检索项 检索词
  土壤学报  2020, Vol. 57 Issue (4): 928-936  DOI: 10.11766/trxb201905280207
0

引用本文  

耿国涛, 陆志峰, 卢涌, 等. 红壤地区直播油菜施硼对籽粒产量和品质的影响. 土壤学报, 2020, 57(4): 928-936.
GENG Guotao, LU Zhifeng, LU Yong, et al. Effect of Boron Application on Seed Yield and Quality of Direct Sown Winter Rapeseed (Brassica napus L.) in Red Soil Region. Acta Pedologica Sinica, 2020, 57(4): 928-936.

基金项目

国家重点研发计划项目(2018YFD0200900)和国家油菜产业技术体系建设专项(CARS-12)资助

通讯作者Corresponding author

鲁剑巍, E-mail:lunm@mail.hzau.edu.cn

作者简介

耿国涛(1994-), 男, 山东沂源人, 硕士研究生, 主要从事作物养分管理研究。E-mail:gengguotao@webmail.hzau.edu.cn
红壤地区直播油菜施硼对籽粒产量和品质的影响
耿国涛1 , 陆志峰1 , 卢涌1 , 明日2 , 肖国滨3 , 范连益4 , 任涛1 , 鲁剑巍1     
1. 华中农业大学微量元素研究中心/农业农村部长江中下游耕地保育重点实验室,武汉 430070;
2. 桂林市农业科学院/广西农业科学院桂北分院,广西桂林 541006;
3. 江西省红壤研究所,江西进贤 331717;
4. 湖南省作物研究所,长沙 410125
摘要:红壤地区是我国重要的油菜种植区, 研究直播冬油菜硼肥施用效果, 为直播油菜科学施硼提供理论依据, 对促进区域油菜产业发展有重要意义。2017—2018年在江西、湖南、湖北南部和广西北部油菜主产区布置7个硼肥大田试验, 设置不施硼、施硼肥(含硼量100 g·kg-1)4.5 kg·hm-2、9.0 kg·hm-2、13.5 kg·hm-2四个处理。结果表明, 红壤地区土壤有效硼普遍含量低, 直播油菜施硼增产效果显著, 油菜籽平均产量和施硼经济效益在硼肥用量9.0 kg·hm-2时最高, 与不施硼相比增产1 021 kg·hm-2, 增产率达110.6%, 分别较施用硼肥4.5 kg·hm-2和13.5 kg·hm-2增产16.6%和3.1%。施硼显著增加直播油菜收获密度、单株角果数和每角粒数, 进而增加了油菜产量; 同时硼肥的施用可显著提高油菜籽的含油率、油酸和亚油酸含量, 与不施硼相比, 施用硼肥9.0 kg·hm-2处理各品质指标分别增加26.9%、45.9%和72.6%, 相应增加产油量136.1%。在硼肥用量13.5 kg·hm-2范围内, 油菜地上部硼含量和硼累积量随着施硼量的增加而增加, 但硼肥利用率呈现降低的趋势, 硼肥用量为9.0 kg·hm-2处理的硼肥当季利用率也仅为9.4%。综合结果显示, 红壤地区直播油菜施硼增产增收效果显著, 直播油菜生产中应重视硼肥的合理施用, 区域硼肥的推荐用量为9.0 kg·hm-2左右。
关键词直播油菜    产量    硼肥适宜用量    品质    硼肥利用率    

油菜是一种需硼量较大且对硼十分敏感的作物[1], 合理提供硼素营养有利于促进油菜生长发育, 提高油菜籽产量和品质[2-3]。经过多年的科学研究和生产实践, 施硼已成为油菜生产的常规技术[4], 然而在实际生产中缺硼现象时有发生, 主要原因是土壤有效硼含量低和未合理施用硼肥[5]。油菜是我国最主要的油料作物, 种植面积大, 分布区域广, 但相对集中[6], 其中红壤地区的江西、湖南、湖北南部和广西北部油菜种植面积占全国的40%[7], 该区域土壤多呈酸性且质地较轻, 硼在酸性土壤中主要以硼酸的形态存在, 加之雨量丰富和水旱轮作交替频繁, 导致农田土壤中的硼易被淋洗而损失[8-9], 因此土壤有效硼含量普遍偏低, 缺硼成为限制油菜增产的重要因子[10]

我国油菜施硼研究及制定的施硼技术大多针对移栽油菜[11]。近年来, 随着农村劳动力结构变化和转移, 油菜直播轻简栽培模式不断扩大[12]。与育苗移栽油菜相比, 直播油菜减少了苗床养分强化环节, 已有研究表明直播油菜对农田氮养分缺乏更加敏感[13]。尽管目前直播油菜对硼肥施用的响应尚不清楚, 但直播油菜缺硼现象呈现加剧趋势[14]。为了明确红壤地区直播油菜对缺硼的敏感程度及确定适宜硼肥用量, 本研究于2017—2018年在江西、湖南、湖北南部和广西北部布置大田试验, 研究硼肥用量对直播油菜产量及其构成、品质和经济效益的影响, 以期为我国红壤地区直播油菜科学施硼提供依据。

1 材料与方法 1.1 供试材料

2017—2018年在江西、湖南、湖北南部和广西北部布置7个直播冬油菜硼肥用量试验。具体地点及基础土壤理化性质见表 1, 所有试验点土壤有效硼均处于缺乏或严重缺乏状态。各试验的前茬作物均为水稻。油菜品种为当地大面积推广运用的品种, 包括希望122(江西)、湘杂753(湖南)、大地199(湖北)和阳光2009(广西), 播种量为6 kg·hm-2

表 1 供试土壤基础理化性质 Table 1 Physical and chemical properties of the top soil(0-20 cm)of the experiment fields
1.2 研究方法

田间试验设置4个施硼水平, 分别为:(1)不施用硼肥; (2)施用硼肥4.5 kg·hm-2; (3)施用硼肥9.0 kg·hm-2; (4)施用硼肥13.5 kg·hm-2。供试硼肥由华中农业大学养分管理研究团队提出设计方案(能与油菜种子混合同播的油菜专用硼肥), 联合武汉高飞农业有限公司对进口优质硼砂进行改造(硼肥颗粒大小与油菜种子相近、硼砂颗粒表面添加养分释放阻控剂), 含硼(B)量为100 g·kg-1[15]。各处理其他肥料用量均一致, 分别为N 180 kg·hm-2、P2O5 90 kg·hm-2和K2O 120 kg·hm-2, 氮肥分3次施用, 基肥占60%, 越冬肥和薹肥各占20%, 磷钾全部作基肥, 肥料施用方法按当地农技推广部门的推荐方法。硼肥与油菜籽混匀后同时播种。试验各处理均设3次重复, 小区面积20 m2, 随机区组排列。

1.3 样品采集与测定

土壤样品的采集与测定:基础土壤样品在前茬水稻收获后、油菜播种前采集0~20 cm耕作层土壤。供试土壤基础理化性质按土壤理化分析常规方法[16]测定, 其中, 土壤有效硼采用沸水浸提—姜黄素比色法测定。

植物样品的采集与测定:油菜收获前1~2 d在各小区划定有代表性的样方0.36 m2(0.6 m×0.6 m), 并采集样方中所有油菜地上部植株样品, 样品放置于网袋中风干, 脱粒后分别测定油菜茎秆、角壳和籽粒的生物量。选取进贤、醴陵和武穴3个试验点的样方进行产量构成因子调查, 调查项目有油菜收获时的密度、单株角果数、每角粒数和千粒重。各小区籽粒产量单打单收, 以风干重计产, 籽粒生物量按含水率8%计算得出。茎秆和角壳生物量用籽粒生物量及样方内茎秆、角壳和籽粒三部分的比例进行换算得出。各部位样品经60℃烘干磨细过筛后, 采用1 mol·L-1盐酸浸提—姜黄素比色法测定全硼含量[16]

采用中国农业科学院油料作物研究所研制的NYDL-3000智能型多参数粮油品质速测仪测定油菜籽中的油分、粗蛋白、油酸和亚油酸等品质指标[17]

1.4 数据处理

收获指数/%=籽粒生物量÷地上部总生物量×100[18]

施肥增益=施肥区产值-不施肥区产值-肥料成本(2017—2018年度油菜种植季硼肥价格为9.0 yuan·kg-1, 油菜籽价格为5.0 yuan·kg-1

硼累积量/(g·hm-2)=地上部各部位硼含量×地上部各部位生物量/1 000[19]

硼肥的表观利用率/%=(施硼区硼累积量-不施硼区硼累积量)÷硼用量×100[18-20]

产油量/(kg·hm-2)=籽粒含油率×籽粒产量[21]

饼粕蛋白质产量/(kg·hm-2)=籽粒蛋白质含量×籽粒产量[21]

硼肥贡献率/%=(施肥区的产量-不施肥区产量)÷施肥区产量×100[18-20]

采用Microsoft Excel 2017软件处理和计算试验数据, SPSS 20软件统计分析, Origin 2017软件制图, 最小显著差异(LSD)法检验P≤0.05水平的差异显著性。

2 结果 2.1 硼肥不同用量对直播油菜产量和生物量的影响

图 1显示各地区施硼均可显著增加直播油菜产量, 不施硼条件下, 直播油菜产量在139~1 550 kg·hm-2之间, 平均为923 kg·hm-2, 显著低于施硼处理。施用硼肥9.0 kg·hm-2时, 油菜的增产效果最佳, 与不施硼相比增产1 021 kg·hm-2, 增产率达110.6%, 继续增加硼肥用量, 产量无显著性差异。整体而言, 土壤硼含量越低的试验点施硼效果越好, 其中崇仁和进贤两个点增产效果最明显, 增产率达800%以上。通过对各试验点进行一元二次方程拟合, 看出各试验点表现出相似的变化趋势, 最佳硼肥用量在9.0 kg·hm-2左右。成熟期地上部生物量对施硼的响应趋势与产量基本一致, 各处理非籽粒部分生物量随施硼量的增加呈现增加的趋势, 但增加幅度小于籽粒产量, 原因是施硼显著增加油菜的收获指数, 收获指数在施硼肥9.0 kg·hm-2时最高, 达29.9%, 显著高于不施硼的17.5%, 说明施硼对油菜的营养生长和生殖生长均起到促进作用, 且对生殖生长的促进作用更加显著, 因此, 施硼有利于获得较高的地上部干重和收获指数, 从而获得较高的产量。施硼肥9.0 kg·hm-2时, 油菜籽的产值最高, 平均为9 575 yuan·hm-2, 与不施硼相比每公顷增收4 938 yuan。由此可见, 直播油菜对缺硼十分敏感, 施硼增产增收效果显著。

图 1 不同硼肥用量下直播油菜产量和生物量 Fig. 1 Seed yield and shoot biomass of direct sown rapeseed relative to boron application rate
2.2 硼肥不同用量对直播油菜产量构成因子的影响

直播油菜产量构成因子结果(表 2)表明, 各试验点施硼均显著增加直播油菜的收获密度、单株角果数和每角粒数, 但对千粒重的影响不显著(部分试验表现出下降的趋势)。硼缺乏极大地降低了直播油菜的收获密度, 不施硼处理的密度仅有硼肥用量9.0 kg·hm-2处理的54.9%~65.7%;同时硼肥用量为13.5 kg·hm-2时与9.0 kg·hm-2相比收获密度也呈现下降趋势。施硼后单株角果数增加效果最显著, 与不施硼相比, 硼肥用量9.0 kg·hm-2增加72.3%~457.8%, 当硼肥用量超过9.0 kg·hm-2后增加效果不显著。缺硼导致每角粒数显著减少, 但硼肥用量超过4.5 kg·hm-2后增加不显著。

表 2 不同硼肥用量下直播油菜产量构成因子 Table 2 Yield composition of direct sown rapeseed relative to boron application rate
2.3 硼肥不同用量对油菜植株硼含量与硼累积量及硼肥表观利用率的影响

施硼显著增加油菜成熟期各部位的硼含量和硼累积量(图 2), 各部位硼含量由高到低依次为角壳、茎秆、籽粒, 累积量由高到低依次为茎秆、角壳、籽粒, 在硼肥用量13.5 kg·hm-2范围内, 各部位的硼含量和硼累积量均随施硼量的增加而增加。角壳硼含量和硼累积量在硼肥用量为9.0 kg·hm-2时达到最佳水平, 继续增加施硼量, 硼含量和硼累积量增加效果不显著; 茎秆和籽粒中的硼含量和累积量在施硼肥4.5 kg·hm-2时达到平台, 继续增加施硼量, 植株硼含量和硼累积量不再显著增加。施硼后, 茎秆和角壳中的硼含量与不施硼相比最高可增加110.5%和224.6%, 籽粒中的硼含量与不施硼相比最高增加45.3%, 施硼对角壳和茎秆中硼含量的增加幅度远大于籽粒。

图 2 不同硼肥用量下油菜各部位硼含量和硼累积量 Fig. 2 Content and accumulation B in different organs of the plant relative to boron application rate

不同地点硼肥利用率表现出很大的差异, 整体而言硼肥表观利用率会随着施硼量的增加而降低, 硼肥用量4.5 kg·hm-2时, 硼肥表观利用率平均为12.2%, 用量13.5 kg·hm-2时硼肥表观利用率为7.4%。硼肥用量9.0 kg·hm-2时油菜产量达到最佳水平(图 1), 此时硼肥表观利用率为9.4%。

2.4 硼肥不同用量对直播油菜籽品质的影响

施硼显著提高油菜籽的含油率、油酸和亚油酸含量, 对蛋白质含量无显著影响(表 3)。含油率在施硼肥9.0 kg·hm-2时最高, 与不施硼相比增加26.9%, 油酸和亚油酸含量在施硼肥4.5 kg·hm-2时达最佳水平, 分别为62.3%和17.9%, 显著高于不施硼的53.4%和12.7%, 继续增施硼肥对其增加效果不显著。施硼后产油量和饼粕蛋白质量均显著增加, 与不施硼相比, 施用硼肥4.5 kg·hm-2、9.0 kg·hm-2和13.5 kg·hm-2, 产油量分别增加92.5%、136.1%和125.9%, 饼粕蛋白质量分别增加88.1%、94.2%和85.5%。可见施硼在改善直播油菜籽品质方面起着非常重要的作用。

表 3 不同硼肥用量下直播油菜的品质 Table 3 Seed quality of the direct sown rapeseed relative to boron application rate
3 讨论 3.1 直播油菜对缺硼更敏感

本研究通过区域多点大田试验结果表明, 施硼可以显著增加直播油菜的产量(图 1)。育苗移栽油菜硼养分缺乏导致减产585 kg·hm-2, 减幅为21.9%[18], 本研究直播油菜缺硼导致减产1 021 kg·hm-2, 减幅为52.5%(图 1), 直播油菜施硼增产效果更好。直播油菜的硼肥贡献率平均为45.5%, 远大于移栽油菜的22%[11]。土壤硼含量越低, 对外来硼源的依赖性越强, 施硼增产率和硼肥贡献率越高, 施硼效果越好。有研究表明, 直播油菜苗期群体生长迅速, 生物量较大[13, 22], 因此直播油菜前期需硼较多, 硼养分供应不足导致细胞内活性氧清除受阻, 破坏直播油菜细胞膜系统[23], 同时缺硼造成部分植物激素功能紊乱[24], 从而抑制苗期生长, 并最终影响籽粒产量[25]。直播油菜密度大, 个体弱, 种内竞争激烈[22], 花期和角果期是油菜生长最快, 需硼量最大的时期[1, 26], 硼素供应不足时, 高密状态下较弱个体将被淘汰, 降低群体收获密度。这可能是直播油菜对缺硼更加敏感, 施硼效果好于移栽油菜的重要原因。

3.2 直播油菜施硼增产的关键因子

直播和移栽冬油菜的产量构成因素不同, 施硼增产途径也有显著差异。陈钢等[27]研究表明, 施硼后单株角果数和每角粒数增加是油菜施硼增产的主要原因, 本研究表明单株角果数和每角粒数增加也是直播油菜施硼增产的重要因素之一, 但增加幅度远大于移栽油菜, 同时施硼显著增加了直播油菜的收获密度(表 2)。因此, 直播油菜施硼增产是通过增加单株生产力和收获密度两个方面来实现的。土壤有效硼含量不同, 施硼对产量构成因素的影响不同。单株角果数和每角粒数的增加与土壤有效硼含量有关, 随土壤有效硼含量增加, 施硼对单株角果数和每角粒数的增加幅度减小, 而收获密度受土壤有效硼含量的影响较小。当土壤有效硼含量小于0.2 mg·kg-1, 施硼对每角粒数的增加幅度大于收获密度, 但当土壤有效硼含量大于0.3 mg·kg-1时, 施硼对收获密度的增加幅度大于每角粒数(表 2)。移栽油菜施硼增产仅能通过增加单株角果数和每角粒数来实现, 而土壤硼含量较高时, 施硼对每角粒数的增加是有限的, 这可能是直播油菜施硼增产效果好于移栽油菜的重要原因之一。由此, 本研究初步得出土壤严重缺硼时(有效硼含量小于0.2 mg·kg-1), 施硼后各构成因素对直播油菜产量的贡献由高到低依次为单株角果数、每角粒数、收获密度, 土壤缺硼时(有效硼含量处于0.3~0.4 mg·kg-1), 施硼后各构成因素对直播油菜产量的贡献由高到低依次为单株角果数、收获密度、每角粒数。本研究各试验点土壤硼含量较低, 土壤硼含量涵盖的范围较窄, 硼对产量构成因子的影响均是在土壤硼含量处于严重缺乏和缺乏状态下的影响, 当土壤硼含量较高时, 硼对产量构成因子的作用尚不明确, 需进一步的试验进行验证。

3.3 施用硼肥对直播油菜硼吸收、分配及硼肥利用率的影响

收获时油菜体内的硼含量由高到低依次为角壳、茎秆、籽粒(图 2), 可见角果期生殖器官的建成和发育需要吸收大量的硼, 油菜吸收的硼优先向生殖器官转移, 这与前人的研究结果基本一致[3, 28]。油菜角果期以后角果皮成为最重要的物质合成器官[29], 施硼后角壳中的硼含量变化幅度最大, 籽粒最小, 可能是油菜吸收的硼先满足部分籽粒正常发育的需求, 然后将吸收的硼储存至角壳中, 在硼向籽粒转移过程中起缓冲作用, 保证籽粒正常发育。

硼肥表观利用率随土壤有效硼含量的增加有降低的趋势, 但硼肥表观利用率整体较低, 本研究计算的硼肥利用率为收获时地上部分油菜带走量, 生育期内脱落的叶片、花和地下部均未计算在内, 实际的硼肥利用率可能略高于此值。红壤地区土壤酸化明显[30], 这提高了硼的有效性, 同时造成土壤中更多的硼通过径流和淋洗流失[31-33], 因此油菜收获后土壤有效硼含量较低, 但为了保证最佳的产量和经济效益, 必须要施入充足的硼肥, 连年过量硼肥的施用可能会增加作物硼中毒风险和环境风险[34]。进一步调控硼肥的缓释性能, 更加符合直播油菜生育期需硼规律, 对提高硼肥利用率及降低潜在的作物硼中毒风险和硼素环境风险具有重要意义。红壤地区多为稻油轮作种植模式, 水稻对硼的敏感性较油菜低, 但施硼对水稻有显著增产作用[35], 油菜季残留的硼可作为水稻季的外来硼源, 通过周年的硼素运筹来满足水旱轮作系统的硼需求, 实现硼肥利用率的最大化对提高轮作系统周年籽粒产量和品质有重要意义。

4 结论

红壤地区土壤有效硼含量较低, 施硼增产增收效果显著。施硼通过提高直播油菜的单株生产力和收获密度提高直播油菜产量, 直播油菜较移栽油菜对缺硼更加敏感, 施硼效果更好。施硼可以改善油菜籽品质, 提高油菜籽含油率、油酸和亚油酸含量。硼肥表观利用率虽然较低, 但施硼可促进直播油菜对硼养分的吸收和积累。综合产量、经济效益、品质效应及硼肥利用率, 红壤地区推荐硼肥用量为9.0 kg·hm-2左右。

参考文献
[1]
王运华, 徐芳森, 鲁剑巍, 等. 中国农业中的硼. 北京: 中国农业出版社, 2015.
Wang Y H, Xu F S, Lu J W, et al. Boron in Chinese agriculture (In Chinese). Beijing: China Agriculture Press, 2015. (0)
[2]
年夫照, 石磊, 徐芳森, 等. 硼对油菜产量和品质效应的研究进展. 山地农业生物学报, 2005(1): 79-83.
Nian F Z, Shi L, Xu F S, et al. The progress of effect of boron on seed yield and quality in oilseed rape (In Chinese). Journal of Mountain Agriculture & Biology, 2005(1): 79-83. (0)
[3]
朱芸, 陆志峰, 肖文豪, 等. 硼肥用量对油菜产量与硼养分吸收的影响. 中国土壤与肥料, 2017(4): 129-133.
Zhu Y, Lu Z F, Xiao W H, et al. Effects of boron application levels on rapeseed yield and boron uptake (In Chinese). Soil and Fertilizer Sciences in China, 2017(4): 129-133. (0)
[4]
徐跃定, 吴金桂, 胡永红. 油稻轮作制中油菜过量施硼对水稻产量的影响. 土壤肥料, 2000(2): 27-29.
Xu Y D, Wu J G, Hu Y H. Effect of excessive boron application to rapeseed on grain yield of rice in rape-rice rotation systems (In Chinese). Soils and Fertilizers, 2000(2): 27-29. (0)
[5]
余培玉, 张琼瑛. 我省油菜生产缺硼原因浅析及其解决措施. 湖南农业科学, 2001(3): 26.
Yu P Y, Zhang Q Y. The solution methods and cause of B-deficiency in Hunan provincial rape production (In Chinese). Hunan Agricultural Sciences, 2001(3): 26. (0)
[6]
徐慧, 汪权方, 王新生, 等. 中国同期作物空间格局变化分析--以小麦和油菜为例. 中国农学通报, 2016, 32(21): 95-99.
Xu H, Wang Q F, Wang X S, et al. Spatial pattern change of crops with similar growth cycle in China-A case study of wheat and rape (In Chinese). Chinese Agricultural Science Bulletin, 2016, 32(21): 95-99. (0)
[7]
中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2009.
National Bureau of Statistics of China. China statistical yearbook (In Chinese). Beijing: China Statistics Press, 2009. (0)
[8]
张忠启, 茆彭, 于东升, 等. 近25年来典型红壤区土壤pH变化特征--以江西省余江县为例. 土壤学报, 2018, 55(6): 1545-1553.
Zhang Z Q, Mao P, Yu D S, et al. Characteristics of soil pH variation in typical red soil region of South China in the past 25 years--A case study of Yujiang County, Jiangxi Province (In Chinese). Acta Pedologica Sinica, 2018, 55(6): 1545-1553. (0)
[9]
张智, 任意, 鲁剑巍, 等. 长江中游农田土壤微量养分空间分布特征. 土壤学报, 2016, 53(6): 1489-1496.
Zhang Z, Ren Y, Lu J W, et al. Spatial distribution of micronutrients in farmland soils in the mid-reaches of the Yangtze River (In Chinese). Acta Pedologica Sinica, 2016, 53(6): 1489-1496. (0)
[10]
刘铮, 朱其清, 唐丽华, 等. 我国缺乏微量元素的土壤及其区域分布. 土壤学报, 1982, 19(3): 209-223.
Liu Z, Zhu Q Q, Tang L H, et al. Geographical distribution of trace elements deficiency soils in China (In Chinese). Acta Pedologica Sinica, 1982, 19(3): 209-223. (0)
[11]
邹娟, 鲁剑巍, 廖志文, 等. 湖北省油菜施硼效果及土壤有效硼临界值研究. 中国农业科学, 2008, 41(3): 752-759.
Zou J, Lu J W, Liao Z W, et al. Study on response of rapeseed to boron application and critical level of soil available B in Hubei Province (In Chinese). Scientia Agricultura Sinica, 2008, 41(3): 752-759. (0)
[12]
王寅, 鲁剑巍. 中国冬油菜栽培方式变迁与相应的养分管理策略. 中国农业科学, 2015, 48(15): 2952-2966.
Wang Y, Lu J W. The transitional cultivation patterns of winter oilseed rape in China and the corresponding nutrient management strategies (In Chinese). Scientia Agricultura Sinica, 2015, 48(15): 2952-2966. (0)
[13]
王寅, 鲁剑巍, 李小坤, 等. 长江流域直播冬油菜氮磷钾硼肥施用效果. 作物学报, 2013, 39(8): 1491-1500.
Wang Y, Lu J W, Li X K, et al. Effects of nitrogen, phosphorus, potassium, and boron fertilizers on winter oilseed rape (Brassica napus L.) direct-sown in the Yangtze River basin (In Chinese). Acta Agronomica Sinica, 2013, 39(8): 1491-1500. (0)
[14]
刘祖秀, 方绪彪. 梁平县油菜生产缺硼现状调查分析. 南方农业, 2016, 10(22): 101-102.
Liu Z X, Fang X B. Investigation and analysis on the current situation of boron deficiency in rapeseed production in Liangping County (In Chinese). South China Agriculture, 2016, 10(22): 101-102. (0)
[15]
胡敏, 朱芸, 鲁剑巍, 等. 硼肥与菜籽同播对油菜出苗、产量及硼肥表观利用率的影响. 中国油料作物学报, 2017, 39(4): 509-514.
Hu M, Zhu Y, Lu J W, et al. Effects of simultaneous sowing of boron fertilizer and rapeseeds on seedling emergence, yield and boron utilization efficiency (In Chinese). Chinese Journal of Oil Crop Sciences, 2017, 39(4): 509-514. (0)
[16]
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
Bao S D. Soil and agricultural chemistry analysis (In Chinese). Beijing: China Agriculture Press, 2000. (0)
[17]
智文良.油菜生态雄性不育系373S及油菜籽近红外品质分析的研究[D].陕西杨凌: 西北农林科技大学, 2012.
Zhi W L.Studies on ecotypical male sterile Line373S and determination of rapeseed quality with NYDL-3000[D].Yangling, Shaanxi: Northwest A & F University, 2012. (0)
[18]
邹娟, 鲁剑巍, 陈防, 等. 冬油菜施氮的增产和养分吸收效应及氮肥利用率研究. 中国农业科学, 2011, 44(4): 745-752.
Zou J, Lu J W, Chen F, et al. Study on yield increasing and nutrient uptake effect by nitrogen application and nitrogen use efficiency for winter rapeseed (In Chinese). Scientia Agricultura Sinica, 2011, 44(4): 745-752. (0)
[19]
刘艳妮, 马臣, 于昕阳, 等. 基于不同降水年型渭北旱塬小麦-土壤系统氮素表观平衡的氮肥用量研究. 植物营养与肥料学报, 2018, 24(3): 569-578.
Liu Y N, Ma C, Yu X Y, et al. Nitrogen application rate for keeping nitrogen balance in wheat-soil system in Weibei rainfed areas under different rainfall years (In Chinese). Journal of Plant Nutrition and Fertilizers, 2018, 24(3): 569-578. (0)
[20]
刘瑞, 戴相林, 郑险峰, 等. 半旱地不同栽培模式及施氮下农田土壤养分表观平衡状况研究. 植物营养与肥料学报, 2011, 17(4): 934-941.
Liu R, Dai X L, Zheng X F, et al. Net nutrient balance in soil under different cultivation pattern and nitrogen application rate in semiarid region (In Chinese). Plant Nutrition and Fertilizer Science, 2011, 17(4): 934-941. (0)
[21]
汪瑞清, 杨国正, 史茜莎, 等. 氮磷钾镁锌混合施用对油菜产油量和蛋白质产量的影响. 湖北农业科学, 2009, 48(5): 1096-1100.
Wang R Q, Yang G Z, Shi Q S, et al. Effects of the mixed application of N, P, K, Mg, Zn on oil and protein yield of rapeseed (Brassica napus L.) (In Chinese). Hubei Agricultural Sciences, 2009, 48(5): 1096-1100. (0)
[22]
王寅.直播和移栽冬油菜氮磷钾肥施用效果的差异及机理研究[D].武汉: 华中农业大学, 2014.
Wang Y.Study on the different responses to nitrogen, phosphorus, and potassium fertilizers and the mechanism between direct sown and transplanted winter oilseed rape[D].Wuhan: Huazhong Agricultural University, 2014. (0)
[23]
耿明建, 曹享云, 朱端卫, 等. 硼对甘蓝型油菜不同品种苗期生理特性的影响. 植物营养与肥料学报, 1999, 5(1): 81-84.
Geng M J, Cao X Y, Zhu D W, et al. Effect of boron deficiency on physiological characteristics of different rape cultivars at seedling stage (In Chinese). Plant Nutrition and Fertilizer Science, 1999, 5(1): 81-84. (0)
[24]
Eggert K, von Wirén N. Response of the plant hormone network to boron deficiency . New Phytologist, 2017, 216(3): 868-881. (0)
[25]
关周博, 王学芳, 董育红, 等. 密植油菜苗期和成熟期性状与产量的相关性. 西北农业学报, 2014, 23(7): 62-67.
Guan Z B, Wang X F, Dong Y H, et al. Correlation between traits at seedling and mature stages and yield of close-planted rapeseed (Brassica napus L.) (In Chinese). Acta Agriculturae Boreali-Occidentalis Sinica, 2014, 23(7): 62-67. (0)
[26]
刘晓伟.冬油菜养分吸收规律及不同养分效率品种特征比较研究[D].武汉: 华中农业大学, 2011.
Liu X W.Study on nutrient absorption of oilseed rape and characteristics comparation in different nutrient efficiency types[D].Wuhan: Huazhong Agricultural University, 2011. (0)
[27]
陈钢, 年夫照, 徐芳森, 等. 硼、钼营养对甘蓝型油菜产量和品质影响的研究. 植物营养与肥料学报, 2005, 11(2): 243-247.
Chen G, Nian F Z, Xu F S, et al. Effect of boron and molybdenum on yield and quality of two rapeseed cultivars (In Chinese). Plant Nutrition and Fertilizer Science, 2005, 11(2): 243-247. (0)
[28]
熊鲜艳, 郎春秀, 杜海, 等. 植物对硼的吸收、转运及其遗传调控. 亚热带植物科学, 2011, 40(1): 90-94.
Xiong X Y, Lang C X, Du H, et al. Uptake and transport of boron in plants and their genetic regulations (In Chinese). Subtropical Plant Science, 2011, 40(1): 90-94. (0)
[29]
Hua W, Li R J, Zhan G M, et al. Maternal control of seed oil content in Brassica napus:The role of silique wall photosynthesis . The Plant Journal, 2012, 69(3): 432-444. (0)
[30]
袁宇志, 郭颖, 张育灿, 等. 亚热带典型小流域景观格局对耕地土壤酸化的影响. 土壤, 2019, 51(1): 90-99.
Yuan Y Z, Guo Y, Zhang Y C, et al. Impacts of landscape patterns on farmland soil acidification in typical subtropical small watersheds of China (In Chinese). Soils, 2019, 51(1): 90-99. (0)
[31]
李丹萍, 刘敦一, 张白鸽, 等. 不同镁肥在中国南方三种缺镁土壤中的迁移和淋洗特征. 土壤学报, 2018, 55(6): 1513-1524.
Li D P, Liu D Y, Zhang B G, et al. Movement and leaching of magnesium fertilizers in three types of magnesium-deficient soils in South China relative to fertilizer type (In Chinese). Acta Pedologica Sinica, 2018, 55(6): 1513-1524. (0)
[32]
曹凑贵, 张光远, 王运华, 等. 鄂南丘陵棕红壤水土流失及硼损失特征. 华中农业大学学报, 1998, 17(1): 50-54.
Cao C G, Zhang G Y, Wang Y H, et al. Water loss, soil erosion and boron loss characteristics of the brown red soil in south Hubei Province under different cover degrees (In Chinese). Journal of Huazhong Agricultural University, 1998, 17(1): 50-54. (0)
[33]
乔依娜, 刘洪斌. 农田土壤有效态微量元素空间预测方法及影响因子定量分析. 土壤, 2019, 51(2): 399-405.
Qiao Y N, Liu H B. Spatial prediction of soil available microelement contents and quantitative analysis of influential factors in farmland (In Chinese). Soils, 2019, 51(2): 399-405. (0)
[34]
Deora A, Gossen B D, Hwang S F, et al. Effect of boron on clubroot of canola in organic and mineral soils and on residual toxicity to rotational crops . Canadian Journal of Plant Science, 2014, 94(1): 109-118. (0)
[35]
Atique-Ur-rehman, Farooq M, Nawaz A, et al. Influence of boron nutrition on the rice productivity, kernel quality and biofortification in different production systems . Field Crops Research, 2014, 169: 123-131. (0)
Effect of Boron Application on Seed Yield and Quality of Direct Sown Winter Rapeseed (Brassica napus L.) in Red Soil Region
GENG Guotao1 , LU Zhifeng1 , LU Yong1 , MING Ri2 , XIAO Guobin3 , FAN Lianyi4 , REN Tao1 , LU Jianwei1     
1. Microelements Research Center of Huazhong Agricultural University/Key Laboratory of Arable Land Conservation in the Middle and Lower Reaches of Yangtse River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China;
2. Guilin Academy of Agricultural Sciences/Guibei Branch of Guangxi Academy of Agricultural Sciences, Guilin, Guangxi 541006, China;
3. Jiangxi Institute of Red Soil, Jinxian, Jiangxi 331717, China;
4. Hunan Crop Research Institute, Changsha 410125, China)
Abstract: 【Objective】 The red soil region, known as a prominent rapeseed growing area in China, normally coincides with low soil pH and light texture, and hence susceptibility of leaching loss of available boron, thus resulting in boron deficiency in the soil. Rapeseed, being a high boron demanding crop, is very sensitive to boron (B) deficiency. With rapid development of the society and changes in structure of the rural labor, direct sowing of rapeseed is developing and expanding in scale and area rapidly. However, almost nothing has been done on effects of direct sowing on sensitivity of the rapeseed to boron deficiency and their mechanisms. therefore large-scaled field experiments was laid and carried out in this region in an attempt to explore effects of boron fertilizer application on yield, seed quality and economic benefits of the crop and then to provide a reasonable guidance for B management in the production of rapeseed in the red region.【Method】 During the 2017—2018 growing season, seven field experiments designed to have four treatments each in B application rate: (1) B0 (without boron fertilizer); (2) B4.5 (4.5 kg boron fertilizer hm-2); (3) B9.0 (9.0 kg boron fertilizer hm-2); (4) B13.5 (13.5 kg boron fertilizer hm-2), were carried out in Jiangxi, Hunan, South Hubei and North Guangxi. The boron fertilizer used is a specialized slow release boron fertilizer pelletized the size of a seed and containing 10% of B. The boron fertilizer was mixed with seeds and sown together (6 kg·hm-2).【Result】 Boron application significantly increased rapeseed yield at all the experimental sites, and the increment decreased with rising soil available boron content, and peaked in Treatment B9.0, which was1 021 kg·hm-2 or 110.6 % higher in yield and 4 938 yuan·hm-2 higher in economic profit than Treatment B0. However, the application of boron fertilizer at a higher rate did not have much effect on yield or biomass of the crop. A similar pattern, but lower in magnitude, was observed with shoot biomass. It was also found that boron application significantly improved economic indices of the crop, such as harvest intensity, number of grains per pod, number of pods per plant, and contents of oil, oleic acid and linoleic acid of the seed, except for the indices of thousand grain weight and protein content in the seeds. So it is quite obvious that boron application increases oil yield and improves quality of the harvest of the direct seeding crop. Boron application increased boron content in all the parts of the plant at the manuring stage, especially in pod shell and stem. Boron accumulation in the stem, pod shell and seed could reach up to 79.5%, 244.2% and 125.6% in the treatments applied with boron than in the treatment applied with no boron. Treatment B9.0 was the highest in seed yield, but its boron fertilizer recovery rate was only 9.4%, which suggests that utilization efficiency of the applied boron fertilizer was still very low and a large proportion of lost via leaching and surface runoff owing to low soil pH and light texture.【Conclusion】 As the soil in the red soil region is very low in soil available boron content, boron application shows a significant yield increasing effect on direct sown rapeseed Boron application increases seed yield by increasing its per-plant productivity and harvest density of direct sown rapeseed, which is more sensitive to boron deficiency than transplanted rapeseed. Boron application also improves quality of the seeds and increases contents of oil, oleic acid and linoleic acid. Though the practice of boron application is still quite low in apparent utilization efficiency, it does promote boron adsorption and accumulation of the direct sown rapeseed crops. Considering seed yield and quality, economic profit and boron fertilizer utilization efficiency in all, the boron application rate of 9.0 kg·hm-2 is recommended as the optimal practice of boron fertilization in the red soil region.
Key words: Direct sown rapeseed    Yield    Appropriate boron application rate    Quality    Boron use efficiency