and soil available nutrients (In Chinese). Acta Pedologica Sinica, 2014, 51(2): 314-324. (0)
[11]
Leifeld J, Kögel-Knabner I. Soil organic matter fractions as early indicators for carbon stock changes under different land-use? . Geoderma, 2005, 124(1/2): 143-155. (0)
[12]
戚瑞敏.不同施肥制度潮土有机碳矿化对温度和牛粪的响应及其机制研究.北京: 中国农业科学院, 2016.
Qi R M. Responses of soil organic carbon mineralization under different fertilization regimes to temperature changes and cattle manure addition. Beijing: Chinese Academy of Agricultural Sciences, 2016. (0)
[13]
黄威, 陈安磊, 王卫, 等. 长期施肥对稻田土壤活性有机碳和氮的影响. 农业环境科学学报, 2012, 31(9): 1854-1861.
Huang W, Chen A L, Wang W, et al. Effect of long-term fertilization on active organic carbon and nitrogen in paddy soils(in Chinese) (In Chinese). Journal of Agro-Environment Science, 2012, 31(9): 1854-1861. (0)
[14]
Das A, Lal R, Patel D P, et al. Effects of tillage and biomass on soil quality and productivity of lowland rice cultivation by small scale farmers in North Eastern India . Soil & Tillage Research, 2014, 143: 50-58. (0)
[15]
Balota E L, Calegari A, Nakatani A S, et al. Benefits of winter cover crops and no-tillage for microbial parameters in a Brazilian Oxisol:A long-term study . Agriculture, Ecosystems & Environment, 2014, 197: 31-40. (0)
[16]
赵颖, 周桦, 马强, 等. 施肥和耕作方式对棕壤微生物生物量碳氮的影响. 土壤通报, 2014, 45(5): 1099-1103.
Zhao Y, Zhou H, Ma Q, et al. Soil microbial biomass C and N as affected by fertilization and cultivation systems (In Chinese). Chinese Journal of Soil Science, 2014, 45(5): 1099-1103. (0)
[17]
田慎重, 郭洪海, 董晓霞, 等. 耕作方式转变和秸秆还田对土壤活性有机碳的影响. 农业工程学报, 2016, 32(s2): 39-45.
Tian S Z, Guo H H, Dong X X, et al. Effect of tillage method change and straw return on soil labile organic carbon (In Chinese). Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(s2): 39-45. (0)
[18]
刘淑梅, 孙武, 张瑜, 等. 小麦季不同耕作方式对砂姜黑土玉米农田土壤微生物特性及酶活性的影响. 玉米科学, 2018, 6(1): 103-107.
Liu S M, Sun W, Zhang Y, et al. Effects of wheat tillage managements on soil microbial characters and soil enzyme activities in summer maize season in Shajiang black soil (In Chinese). Journal of Maize Sciences, 2018, 6(1): 103-107. (0)
[19]
Cusack D F, Silver W L, Torn M S, et al. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests . Ecology, 2011, 92(3): 621-632. (0)
[20]
Wickings K, Grandy A S, Reed S C, et al. The origin of litter chemical complexity during decomposition . Ecology Letters, 2012, 15: 1180-1188. DOI:10.1111/j.1461-0248.2012.01837.x (0)
[21]
Zuber S M, Villamil M B. Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities . Soil Biology & Biochemistry, 2016, 97: 176-187. (0)
[22]
Burns R G, DeForest J L, Marxsen J, et al. Soil enzymes in a changing environment:Current knowledge and future directions . Soil Biology & Biochemistry, 2013, 58: 216-234. (0)
[23]
李彤, 王梓廷, 刘露, 等. 保护性耕作对西北旱区土壤微生物空间分布及土壤理化性质的影响. 中国农业科学, 2017, 50(5): 859-870.
Li T, Wang Z T, Liu L, et al. Effect of conservation tillage practices on soil microbial spatial distribution and soil physico-chemical properties of the northwest dryland (In Chinese). Scientia Agricultura Sinica, 2017, 50(5): 859-870. (0)
[24]
Liu E, Teclemariam S G, Yan C, et al. Long-term effects of no-tillage management practice on soil organic carbon and its fractions in the northern China . Geoderma, 2014, 213: 379-384. (0)
[25]
Xin X, Zhang J, Zhu A, et al. Effects of long-term(23 years)mineral fertilizer and compost application on physical properties of fluvo-aquic soil in the North China Plain . Soil & Tillage Research, 2016, 156: 166-172. (0)
[26]
Nelson D W, Sommers L E. Total carbon, organic carbon, and organic matter// Page A L, Miller R H, Keeney D R. Methods of Soil Analysis, Part2 Chemical and Microbiological Properties. 2nd ed. Wisconsin: Madison, USA, 1992: 562-564. (0)
[27]
Bhargava A, Carmona F F, Bhargava M, et al. Approaches for enhanced phytoextraction of heavy metals . Journal of Environmental Management, 2012, 105: 103-120. (0)
[28]
Lee J H. An overview of phytoremediation as a potentially promising technology for environmental pollution control . Biotechnology and Bioprocess Engineering, 2013, 18(3): 431-439. (0)
[29]
吴金水, 林启美, 黄巧云, 等. 土壤微生物生物量测定方法及其应用. 北京: 气象出版社, 2006: 117-141.
Wu J S, Lin Q M, Huang Q Y, et al. Soil microbial biomass-Methods and application (In Chinese). Beijing: China Meteorological Press, 2006: 117-141. (0)
[30]
伍钧, 孟晓霞, 李昆. 铅污染土壤的植物修复研究进展. 土壤, 2005, 37(3): 258-264.
Wu J, Meng X X, Li K. Phytoremediation of soils contaminated by lead (In Chinese). Soils, 2005, 37(3): 258-264. DOI:10.3321/j.issn:0253-9829.2005.03.006 (0)
[31]
DeForest J L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA . Soil Biology & Biochemistry, 2009, 41(6): 1180-1186. (0)
[32]
Lenka N K, Lal R. Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system . Soil & Tillage Research, 2013, 126: 78-89. (0)
[33]
Jha P, Garg N, Lakaria B L, et al. Soil and residue carbon mineralization as affected by soil aggregate size . Soil & Tillage Research, 2012, 121: 57-62. (0)
[34]
Martínez E, Fuentes J P, Pino V, et al. Chemical and biological properties as affected by no-tillage and conventional tillage systems in an irrigated Haploxeroll of Central Chile . Soil & Tillage Research, 2013, 126: 238-245. (0)
[35]
张四海, 曹志平, 张国, 等. 保护性耕作对农田土壤有机碳库的影响. 生态环境学报, 2012, 21(2): 199-205.
Zhang S H, Cao Z P, Zhang G, et al. Effects of conversation tillage on soil organic carbon pool (In Chinese). Ecology and Environmental Sciences, 2012, 21(2): 199-205. DOI:10.3969/j.issn.1674-5906.2012.02.001 (0)
[36]
王旭东, 张霞, 王彦丽, 等. 不同耕作方式对黄土高原黑垆土有机碳库组成的影响. 农业机械学报, 2017, 48(11): 229-237.
Wang X D, Zhang X, Wang Y L, et al. Effects of different tillage methods on soil organic carbon pool composition in dark loessial soil on Loess Plateau (In Chinese). Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11): 229-237. DOI:10.6041/j.issn.1000-1298.2017.11.028 (0)
[37]
张磊. 土地耕作后微生物量碳和水溶性有机碳的动态特征. 水土保持学报, 2008, 22(2): 146-150.
Zhang L. Dynamic characteristics of SMBC and DOC after soil tillage (In Chinese). Journal of Soil and Water Conservation, 2008, 22(2): 146-150. DOI:10.3321/j.issn:1009-2242.2008.02.033 (0)
[38]
Calderón F J, Jackson L E, Scow K M, et al. Microbial responses to simulated tillage in cultivated and uncultivated soils . Soil Biology & Biochemistry, 2000, 32(11/12): 1547-1559. (0)
[39]
张璐, 张文菊, 徐明岗, 等. 长期施肥对中国3种典型农田土壤活性有机碳库变化的影响. 中国农业科学, 2009, 42(5): 1646-1655.
Zhang L, Zhang W J, Xu M G, et al. Effects of long-term fertilization on change of labile organic carbon in three typical upland soils of China (In Chinese). Scientia Agricultura Sinica, 2009, 42(5): 1646-1655. DOI:10.3864/j.issn.0578-1752.2009.05.018 (0)
[40]
戚瑞敏, 赵秉强, 李娟, 等. 添加牛粪对长期不同施肥潮土有机碳矿化的影响及激发效应. 农业工程学报, 2016, 32(S2): 118-127.
Qi R M, Zhao B Q, Li J, et al. Effects of cattle manure addition on soil organic carbon mineralization and priming effects under long-term fertilization regimes (In Chinese). Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2): 118-127. (0)
[41]
Liu E, Yan C, Mei X, et al. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China . Geoderma, 2010, 158: 173-180. DOI:10.1016/j.geoderma.2010.04.029 (0)
[42]
Qi R, Li J, Lin Z, et al. Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes . Applied Soil Ecology, 2016, 102: 36-45. DOI:10.1016/j.apsoil.2016.02.004 (0)
[43]
王芸, 韩宾, 史忠强, 等. 保护性耕作对土壤微生物特性及酶活性的影响. 水土保持学报, 2006, 20(4): 120-122.
Wang Y, Han B, Shi Z Q, et al. Effects of conservation tillage on soil microbial characters and soil enzyme activities (In Chinese). Journal of Soil and Water Conservation, 2006, 20(4): 120-122. DOI:10.3321/j.issn:1009-2242.2006.04.029 (0)
[44]
苗琳, 王立, 黄高宝, 等. 保护性耕作对旱地麦田土壤酶活性的影响. 干旱地区农业研究, 2009, 27(1): 6-11.
Miao L, Wang L, Huang G B, et al. Effects of conservation tillage on soil enzymatic activities in rainfed wheat field (In Chinese). Agricultural Research in the Arid Areas, 2009, 27(1): 6-11. (0)
[45]
张丽华, 黄高宝, 张仁陟. 旱作条件下免耕对土壤微生物量碳、氮、磷的影响. 甘肃农业科技, 2006(12): 3-6.
Zhang L H, Huang G B, Zhang R Z. Effects of no-tillage on soil microbial biomass C, N and P in rain-fed agriculture (In Chinese). Gansu Agricultural Science and Technology, 2006(12): 3-6. DOI:10.3969/j.issn.1001-1463.2006.12.001 (0)
[46]
Liang G, Houssou A A, Wu H, et al. Seasonal patterns of soil respiration and related soil biochemical properties under nitrogen addition in winter wheat field . PLoS One, 2015, 10(12): e0144115. DOI:10.1371/journal.pone.0144115 (0)
[47]
孙建, 刘苗, 李立军, 等. 免耕与留茬对土壤微生物量C、N及酶活性的影响. 生态学报, 2009, 29(10): 5508-5515.
Sun J, Liu M, Li L J, et al. Influence of non-tillage and stubble on soil microbial biomass and enzyme activities in rain-fed field of Inner Mongolia (In Chinese). Acta Ecologica Sinica, 2009, 29(10): 5508-5515. DOI:10.3321/j.issn:1000-0933.2009.10.040 (0)
[48]
王群, 尹飞, 郝四平, 等. 下层土壤容重对玉米根际土壤微生物数量及微生物量碳、氮的影响. 生态学报, 2009, 29(6): 3096-3104.
Wang Q, Yin F, Hao S P, et al. Effects of subsoil bulk density on rhizospheric soil microbial population, microbial biomass carbon and nitrogen of corn(Zea mays L.)field (In Chinese). Acta Ecologica Sinica, 2009, 29(6): 3096-3104. DOI:10.3321/j.issn:1000-0933.2009.06.040 (0)
[49]
Wang R Z, Dorodnikov M, Yang S, et al. Responses of enzymatic activities within soil aggregates to 9-year nitrogen and water addition in a semi-arid grassland . Soil Biology & Biochemistry, 2015, 81: 159-167. (0)
[50]
朱敏, 郭志彬, 曹承富, 等. 不同施肥模式对砂姜黑土微生物群落丰度和土壤酶活性的影响. 核农学报, 2014, 28(9): 1693-1700.
Zhu M, Guo Z B, Cao C F, et al. Impact of model of fertilization on microbial abundance and enzyme activity in lime concretion black soil (In Chinese). Journal of Nuclear Agricultural Sciences, 2014, 28(9): 1693-1700. (0)
Effects of Subsoiling Combined with Fertilization on the Fractions of Soil Active Organic Carbon and Soil Active Nitrogen, and Enzyme Activities in Black Soil in Northeast China
HE Mei1 , WANG Yingchun1 , WANG Ligang1 , LI Chengquan2 , WANG Limin2 , LI Yuhong2 , LIU Pingqi1     
1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
2. Agricultural Technology Extension Center, Qinggang, Heilongjiang 151600, China
Abstract: 【Objective】 It is of great scientific significance to explore effects of the practice of subsoiling coupled with fertilization on the fractions of activated organic carbon and nitrogen, and enzyme activities in black soil.【Method】 Based on a 2-year field experiment in Qinggang County, Heilongjiang Province, a black soil region typical of Northeast China, variations of the soil were analyzed in fractions of dissolved organic carbon (DOC), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), particulate organic carbon (POC), particulate organic nitrogen (PON), and readily oxidizable organic carbon (ROC), and in activity of N-acetylglucosaminnidase (NAG), Cellobiohydrolase (CBH), β-glucosidase (BG) and β-xylosidase (BXYL) with treatment in the experiment, which consisted of five treatments, including no-till + chemical fertilizer (T1), subsoiling 25 cm (in depth)+ chemical fertilizer (T2), subsoiling 25 cm + chemical fertilizer + organic manure (T3), subsoiling 35 cm + chemical fertilizer (T4), sub-soiling 35 cm + chemical fertilizer+ organic manure (T5).【Result】 Results showed that both subsoiling and fertilization and their interactions significantly affected the contents of soil activated carbon and nitrogen, particularly of POC and PON; Subsoiling (T2 and T4) significantly reduced the contents of soil activated organic carbon and nitrogen components with varying degree relative to depth of subsoiling, T2 was significantly lower than T1 (P < 0.05) in POC and PON content; T3 and T5 significantly increased the contents of soil activated organic carbon and nitrogen. T3 was 8.37%, 46.64%, 35.10% and 42.39% (P < 0.05) higher than T2 in content of SOC, POC, ROC and PON. Besides, subsoiling improved stability of the soil activated organic carbon and nitrogen components. Compared with T1, subsoiling treatments significantly reduced the ratios of MBC/SOC and POC/SOC in the soil (P < 0.05), and subsoiling 35 cm in depth significantly decreased the ratio of PON/TN (P < 0.05); T2 and T4 did not differed much from T1 in enzyme activity, whereas T3 significantly increased CBH activity relative to T2.【Conclusion】 To sum up, subsoiling 25 cm in depth combined with application of chemical fertilizer and organic manure can maintain the content of activated organic carbon and nitrogen components in the soil, hence it is recommended to be extrapolate as an effective farming technique to build up black soil farmland and to increase organic matter content in the soil of this area.
Key words: Black soil    Subsoiling    Soil active organic carbon    Soil active organic nitrogen    Enzyme activity