检索项 检索词
  土壤学报  2021, Vol. 58 Issue (2): 281-298  DOI: 10.11766/trxb202006090286
0

引用本文  

杨杰, 李连祯, 周倩, 等. 土壤环境中微塑料污染:来源、过程及风险. 土壤学报, 2021, 58(2): 281-298.
YANG Jie, LI Lianzhen, ZHOU Qian, et al. Microplastics Contamination of Soil Environment: Sources, Processes and Risks. Acta Pedologica Sinica, 2021, 58(2): 281-298.

基金项目

国家自然科学基金项目(41877142, 41991330)资助

通讯作者Corresponding author

骆永明, E-mail:ymluo@issas.ac.cn

作者简介

杨杰(1993-), 男, 安徽芜湖人, 博士研究生, 从事微塑料的土壤-生物系统过程与风险研究。E-mail:jyang@issas.ac.cn
土壤环境中微塑料污染:来源、过程及风险
杨杰1,3, 李连祯2, 周倩2,3, 李瑞杰2,3, 涂晨2, 骆永明1,2,3    
1. 中国科学院土壤环境与污染修复重点实验室(南京土壤研究所), 南京 210008;
2. 中国科学院海岸带环境过程与生态修复重点实验室(烟台海岸带研究所), 烟台 264003;
3. 中国科学院大学, 北京 100049
摘要:土壤环境中微塑料污染问题已成为全球关注的环境问题。相对于水环境,土壤环境中微塑料的研究明显滞后与缺乏。本文系统综述了土壤环境中微塑料的研究进展与未来需求。详细介绍了国内外土壤中微塑料的丰度和分布、微塑料的来源和进入途径;重点分析了微塑料在土壤中的积累、迁移、风化和降解过程,以及与金属和有机污染物的相互作用及其环境效应;阐述了微塑料对土壤中的动物、植物、微生物及土壤质量的影响与生态风险,探讨了土壤中微塑料的暴露途径与潜在的人体健康风险;并展望了土壤环境中微塑料研究的未来方向与重点。以期为全面了解土壤环境微塑料研究的现在与未来提供资讯信息和科学指导。
关键词土壤环境    微塑料    环境风险    研究进展    重点方向    
Microplastics Contamination of Soil Environment: Sources, Processes and Risks
YANG Jie1,3, LI Lianzhen2, ZHOU Qian2,3, LI Ruijie2,3, TU Chen2, LUO Yongming1,2,3    
1. Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
2. Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: Microplastics are almost ubiquitous in the environment. Their pollution of the environment has aroused grave concerns the world over. However, little has been reported in the literature on microplastics in the terrestrial environment, especially in farmland soil, compared with those in the marine and other aquatic environments. Presumably, microplastic pollution may be more serious in the terrestrial environment than in the aquatic environment. This paper is to make a comprehensive and systematic review of research progresses and future directions of the study on microplastics in the terrestrial environment, to introduce status of the pollution, and accumulation and distribution of microplastics in the soil both in China and in other countries as well, to explore their sources in the terrestrial system, including the use of agricultural film, the application of sludge and organic materials as manure, the irrigation with sewage, and surface runoff and to discuss in detail their interactions with other pollutants (heavy metal and organic pollutant), processes of their accumulation, migration, weathering, and degradation in the soil. Moreover, this paper also elaborates ecological effects of microplastics in soil, impacts of microplastics on soil physico-chemical properties, threat of microplastics to animals, plants, and microorganisms living in the soil and potential risks of microplastics to human health via the respiratory exposure and food-chain. In the end, the paper puts forward views and prospects of future researches on microplastics in the soil environment. This paper is expected to be able to provide information and scientific guidance for comprehensive understanding of the presence and future of microplastics in the soil environment.
Key words: Soil environment    Microplastics    Environmental risk    Research progress    Key research direction    

塑料制品因便宜、轻便和可塑性等特点而被广泛使用,预计到2050年塑料的产量将达到330亿吨[1]。塑料的回收利用率低,进入环境的塑料通过长期的物理、化学、生物作用可进一步破碎裂解成微塑料。微塑料是指粒径小于5 mm的塑料纤维、碎片、颗粒等,已普遍存在于水体环境中[2],甚至存在于深海和极地水域[3-4]。陆地作为塑料生产的源头,同时也是重要的汇集区,每年释放到土壤的微塑料可能是海洋的4倍~23倍[5]。目前,对微塑料环境过程和生态风险的研究大多集中于水生环境,尽管近两年越来越多的研究开始关注陆地环境,土壤中微塑料的研究仅占微塑料文献总量的6.34%(根据2019-2020年web of science和中国知网数据库,截止2020年8月30日),仍需引起更多的重视。微塑料在土壤中能够发生多种环境化学过程,如吸附和释放重金属和持久性有机污染物等,可风化降解成粒径更小的塑料微粒;这些微粒在土壤中发生迁移,可能导致地下水污染;微塑料的存在能够对土壤的理化性质以及动植物的生长繁殖产生影响[6]。同时,暴露于环境中的微塑料能够通过呼吸和食物链传递进入人体[7]。土壤中微塑料污染已成为近年来全球环境界兴起的研究热点。本文综合国内外土壤环境中微塑料研究的最新研究进展,着重介绍微塑料污染的来源、过程及风险,并提出未来研究方向与重点内容,为深入认识和进一步研究土壤环境中微塑料污染与生态环境风险提供参考。

1 土壤环境中微塑料的丰度与分布

与水体环境相比较,土壤中微塑料污染状况的报道较少。不同土壤质地、利用类型均会造成土壤中微塑料的丰度差异。目前,国内外均相继开展了土壤中微塑料污染的调查。

1.1 中国土壤环境中微塑料的丰度和分布

中国是近几年较早开展土壤中微塑料调查研究的国家,虽然工作有限,但与国际同步。多种土地利用方式下的土壤中均发现有微塑料的存在(表 1)。周倩等[8]报道了我国河北曹妃甸潮滩土壤中微塑料丰度达到634 ind·kg-1,平均粒径为1.56±0.63 mm,其中小于1 mm的微塑料占总量49.8%。该粒级的微塑料由于能够被土壤生物吞食而受到关注[28]。土壤中的微塑料丰度随着粒径减小而增多,且空间差异大。在受高强度人类活动影响的黄海和渤海海岸带土壤中微塑料丰度变幅在1.3~14 712.5 ind·kg-1,约60%的微塑料粒径小于1 mm[12]。武汉郊区菜地的微塑料的丰度范围为320~12 560 ind·kg-1,其中粒径小于0.2 mm的微塑料占70%[18]。在有的土壤中微塑料丰度更高,达2.2×104~6.9×105 ind·kg-1,81.7%的微塑料粒径在10~100 μm[16]。土壤中微塑料的丰度随着土壤深度的增加而降低。Liu等[9]报道,在上海城郊蔬菜大棚土壤中,微塑料在表层土壤(0~3 cm)和较深层土壤(3~6 cm)中的丰度分别是78.00±12.91和62.50±12.97 ind·kg-1,粒径小于1 mm的微塑料分别占48.79%和59.81%。在不同土地利用方式的土壤中,微塑料丰度与分布存在差异。在上海三个鱼稻共作养殖基地的水稻种植土壤中微塑料平均丰度为16.1±3.5 ind·kg-1,显著高于养鱼的稻田土壤(4.5±1.2 ind·kg-1[15]。在云南滇池地区的湖滨退耕湿地及设施农田中微塑料丰度高达7 100~42 960 ind·kg-1,平均值为18 760 ind·kg-1,其中粒径小于1 mm的微塑料占95%[10]。未来应更加关注粒径小于1 mm的微塑料的环境行为与风险。

表 1 中国土壤中微塑料的积累和分布 Table 1 Accumulation and distribution of microplastics in the soil in China
1.2 全球土壤中微塑料的丰度和分布

与我国相比,全球其他国家对土壤中微塑料的调查研究更少(表 2)。Fuller和Gautam[29]报道了澳大利亚悉尼的工业用地土壤中微塑料丰度范围为500~6 900 mg·kg-1,但未关注微塑料的分布特征。Scheurer和Bigalke[32]指出瑞士29个冲积平原的土壤样品中有26个的微塑料多达593 ind·kg-1,粒径在125~500 μm之间的微塑料占比较大。现代农业生产活动影响微塑料丰度,因而农地土壤是当前研究的重点对象。调查表明,德国某传统农田中,微塑料的平均丰度仅为0.34±0.36 ind·kg-1[31],而墨西哥的家庭菜地中微塑料高达870±1 900 ind·kg-1[30]。污泥长期施用造成的微塑料污染问题正受到关注。位于智利Mellipilla连续多次施污泥的土壤中,微塑料丰度达到了600~10 400 ind·kg-1[33],其中大部分是塑料纤维。西班牙Valencia附近施污泥的土壤中轻质(ρ < 1 g·cm-3)和重质(ρ > 1 g·cm-3)微塑料丰度分别为2 130±950和3 060±1 680 ind·kg-1,远高于未施污泥土壤中的轻、重质微塑料(930±740和1 100±570 ind·kg-1[34]。当前,对全球土壤中微塑料的积累调查研究很匮乏。各国所报道的土壤中微塑料丰度差异相当大。这除了与不同土地利用方式有关外,还与所使用的土壤中微塑料提取、分离和分析的方法未统一有关(表 1表 2)。微塑料的表达方法也不尽统一,数量(ind·kg-1)和质量(mg·kg-1)表达方式间需要建立可换算的方法。未来需要建立统一的可比较的研究方法,规范微塑料丰度的表达方式。

表 2 全球其他国家土壤中微塑料的积累和分布 Table 2 Accumulation and distribution of microplastics in the soils in other countries
2 土壤中微塑料的来源及途径

土壤中微塑料的来源广泛,农膜、污泥、有机肥、污水、大气沉降、垃圾填埋场渗滤液等通过一定的方式输入到土壤,成为土壤中微塑料的重要来源(图 1)。

注:1.农用塑料薄膜的使用;2.污泥的土地利用;3.有机肥的长期施用;4.地表径流和污水灌溉;5.大气沉降;6.填埋场塑料垃圾渗流;7.其他来源:非法倾倒垃圾,汽车轮胎磨损等。  Note:1. Residue of plastic film; 2. Application of sludge as soil amendment; 3. Long-term application of organic manure; 4. Surface runoff and sewage irrigation; 5. Atmospheric subsidence; 6. Seepage of plastic waste from landfill; 7. Other sources(illegal dumping, wearing of tyres). 图 1 土壤中微塑料的来源与途径 Fig. 1 Sources and pathways of microplastics entering into soil
2.1 农用塑料薄膜的使用

塑料薄膜被大量应用于现代农业生产中,2021年全球农用塑料薄膜年产量将达750万吨,其中超过40%是地膜[36]。我国是农膜消费大国,2017年农膜的年使用量高达252.8万吨,地膜使用量达到了143.7万吨,地膜覆盖面积达到1 865.7万公顷,但地膜回收率不足60%[37]。土壤中积累的塑料薄膜在光照和微生物等作用下可被分裂成微塑料甚至是纳米塑料[38]。Zhou等[17]报道杭州湾附近覆膜农田土壤中微塑料丰度高于未覆膜农田。在上海城郊蔬菜大棚中,地膜使用超过十年的表层土壤中微塑料丰度最高,达275 ind·kg-1(干土重),而附近农田表层土壤中微塑料平均值仅为78.00±12.91 ind·kg-1[9]。因而,农用薄膜的残留是土壤中微塑料积累的重要途径。

2.2 污泥的土地利用

污水处理过程可以有效去除污水中微塑料,但这些微塑料会积累在污泥中[39]。芬兰某污水处理厂(日排放量为10 000 m3)的调查结果表明,每天通过污泥进入到环境中的微塑料大约有4.6×108 N;污水经处理后,其中98.3%的微塑料积累于污泥中[40]。爱尔兰污水处理厂的污泥中微塑料丰度达到了4 196~15 385 ind·kg-1[41]。我国11个省28个污水处理厂中的污泥样品中微塑料的丰度范围为1 600~56 400 ind·kg-1,平均为22 700±12 100 ind·kg-1[42]。这些含微塑料的污泥通常会被处置后进入土壤中,尤其是作为肥料施加到农田中而导致微塑料的积累。据估算,欧洲和北美每年通过污泥施用而进入到土壤中的微塑料可达63万~430万吨和44万~300万吨[43]。我国每年通过污泥进入环境中的微塑料估计高达1.56×1014[42]。污泥长期农用必然加剧土壤中微塑料的污染。已有报道,连续施用污泥的土壤中微塑料丰度显著高于周围未施污泥的土壤[21]。Corradini等[33]对智利31个施用污泥不同年限的农用土壤进行了调查,土壤中微塑料的含量随污泥施加量增加而增加,施用污泥5次后(总量200 t·hm2(干重))土壤中微塑料丰度平均达3 500 ind·kg-1

2.3 有机肥的长期施用

畜禽粪经堆肥后的有机肥是农业生产过程中的重要肥料,尤其在设施农业中被广泛使用。Bläsing和Amelung等[44]发现德国波恩的有机肥中存在粒径大于0.5 mm的塑料碎片,含量为2.38~180 mg·kg-1;德国的另一项调查表明,有机肥中粒径大于1 mm的塑料碎片丰度达14~895 ind·kg-1[45]。值得注意的是,目前有机肥中所检测出的塑料碎片粒径大于0.5 mm,而粒径小于0.5 mm的微塑料尚不清楚。大多数国家尚未重视有机肥中的微塑料污染问题。澳大利亚的有机肥标准中允许有机肥中存在0.5 wt%(干重计)的硬质塑料和0.05 wt%的轻质塑料[46]。即使是在有机肥质量管控较严格的德国,也允许有机肥中含有0.1 wt%的塑料且并没有考虑粒径小于2 mm的微塑料[45]。我国是有机肥施用大国,商品有机肥的实际用量占生产量的88.4%[47]。如果以目前的统计量来估算,每年通过施用有机肥而进入到土壤中的微塑料将高达52.4~26 400 t,考虑到粒径小于0.5 mm的微塑料丰度以及有机肥施用量的逐年增多,进入到土壤中的微塑料可能更多[48]。有机肥不可避免地成为土壤中微塑料的重要来源。

2.4 地表径流和污水灌溉

地表水中含有大量的微塑料。Di和Wang[49]在长江流经重庆至宜昌江段水体中检出的微塑料丰度为1.6~12.6 ind·L-1。鄱阳湖中表面水体微塑料丰度达到5~34 ind·L-1[50]。水体中的微塑料随地表径流而进入土壤。墨西哥Tijuana地区雨水径流中微塑料丰度为66~191 ind·L-1,通过估算得出雨水径流中微塑料的年排放量为8×105~3×106 ind·hm2[51]。此外,污水灌溉能够将微塑料携带进入土壤。污水处理厂中的各种方法并不能完全的去除微塑料,污水处理厂的污泥经过活性污泥法和生物膜反应器法处理后,水样中仍有1.0 ind·L-1和0.4 ind·L-1的微塑料[40]。加拿大温哥华某污水处理厂每年仍有约300亿个微塑料通过污水排放到环境中[52]。微塑料纤维大部分来源于生活污水及纺织品洗涤废水[53],通过污水的农业灌溉,这些纤维很容易进入土壤环境。

2.5 大气沉降

在风力作用下,微塑料碎屑能够在空气中传输。空气的流通影响微塑料丰度,一项调查结果表明,室内微塑料丰度(1.0~60.0 ind·m-3)较室外(0.3~1.5 ind·m-3)高[54]。Klein和Fischer[55]发现微塑料普遍存在于德国汉堡的空气中,平均丰度为136.5~512.0 ind·m-2·d-1。每年约有3~10 t的微塑料通过大气沉降到巴黎城市聚集区[56]。周倩等[57]首次报道了我国滨海城市大气环境中的微塑料污染状况,大气中微塑料的年沉降通量可达1.46×105 ind·m-2。通过模型估算,每年约有120.7 kg的微塑料存在于上海的空气中[58]。Allen等[59]通过建模估测,微塑料在大气中的传输距离可达95 km。微塑料通过大气迁移到达偏远的地区,甚至北极浮冰上的沉积雪中也有微塑料的存在(0~14.4×103 ind·L-1[3]。空气中的微塑料最终会迁移到地表和水面。大气沉降是土壤中微塑料的重要来源之一。

2.6 填埋场塑料垃圾渗流

垃圾填埋场并不是塑料垃圾最终的归宿,填埋场中塑料垃圾的渗流是土壤中微塑料的又一潜在来源[60]。随着塑料产量和用量的增加,到2050年全球有120亿吨的塑料垃圾将被丢弃[61]。长期存在于土壤环境中的塑料废物经风化降解成粒径更小的微塑料并释放出有害的添加剂,如:邻苯二甲酸盐类污染物[62]。我国多个城市垃圾填埋场的垃圾渗滤液中微塑料丰度为0.42~24.58 ind·L-1,其中聚丙烯和聚乙烯是最主要的塑料类型[60]。上海某垃圾填埋场的渗滤液和垃圾中微塑料丰度分别为8±3 ind·L-1和62±23 ind·g-1[63]。未经处理的渗流液中存在的微塑料会随着渗流液进入到土壤,而经处理后的渗流液会进一步转化为污水污泥而进入土壤环境中。

2.7 其他来源

此外,垃圾的非法倾倒和处置不当、塑料制品和汽车轮胎磨损、海水潮汐运动等均是土壤中微塑料的来源。以轮胎碎屑为例,Roychand和Pramanik[64]指出,在澳大利亚墨尔本多处道路中存在大量的轮胎碎屑。法国每年有75 291 t的轮胎等道路颗粒释放到环境中[65]。据估算,全球每年人均排放的轮胎磨损橡胶微粒为0.81 kg[66]

3 土壤中微塑料的污染过程与环境效应

来源广泛的微塑料能够对土壤环境及生命体产生影响。微塑料在土壤环境中的污染过程如图 2所示。微塑料不但可以释放出有害添加剂,还可以从环境中吸附污染物。同时,微塑料能在表层土壤中长期积累和径流迁移,并可风化降解成粒径更小的微塑料甚至是纳米塑料,迁移到地下水。

图 2 土壤中微塑料的污染过程与生态风险 Fig. 2 Contamination processes and ecological risks of microplastics in soil
3.1 微塑料与污染物相互作用 3.1.1 微塑料释放污染物

增塑剂、抗氧化剂、热稳定剂、润滑剂等是塑料加工生产过程中常用的添加剂[67]。有机锡,作为聚氯乙烯(PVC)塑料制造中的一种光、热稳定剂,已经使用了40多年,光化学风化能够导致其从塑料中释放出来[68]。Zhang等[69]报道渤海和黄河沙滩微塑料中普遍存在有机磷酯(OPEs)和酞酸酯(PAEs)。微塑料能够释放酞酸酯类物质,从而影响土壤中微生物的多样性[70]。微塑料同时也会分解并释放出低聚体。聚苯乙烯食品包装袋能够将苯乙烯迁移到食物中,每人每日接触苯乙烯的浓度为18.2~55.2 μg[67]

3.1.2 微塑料对污染物的吸附

微塑料可以作为环境污染物的载体,吸附抗生素、持久性有机污染物等[68]。塑料薄膜上普遍存在有机污染物。塑料大棚中的薄膜上溴氰菊酯杀虫剂浓度(占总浓度38.8%~52.2%)远高于土壤(占2.9%~5.4%)[71]。薄膜上毒死蜱和毒杀酚残留量甚至达到土壤中残留量的70倍以上[72]。微塑料对有机污染物的吸附能力、吸附机制与塑料种类有关。Hüffer和Hofmann[73]研究了4种微塑料(聚乙烯(PE)、聚酰胺(PA)、聚苯乙烯(PS)和聚氯乙烯(PVC))对7种脂肪烃和芳香烃化合物的吸附作用,认为PE的吸附主要是固液相的分配平衡,而PA、PS和PVC吸附以表面吸附为主导。Lee等[74]使用聚乙烯、聚丙烯和聚苯乙烯微塑料对12种不同的疏水性有机污染物进行吸附实验表明,微塑料吸附能力与其疏水性存在显著相关性。静电相互作用、氢键和阳离子桥联机制也会对微塑料吸附有机污染物产生影响[69]。重金属同样可以被微塑料吸附。土壤中提取出的微塑料中含不同浓度的Cu、Cd和Pb [16]。老化使微塑料具有更强的吸附能力。人工老化后的高密度聚乙烯、聚氯乙烯和聚苯乙烯微塑料对Cu、Zn的吸附能力增加[75]。环境中的阳离子、小分子有机酸和可溶性有机物等影响微塑料对污染物的吸附[76-77]。与耕地相比,高密度聚乙烯在含有机质多的林地土壤中对Zn2+的吸附能力更强[78]

3.2 微塑料的积累过程

土壤的物理性阻塞可使通过各种途径进入土壤的微塑料积累。Corradini等[33]报道,土壤中的微塑料含量随着污泥施用年限的延长而增多。本课题组对连续施用猪粪有机肥22年的旱地土壤调查表明,施肥显著地增加了土壤中微塑料积累(未发表数据)。土壤的理化性质影响微塑料的积累。微塑料的存留率与与Fe/Al氧化物的含量成正比[79]。由于受到低氧化作用和光屏蔽效应,土壤环境中的微塑料降解效率低,残留时间长[48]

3.3 微塑料的迁移过程

微塑料在土壤中会发生横向和纵向迁移。风力作用使微塑料发生长距离的横向迁移。欧洲甚至是北极的雪中均有微塑料存在[3]。降雨影响土壤中微塑料的纵向迁移。土柱模拟结果表明,沙土中微塑料的迁移深度与干湿交替次数成正比;利用我国347个城市的气象信息估算,100年后微塑料的平均渗透深度达5.24 m[80]。迁移到地下后的微塑料,通过侵蚀和壤中流等方式,可进一步进入到水体和地下水中。美国伊利诺伊州的两个喀斯特地貌(岩溶)含水层中存在微塑料纤维,微塑料最大丰度达到了15.2 ind·L-1[81]。Nizzetto等[82]通过污染物分布模型模拟显示,污泥施用后的土壤中残留约16%~38%的微塑料,大部分微塑料从土壤迁移到水体环境中。Engdahl[83]使用珠-杆链接模型模拟纤维类微塑料在饱和多孔介质中的迁移,当纤维长度达到土壤平均孔径的数量级及以下时,纤维的迁移行为类似于溶质。纤维两端对其余部位产生持续的阻力而限制其迁移,最终造成断裂。

土壤中动物活动和植物根系生长对微塑料的横向、纵向迁移有促进作用。将蚯蚓暴露于含微塑料的土壤表面凋零物中,微塑料能够随蚯蚓迁移至洞穴中[84]。蚯蚓扰动下,60%以上的聚乙烯微球从土壤表层向下迁移至10 cm以下的土层,其中粒径(710~850 μm)越小的微塑料越容易迁移[85]。蚯蚓洞穴提供的优势流可以使微塑料随水流出,土壤浸出液中的微塑料更直接反映出蚯蚓活动造成了微塑料的纵向迁移[86]。不同动物物种对微塑料的迁移能力不尽相同。跳虫可以将树脂颗粒和纤维从土壤表层迁移到地下层,但与小原等节跳(Proisotoma minuta)相比,白符跳(Folsomia candida)对大粒径微塑料的迁移距离更远[87]

3.4 微塑料的风化与降解过程

微塑料在土壤中长期积累必然会出现风化和降解。风化降解不仅造成了微塑料表面的形貌变化,当这些塑料碎片暴露于阳光下,微塑料表面可能会形成大量的持久性自由基和活性氧[88]。光照、温度、湿度等均会影响微塑料的风化[89]。长期物理、化学和生物作用下,潮滩微塑料表面出现微孔裂纹,且含氧官能团增加[8]。长期风化作用使微塑料表面逐渐老化裂解成粒径更小的微塑料甚至是纳米塑料,增强其环境迁移性。

微生物在降解中扮演着重要的角色,其中聚乙烯(PE)降解菌受到广泛的关注。微生物产生的水解酶和氧化还原酶会加速PE的降解[90]。从韩国仁川垃圾填埋场分离出的芽孢杆菌和白念珠菌的混合菌群加速了PE的降解[91]。蚯蚓和蜡螟幼虫肠道内也存在降解PE的微生物[92-93]。其他类型的微塑料也可被微生物降解,且不同微生物的降解效率不同。Cephalosporium species(sp.)和Mucor species(sp.)菌株孵化PS微塑料8 d后,FTIR红外谱图和SEM图均显示PS发生了降解;同时,微塑料表面出现了裂纹甚至是孔隙[94]。红树林沉积物中分离出的芽孢杆菌(Bacillus sp. stain 27)和红球菌(Rhodococcus sp. stain 36)能在40 d内降解6.3%的聚丙烯(PP)颗粒[95]。在30℃条件下,6周内菌株Ideonella sakaiensis可以使60 mg的聚对苯二甲酸乙二酯(PET)薄膜严重破损[96]。氮、磷肥料的施用可以提升土壤肥力并改变土壤微生物的活力,从而促进土壤中微塑料的降解[97]

4 土壤中微塑料的生态效应

微塑料在土壤环境中的生态风险如图 2所示。微塑料不仅会影响土壤理化性质而且还会对土壤环境中动物生长、发育和繁殖造成危害,对植物的生长产生影响,甚至会改变土壤中微生物群落及酶活性。

4.1 微塑料对土壤理化性质的影响

微塑料的存在影响土壤水力特征和土壤团聚体的变化[98-99]。这种影响的程度在不同类型微塑料间的差异较大。聚酯纤维(PES)能显著降低土壤水稳性团聚体的含量,而聚乙烯(PE)正好相反[99]。大团聚体(> 2 mm)与PES含量呈正比[98],且PES能够增强土壤持水力,使水饱和度长期保持在较高水平[99]。土壤中塑料薄膜可显著增加土壤水分蒸发速率并导致土壤开裂。随着塑料丰度增加和粒径减小,影响越显著[100]。微塑料同时影响土壤中物质循环。低密度聚乙烯(LDPE)和生物可降解塑料对土壤pH、EC以及碳氮比产生较大影响,且生物可降解塑料显著影响了小麦根际挥发性有机物的释放[101]。土壤中加入聚丙烯(PP)微塑料30 d后,土壤可溶性有机物(DOM)中的可溶性有机碳、氮、磷随微塑料添加量的增加而增加[102]。由此可见,微塑料对土壤碳储存有隐蔽性贡献[103]

4.2 微塑料对土壤无脊椎动物生长、发育和繁殖的影响

前期研究报道,微塑料能够被土壤原生动物(纤毛虫、鞭毛虫和变形虫等)吞食[104]。微塑料可影响土壤无脊椎动物的生长发育和繁殖[105]。聚苯乙烯(PS)能显著影响秀丽隐杆线虫的体长、生存率、繁殖率和氧化应激基因,且影响具有尺寸效应。1 μm的微塑料与0.1、0.5、2、5 μm的微塑料相比,对线虫生存、寿命和运动神经元等影响更严重[106]。目前,关于微塑料对土壤无脊椎动物毒性作用的研究主要集中于蚯蚓和跳虫[107-108]。蚯蚓摄食微塑料后,引发肠道损伤和繁殖率下降,这与土壤中微塑料含量相关。Rodriguez-seijo等[109]指出,聚乙烯(PE)微塑料在土壤(干重)中浓度低于0.1%(质量比)时,虽然引起了蚯蚓肠道的组织病理学变化,但并未影响蚯蚓的体重以及繁殖率。当浓度达到1%以上时,蚯蚓生长受阻且死亡率增加[110]。当蚯蚓分别暴露于20%的PE和PS微塑料中14 d后,蚯蚓体内的过氧化氢酶、过氧化物酶以及脂质过氧化水平提高,而超氧化物歧化酶和谷胱甘肽的水平受到了抑制[111]。聚酯纤维(PES)同样对蚯蚓生殖率产生影响。经过35 d的培养实验,在土壤中PES达1.0%时,蚯蚓生殖率与对照相比下降了1.5倍,金属硫蛋白(mt-2)增加了24.3倍,热休克蛋白(hsp70)降低了9.9倍[112]。跳虫也有相似的规律。当土壤中PE微塑料浓度为0.1%时,跳虫繁殖受到抑制;浓度为0.5%时,显著改变了跳虫肠道微生物群落,降低了细菌多样性;浓度达到1%时,微塑料处理组与对照组的跳虫相比,繁殖率下降了70.2%[113]。其他土壤动物同样受到微塑料影响。当暴露高浓度纳米PS塑料微球(10%)时,土壤寡毛虫Enchytraeus crypticus肠道微生物群中根瘤菌科、黄杆菌科和等菌科的相对丰度降低,这些群落中包含了有助于氮循环和有机物分解的关键微生物[114]。蜗牛摄食PES会造成蜗牛T-AOC(反映氧化应激的综合指数)水平下降,GPx抗氧化物酶活性下降,丙二醛(MDA)含量增加,这将导致脂质过氧化,引起蜗牛胃肠道的损伤[115]。然而微塑料对土壤无脊椎动物的影响不仅仅是因为微塑料被摄入体内,也可能是因为其改变了周围环境或者是对生物体的物理伤害[116]。有关微塑料对土壤无脊椎动物损害的作用机理和阈值还有待深入研究。

4.3 微塑料对植物生长的影响

陆生植物生长同样可受微塑料影响。塑料残膜使小麦、玉米等农作物的肥料利用效率降低,产量下降,抑制根系生长[117]。不同类型、浓度的微塑料均将对作物生长产生影响。小麦是被研究最多的粮食作物。当浓度低于500 mg·L-1时,乙烯-乙酸乙烯酯共聚合物、线性低密度聚乙烯和聚甲基丙烯酸甲酯对小麦发芽产生抑制[118]。可生物降解塑料也影响作物生长。小麦生长受可生物降解塑料碎片的影响较低密度聚乙烯更大[119]。PS微塑料(0~100 mg·kg-1)对小麦叶片光合作用产生损害,抑制蛋白合成并影响氧化应激反应[120]。对其他陆生植物的研究表明,微塑料影响生菜生长、光合作用以及抗氧化防御系统[121];阻塞水芹种子毛孔而抑制水分吸收,进而延迟发芽和根的生长[122]。当暴露于合成纤维和可生物降解聚乳酸(PLA)中,黑麦草种子发芽率低,PLA降低了黑麦草茎高;暴露于高密度聚乙烯中的黑麦草生物量与对照相比显著降低[123]。高剂量的PLA(10% w/w)的植物毒性效应高于同浓度的聚乙烯[124]。不同尺寸的微塑料对植物产生不同影响。小粒径的微塑料毒性作用更强。100 nm的微塑料(100 mg·L-1)对蚕豆生长有抑制作用,其产生基因毒性较5 μm的微塑料强[125]。值得注意的是,这些影响均是在高剂量微塑料的试验中观测到的。

植物吸收、传递微塑料是微塑料通过植物进入食物链的关键。研究表明,100 nm的聚苯乙烯(PS)微塑料可以进入豆科植物-蚕豆的根中,阻塞细胞壁气孔和细胞间的连接而影响营养物质传输[125]。亚微米级(200 nm)的PS微塑料可被生菜和小麦吸收和富集,并从根部迁移到地上部,分布于可直接被食用的茎叶之中[126-127]。亚微米级微塑料甚至是微米级微塑料(2 μm)可以通过植物侧根生长过程中形成的间隙进入植物体[128]。微塑料在土壤-植物系统中传递机制以及通过食物链传递是否产生人体健康风险,均有待进一步探明。

4.4 微塑料对微生物及酶活性的影响

微塑料对土壤根系微生物群落组成产生影响,破坏有益的植物-微生物相互作用体系[101]。聚酯纤维显著增加了小葱根部的丛枝菌根菌丝定殖量[98]。土壤酶活性反映了土壤微生物的活性。长期使用PE薄膜显著抑制了土壤脲酶活性,进而改变了土壤中碳氮循环相关基因的丰度[129]。粒径更小的PS纳米塑料对参与土壤碳氮磷循环的酶和脱氢酶的活性有抑制作用[130]。而PP微塑料(7%和28%的质量百分比浓度)却促进了土壤中已二酸树脂水解酶(FDAse)活性[102]。聚乙烯PE和聚氯乙烯(PVC)加入土壤后均刺激了脲酶和酸性磷酸酶的活性,抑制了荧光素二乙酸水解酶的活性[131]。同时,微塑料能为微生物提供吸附位点,使微生物可以长期生存于微塑料的表面并形成生物膜,在微塑料碎片上形成了明显不同于土壤的微生物群落,这可能会改变土壤的功能特性[132]。微塑料表面的细菌积累后具有更高的生物毒性,进入机体后容易引起机体感染;且生物膜存在可能导致微塑料吸附更多污染物[133]。微塑料形貌和表面结构的不同可造成其表面生物膜组成和微生物群落结构的差异[134]。而对于土壤中微塑料的表面生物膜来说,密度浮选土壤中微塑料时所使用的饱和高密度溶剂会影响微塑料表面生物膜。能够不破坏微塑料表面形貌并观察微生物群落的相关技术仍需探索,土壤中微塑料表面生物膜的研究方法也有待发展。

5 土壤环境中微塑料的暴露与潜在人体健康风险 5.1 微塑料的呼吸暴露与食物链传递

风力作用使微塑料随地面扬尘漂浮到空中,可被人体吸入到肺部。据估算,人体肺部每天要暴露在26~130个空气微塑料中[135]。在人体肺部甚至观测到长达250 μm的塑料纤维[136]。根据中国39个主要城市的扬尘中微塑料浓度估算,不同年龄段的人通过粉尘摄入的塑料纤维和颗粒范围在64.1~889 ind·kg-1·d-1和8.44~119 ind·kg-1·d-1[137]。食物链富集传递是微塑料暴露的重要途径。Lwanga等[30]报道了微塑料在土壤环境中的食物链(土壤-蚯蚓-鸡)传递,微塑料从土壤到蚯蚓粪的富集系数为12.7,从蚯蚓粪到鸡粪中的富集系数高达105;鸡砂囊中微塑料的富集系数达到5.1,砂囊作为食材可能导致微塑料进入人体。小麦、生菜对微塑料的吸收和积累,表明微塑料有可能通过植物进入食物链传递[128]。食盐[138]、日常饮用的啤酒[139]和饮用水[140]中也有微塑料存在。最近研究显示,高温下(95℃)浸泡的单个茶叶袋能够释放大约116亿微塑料和31亿纳米塑料[141],较之前食品中报道的微塑料含量高出几个数量级。此外,宠物和人类的粪便中微塑料丰度间接证明了微塑料已经在食物链中传递[142]

5.2 微塑料的潜在人体健康风险

此前的研究发现,通过呼吸道持续摄入塑料纤维能引发肺部炎症,造成免疫力下降并可能诱发癌症[135]。Zuskin等[143]对纺织厂工人的调查时注意到,纺织工人慢性呼吸系统症状的患病率高于非纺织工人,其中以鼻窦炎最为显著。由于涉及伦理问题,微塑料与人体健康的风险可通过小鼠实验和体外实验的结果获得启示。微塑料会对哺乳动物(小鼠)的免疫系统产生影响,造成氧化应激反应,神经毒性、细胞毒性以及慢性毒性。小鼠肝脏、肾脏和肠道可以积累微塑料,同时引发肝脏一系列不良反应(能量和脂质代谢紊乱、氧化应激和神经毒性反应等),诱导肠道屏蔽功能障碍,减少群落多样性[144-145]。通过口服灌胃不同剂量(6、60、600 μg·d-1)的聚乙烯(10~150 μm)试验指示,高浓度的微塑料增加了小鼠肠道细菌丰度和菌群多样性,同时引起了明显的肠道炎症[146]。体外实验表明,聚苯乙烯微塑料会诱导人体肺上皮细胞产生活性氧而产生细胞毒性和炎症作用[147]。体外脂质消化模型显示,微塑料显著降低了脂质消化,这可能对健康产生影响[148]。微塑料不仅本身可能会对人体产生风险,同时微塑料携带的添加剂和吸附的其他污染物在体内也会对健康产生风险。人体体外全消化系统模型结果表明:携带有铬(Cr)的微塑料会在体内释放;通过估算,不同人群通过微塑料摄入Cr的最大量为0.50到1.18 μg·d-1[149]

6 未来研究展望

由于土壤的复杂性和研究的滞后,目前对土壤环境中微塑料行为及风险的认识尚为浅显。土壤中微塑料的调查缺乏统一的分离、鉴定方法,造成丰度比较的困难。不同来源对土壤中微塑料的贡献率尚不得而知。微塑料在土壤环境中的污染过程及生态环境效应与微塑料的组成及性质密切相关,因而也影响着微塑料在土壤环境中的生物生态风险和人体健康风险。未来应加强以下研究:

1)建立统一的土壤中微塑料快速提取、便捷鉴定、高效监测的标准方法。

2)精准解析土壤中微塑料的来源与贡献,揭示土壤环境中微塑料积累、迁移和降解规律,为土壤中微塑料污染防治提供科学依据。

3)研究土壤中微塑料与污染物相互作用和复合污染机制,评估微塑料的剂量-生物效应及健康风险,为土壤中微塑料的风险评估奠定基础。

4)研发可快速降解材料,从源头上削减土壤微塑料污染;加强土壤中农膜和塑料制品的回收管理,从过程中阻控微塑料污染;开发微塑料的高效降解新技术,从末端净化受微塑料污染的土壤。

5)加强土壤微塑料污染的相关监管标准及法律法规研究与制定。

参考文献
[1]
Sharma M D, Elanjickal A I, Mankar J S, et al. Assessment of cancer risk of microplastics enriched with polycyclic aromatic hydrocarbons[J]. Journal of Hazardous Materials, 2020, 398: 122994. DOI:10.1016/j.jhazmat.2020.122994 (0)
[2]
Chae Y, An Y J. Effects of micro-and nanoplastics on aquatic ecosystems:Current research trends and perspectives[J]. Marine Pollution Bulletin, 2017, 124(2): 624-632. DOI:10.1016/j.marpolbul.2017.01.070 (0)
[3]
Bergmann M, Mützel S, Primpke S, et al. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic[J]. Science Advances, 2019, 5(8): eaax1157. DOI:10.1126/sciadv.aax1157 (0)
[4]
Peng G Y, Bellerby R, Zhang F, et al. The ocean's ultimate trashcan:Hadal trenches as major depositories for plastic pollution[J]. Water Research, 2020, 168: 115121. DOI:10.1016/j.watres.2019.115121 (0)
[5]
Horton A A, Walton A, Spurgeon D J, et al. Microplastics in freshwater and terrestrial environments:Evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of the Total Environment, 2017, 586: 127-141. DOI:10.1016/j.scitotenv.2017.01.190 (0)
[6]
Xu B L, Liu F, Cryder Z, et al. Microplastics in the soil environment:Occurrence, risks, interactions and fate — A review[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(21): 2175-2222. DOI:10.1080/10643389.2019.1694822 (0)
[7]
Prata J C, da Costa J P, Lopes I, et al. Environmental exposure to microplastics:An overview on possible human health effects[J]. Science of the Total Environment, 2020, 702: 134455. DOI:10.1016/j.scitotenv.2019.134455 (0)
[8]
Zhou Q, Zhang H B, Zhou Y, et al. Separation of microplastics from a coastal soil and their surface microscopic features (In Chinese)[J]. Chinese Science Bulletin, 2016, 61(14): 1604-1611. [周倩, 章海波, 周阳, 等. 滨海潮滩土壤中微塑料的分离及其表面微观特征[J]. 科学通报, 2016, 61(14): 1604-1611.] (0)
[9]
Liu M T, Lu S B, Song Y, et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China[J]. Environmental Pollution, 2018, 242: 855-862. DOI:10.1016/j.envpol.2018.07.051 (0)
[10]
Zhang G S, Liu Y F. The distribution of microplastics in soil aggregate fractions in southwestern China[J]. Science of the Total Environment, 2018, 642: 12-20. DOI:10.1016/j.scitotenv.2018.06.004 (0)
[11]
Zhang S L, Yang X M, Gertsen H, et al. A simple method for the extraction and identification of light density microplastics from soil[J]. Science of the Total Environment, 2018, 616/617: 1056-1065. DOI:10.1016/j.scitotenv.2017.10.213 (0)
[12]
Zhou Q, Zhang H B, Fu C C, et al. The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea[J]. Geoderma, 2018, 322: 201-208. DOI:10.1016/j.geoderma.2018.02.015 (0)
[13]
熊宽旭.黄海桑沟湾微塑料污染特征及其影响因素研究[D].浙江舟山: 浙江海洋大学, 2019.
Xiong K X. The Study on pollution characteristics and influencing factors of microplastics in Sanggou Bay, Yellow sea[D]. Zhoushan, Zhejiang: Zhejiang Ocean University, 2019. (0)
[14]
Han X X, Lu X Q, Vogt R D. An optimized density-based approach for extracting microplastics from soil and sediment samples[J]. Environmental Pollution, 2019, 254: 113009. DOI:10.1016/j.envpol.2019.113009 (0)
[15]
Lv W, Zhou W Z, Lu S B, et al. Microplastic pollution in rice-fish co-culture system:A report of three farmland stations in Shanghai, China[J]. Science of the Total Environment, 2019, 652: 1209-1218. DOI:10.1016/j.scitotenv.2018.10.321 (0)
[16]
Zhou Y F, Liu X N, Wang J. Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China[J]. Science of the Total Environment, 2019, 694: 133798. DOI:10.1016/j.scitotenv.2019.133798 (0)
[17]
Zhou B Y, Wang J Q, Zhang H B, et al. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, East China:Multiple sources other than plastic mulching film[J]. Journal of Hazardous Materials, 2020, 388: 121814. DOI:10.1016/j.jhazmat.2019.121814 (0)
[18]
Chen Y L, Leng Y F, Liu X N, et al. Microplastic pollution in vegetable farmlands of suburb Wuhan, central China[J]. Environmental Pollution, 2020, 257: 113449. DOI:10.1016/j.envpol.2019.113449 (0)
[19]
Ding L, Zhang S Y, Wang X Y, et al. The occurrence and distribution characteristics of microplastics in the agricultural soils of Shaanxi Province, in north-western China[J]. Science of the Total Environment, 2020, 720: 137525. DOI:10.1016/j.scitotenv.2020.137525 (0)
[20]
Huang Y, Liu Q, Jia W Q, et al. Agricultural plastic mulching as a source of microplastics in the terrestrial environment[J]. Environmental Pollution, 2020, 260: 114096. DOI:10.1016/j.envpol.2020.114096 (0)
[21]
Zhang L S, Xie Y S, Liu J Y, et al. An overlooked entry pathway of microplastics into agricultural soils from application of sludge-based fertilizers[J]. Environmental Science & Technology, 2020, 54(7): 4248-4255. (0)
[22]
Zhou Q, Tu C, Fu C C, et al. Characteristics and distribution of microplastics in the coastal mangrove sediments of China[J]. Science of the Total Environment, 2020, 703: 134807. DOI:10.1016/j.scitotenv.2019.134807 (0)
[23]
Huang B, Sun L Y, Liu M R, et al. Abundance and distribution characteristics of microplastic in plateau cultivated land of Yunnan Province, China[J]. Environmental Science and Pollution Research, 2020. DOI:10.1007/s11356-020-10527-3 (0)
[24]
Wang Z C, Meng Q, Yu L H, et al. Occurrence characteristics of microplastics in farmland soil of Hetao Irrigation District, Inner Mongolia (In Chinese)[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(3): 204-209. [王志超, 孟青, 于玲红, 等. 内蒙古河套灌区农田土壤中微塑料的赋存特征[J]. 农业工程学报, 2020, 36(3): 204-209.] (0)
[25]
Han L H, Li Q L, Xu L, et al. Abundance and distribution of microplastics of soils in Daliao River Basin (In Chinese)[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 174-185. [韩丽花, 李巧玲, 徐笠, 等. 大辽河流域土壤中微塑料的丰度与分布研究[J]. 生态毒理学报, 2020, 15(1): 174-185.] (0)
[26]
Yue J J, Zhao S, Cheng H D, et al. Distribution of micro-plastics in the soil covered by different vegetation in Yellow River Delta Wetland (In Chinese)[J]. Environmental Science, 2020. DOI:10.13227/j.hjkx.202005030 [岳俊杰, 赵爽, 程昊东, 等. 不同植物覆盖下黄河三角洲湿地土壤中微塑料的分布[J]. 环境科学, 2020.] (0)
[27]
Cheng W L, Fan T L, Wang S Y, et al. Quantity and distribution of microplastics in film mulching farmland soil of Northwest China (In Chinese)[J]. Journal of Agro-Environment Science, 2020. [程万莉, 樊廷录, 王淑英, 等. 我国西北覆膜农田土壤微塑料数量及分布特征[J]. 农业环境科学学报, 2020.] (0)
[28]
Huerta Lwanga E, Gertsen H, Gooren H, et al. Microplastics in the terrestrial ecosystem:Implications for Lumbricus terrestris(Oligochaeta, Lumbricidae)[J]. Environmental Science & Technology, 2016, 50(5): 2685-2691. (0)
[29]
Fuller S, Gautam A. A procedure for measuring microplastics using pressurized fluid extraction[J]. Environmental Science & Technology, 2016, 50(11): 5774-5780. (0)
[30]
Huerta Lwanga E, Mendoza Vega J, Ku Quej V, et al. Field evidence for transfer of plastic debris along a terrestrial food chain[J]. Scientific Reports, 2017, 7: 14071. DOI:10.1038/s41598-017-14588-2 (0)
[31]
Piehl S, Leibner A, Löder M G J, et al. Identification and quantification of macro-and microplastics on an agricultural farmland[J]. Scientific Reports, 2018, 8: 17950. DOI:10.1038/s41598-018-36172-y (0)
[32]
Scheurer M, Bigalke M. Microplastics in Swiss floodplain soils[J]. Environmental Science & Technology, 2018, 52(6): 3591-3598. (0)
[33]
Corradini F, Meza P, Eguiluz R, et al. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal[J]. Science of the Total Environment, 2019, 671: 411-420. DOI:10.1016/j.scitotenv.2019.03.368 (0)
[34]
van den Berg P, Huerta-Lwanga E, Corradini F, et al. Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils[J]. Environmental Pollution, 2020, 261: 114198. DOI:10.1016/j.envpol.2020.114198 (0)
[35]
Weber C J, Opp C. Spatial patterns of mesoplastics and coarse microplastics in floodplain soils as resulting from land use and fluvial processes[J]. Environmental Pollution, 2020, 267: 115390. DOI:10.1016/j.envpol.2020.115390 (0)
[36]
Sander M. Biodegradation of polymeric mulch films in agricultural soils:Concepts, knowledge gaps, and future research directions[J]. Environmental Science & Technology, 2019, 53(5): 2304-2315. (0)
[37]
Ma Z R, Liu Y S, Zhang Q Q, et al. The usage and environmental pollution of agricultural plastic film (In Chinese)[J]. Asian Journal of Ecotoxicology, 2020, 15: 1-22. [马兆嵘, 刘有胜, 张芊芊, 等. 农用塑料薄膜使用现状与环境污染分析[J]. 生态毒理学报, 2020, 15: 1-22.] (0)
[38]
He D F, Luo Y M, Lu S B, et al. Microplastics in soils:Analytical methods, pollution characteristics and ecological risks[J]. TrAC Trends in Analytical Chemistry, 2018, 109: 163-172. DOI:10.1016/j.trac.2018.10.006 (0)
[39]
Sun J, Dai X H, Wang Q L, et al. Microplastics in wastewater treatment plants:Detection, occurrence and removal[J]. Water Research, 2019, 152: 21-37. DOI:10.1016/j.watres.2018.12.050 (0)
[40]
Lares M, Ncibi M C, Sillanpää M, et al. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology[J]. Water Research, 2018, 133: 236-246. DOI:10.1016/j.watres.2018.01.049 (0)
[41]
Mahon A M, O'Connell B, Healy M G, et al. Microplastics in sewage sludge:Effects of treatment[J]. Environmental Science & Technology, 2017, 51(2): 810-818. (0)
[42]
Li X, Chen L, Mei Q, et al. Microplastics in sewage sludge from the wastewater treatment plants in china[J]. Water Research, 2018, 142: 75-85. DOI:10.1016/j.watres.2018.05.034 (0)
[43]
Ng E L, Huerta Lwanga E, Eldridge S M, et al. An overview of microplastic and nanoplastic pollution in agroecosystems[J]. Science of the Total Environment, 2018, 627: 1377-1388. DOI:10.1016/j.scitotenv.2018.01.341 (0)
[44]
Bläsing M, Amelung W. Plastics in soil:Analytical methods and possible sources[J]. Science of the Total Environment, 2018, 612: 422-435. DOI:10.1016/j.scitotenv.2017.08.086 (0)
[45]
Weithmann N, Möller J N, Löder M G J, et al. Organic fertilizer as a vehicle for the entry of microplastic into the environment[J]. Science Advances, 2018, 4: eaap8060. DOI:10.1126/sciadv.aap8060 (0)
[46]
AS4454-2012. Composts, soil conditioners and mulches[S]. Australia: SAI Global Ltd, 2012. (0)
[47]
Yang F, Li R, Cui Y, et al. Utilization and develop strategy of organic fertilizer resources in China (In Chinese)[J]. Soil and Fertilizer Sciences in China, 2010(4): 77-82. DOI:10.3969/j.issn.1673-6257.2010.04.017 [杨帆, 李荣, 崔勇, 等. 我国有机肥料资源利用现状与发展建议[J]. 中国土壤与肥料, 2010(4): 77-82.] (0)
[48]
Luo Y M, Zhou Q, Zhang H B, et al. Pay attention to research on microplastic pollution in soil for prevention of ecological and food chain risks (In Chinese)[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(10): 1021-1030. [骆永明, 周倩, 章海波, 等. 重视土壤中微塑料污染研究防范生态与食物链风险[J]. 中国科学院院刊, 2018, 33(10): 1021-1030.] (0)
[49]
Di M X, Wang J. Microplastics in surface waters and sediments of the Three Gorges reservoir, China[J]. Science of the Total Environment, 2018, 616/617: 1620-1627. DOI:10.1016/j.scitotenv.2017.10.150 (0)
[50]
Yuan W K, Liu X N, Wang W F, et al. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China[J]. Ecotoxicology and Environmental Safety, 2019, 170: 180-187. DOI:10.1016/j.ecoenv.2018.11.126 (0)
[51]
Pinon-Colin T J, Rodriguez-Jimenez R, Rogel-Hernandez E, et al. Microplastics in stormwater runoff in a semiarid region, tijuana, mexico[J]. Science of the Total Environment, 2019, 704: 135411. (0)
[52]
Gies E A, LeNoble J L, Noël M, et al. Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada[J]. Marine Pollution Bulletin, 2018, 133: 553-561. DOI:10.1016/j.marpolbul.2018.06.006 (0)
[53]
Kelly M R, Lant N J, Kurr M, et al. Importance of water-volume on the release of microplastic fibers from laundry[J]. Environmental Science & Technology, 2019, 53(20): 11735-11744. (0)
[54]
Dris R, Gasperi J, Mirande C, et al. A first overview of textile fibers, including microplastics, in indoor and outdoor environments[J]. Environmental Pollution, 2017, 221: 453-458. DOI:10.1016/j.envpol.2016.12.013 (0)
[55]
Klein M, Fischer E K. Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany[J]. Science of the Total Environment, 2019, 685: 96-103. DOI:10.1016/j.scitotenv.2019.05.405 (0)
[56]
Dris R, Gasperi J, Saad M, et al. Synthetic fibers in atmospheric fallout:A source of microplastics in the environment?[J]. Marine Pollution Bulletin, 2016, 104(1/2): 290-293. (0)
[57]
Zhou Q, Tian C G, Luo Y M. Various forms and deposition fluxes of microplastics identified in the coastal urban atmosphere (In Chinese)[J]. Chinese Science Bulletin, 2017, 62(33): 3902-3909. [周倩, 田崇国, 骆永明. 滨海城市大气环境中发现多种微塑料及其沉降通量差异[J]. 科学通报, 2017, 62(33): 3902-3909.] (0)
[58]
Liu K, Wang X H, Fang T, et al. Source and potential risk assessment of suspended atmospheric microplastics in Shanghai[J]. Science of the Total Environment, 2019, 675: 462-471. DOI:10.1016/j.scitotenv.2019.04.110 (0)
[59]
Allen S, Allen D, Phoenix V R, et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment[J]. Nature Geoscience, 2019, 12(5): 339-344. DOI:10.1038/s41561-019-0335-5 (0)
[60]
He P, Chen L, Shao L, et al. Municipal solid waste(MSW)landfill:A source of microplastics?-Evidence of microplastics in landfill leachate[J]. Water Research, 2019, 159: 38-45. DOI:10.1016/j.watres.2019.04.060 (0)
[61]
Geyer R, Jambeck J R, Law K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e1700782. DOI:10.1126/sciadv.1700782 (0)
[62]
Xu Z N, Xiong, Zhao Y H, et al. Pollutants delivered every day:Phthalates in plastic express packaging bags and their leaching potential[J]. Journal of Hazardous Materials, 2020, 384: 121282. DOI:10.1016/j.jhazmat.2019.121282 (0)
[63]
Su Y L, Zhang Z J, Wu D, et al. Occurrence of microplastics in landfill systems and their fate with landfill age[J]. Water Research, 2019, 164: 114968. DOI:10.1016/j.watres.2019.114968 (0)
[64]
Roychand R, Pramanik B K. Identification of micro- plastics in Australian road dust[J]. Journal of Environmental Chemical Engineering, 2020, 8(1): 103647. DOI:10.1016/j.jece.2019.103647 (0)
[65]
Unice K M, Weeber M P, Abramson M M, et al. Characterizing export of land-based microplastics to the estuary-Part Ⅰ:Application of integrated geospatial microplastic transport models to assess tire and road wear particles in the Seine watershed[J]. Science of the Total Environment, 2019, 646: 1639-1649. DOI:10.1016/j.scitotenv.2018.07.368 (0)
[66]
Kole P J, Löhr A J, van Belleghem F, et al. Wear and tear of tyres:A stealthy source of microplastics in the environment[J]. International Journal of Environmental Research and Public Health, 2017, 14(10): 1265. DOI:10.3390/ijerph14101265 (0)
[67]
Hahladakis J N, Velis C A, Weber R, et al. An overview of chemical additives present in plastics:Migration, release, fate and environmental impact during their use, disposal and recycling[J]. Journal of Hazardous Materials, 2018, 344: 179-199. DOI:10.1016/j.jhazmat.2017.10.014 (0)
[68]
Chen C Z, Chen L, Yao Y, et al. Organotin release from polyvinyl chloride microplastics and concurrent photodegradation in water:Impacts from salinity, dissolved organic matter, and light exposure[J]. Environmental Science & Technology, 2019, 53(18): 10741-10752. (0)
[69]
Zhang H B, Zhou Q, Xie Z Y, et al. Occurrences of organophosphorus esters and phthalates in the microplastics from the coastal beaches in North China[J]. Science of the Total Environment, 2018, 616/617: 1505-1512. DOI:10.1016/j.scitotenv.2017.10.163 (0)
[70]
You Y M, Wang Z G, Xu W H, et al. Phthalic acid esters disturbed the genetic information processing and improved the carbon metabolism in black soils[J]. Science of the Total Environment, 2019, 653: 212-222. DOI:10.1016/j.scitotenv.2018.10.355 (0)
[71]
Querejeta G A, Ramos L M, Flores A P, et al. Environmental pesticide distribution in horticultural and floricultural periurban production units[J]. Chemosphere, 2012, 87(5): 566-572. DOI:10.1016/j.chemosphere.2011.12.074 (0)
[72]
Ramos L, Berenstein G, Hughes E A, et al. Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina[J]. Science of the Total Environment, 2015, 523: 74-81. DOI:10.1016/j.scitotenv.2015.03.142 (0)
[73]
Hüffer T, Hofmann T. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution[J]. Environmental Pollution, 2016, 214: 194-201. DOI:10.1016/j.envpol.2016.04.018 (0)
[74]
Lee H, Shim W J, Kwon J H. Sorption capacity of plastic debris for hydrophobic organic chemicals[J]. Science of the Total Environment, 2014, 470/471: 1545-1552. DOI:10.1016/j.scitotenv.2013.08.023 (0)
[75]
Wang Q J, Zhang Y, Wang X X, et al. The adsorption behavior of metals in aqueous solution by microplastics effected by UV radiation[J]. Journal of Environmental Sciences, 2020, 87: 272-280. DOI:10.1016/j.jes.2019.07.006 (0)
[76]
Yang J, Cang L, Sun Q, et al. Effects of soil environmental factors and UV aging on Cu2+ adsorption on microplastics[J]. Environmental Science and Pollution Research, 2019, 26(22): 23027-23036. DOI:10.1007/s11356-019-05643-8 (0)
[77]
Yang J, Cang L, Qiu W, et al. Effects of different soil environmental factors on tetracycline adsorption of microplastics (In Chinese)[J]. Journal of Agro-Environment Science, 2019, 38(11): 2503-2510. DOI:10.11654/jaes.2019-0490 [杨杰, 仓龙, 邱炜, 等. 不同土壤环境因素对微塑料吸附四环素的影响[J]. 农业环境科学学报, 2019, 38(11): 2503-2510.] (0)
[78]
Hodson M E, Duffus-Hodson C A, Clark A, et al. Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates[J]. Environmental Science & Technology, 2017, 51(8): 4714-4721. (0)
[79]
Wu X L, Lyu X Y, Li Z Y, et al. Transport of polystyrene nanoplastics in natural soils:Effect of soil properties, ionic strength and cation type[J]. Science of the Total Environment, 2020, 707: 136065. DOI:10.1016/j.scitotenv.2019.136065 (0)
[80]
O'Connor D, Pan S Z, Shen Z T, et al. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles[J]. Environmental Pollution, 2019, 249: 527-534. DOI:10.1016/j.envpol.2019.03.092 (0)
[81]
Panno S V, Kelly W R, Scott J, et al. Microplastic contamination in Karst groundwater systems[J]. Groundwater, 2019, 57(2): 189-196. DOI:10.1111/gwat.12862 (0)
[82]
Nizzetto L, Bussi G, Futter M N, et al. A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments[J]. Environmental Science:Processes & Impacts, 2016, 18(8): 1050-1059. (0)
[83]
Engdahl N B. Simulating the mobility of micro-plastics and other fiber-like objects in saturated porous media using constrained random walks[J]. Advances in Water Resources, 2018, 121: 277-284. DOI:10.1016/j.advwatres.2018.08.011 (0)
[84]
Huerta Lwanga E, Gertsen H, Gooren H, et al. Incorporation of microplastics from litter into burrows of Lumbricus terrestris[J]. Environmental Pollution, 2017, 220: 523-531. DOI:10.1016/j.envpol.2016.09.096 (0)
[85]
Rillig M C, Ziersch L, Hempel S. Microplastic transport in soil by earthworms[J]. Scientific Reports, 2017, 7: 1362. DOI:10.1038/s41598-017-01594-7 (0)
[86]
Yu M, van der Ploeg M, Lwanga E H, et al. Leaching of microplastics by preferential flow in earthworm(Lumbricus terrestris)burrows[J]. Environmental Chemistry, 2019, 16(1): 31-40. DOI:10.1071/EN18161 (0)
[87]
Maaß S, Daphi D, Lehmann A, et al. Transport of microplastics by two collembolan species[J]. Environmental Pollution, 2017, 225: 456-459. DOI:10.1016/j.envpol.2017.03.009 (0)
[88]
Zhu K C, Jia H Z, Zhao S, et al. Formation of environmentally persistent free radicals on microplastics under light irradiation[J]. Environmental Science & Technology, 2019, 53(14): 8177-8186. (0)
[89]
Andrady A L, Pandey K K, Heikkilä A M. Interactive effects of solar UV radiation and climate change on material damage[J]. Photochemical & Photobiological Sciences, 2019, 18(3): 804-825. (0)
[90]
Sudhakar M, Doble M, Murthy P S, et al. Marine microbe-mediated biodegradation of low-and high-density polyethylenes[J]. International Biodeterioration & Biodegradation, 2008, 61(3): 203-213. (0)
[91]
Park S Y, Kim C G. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site[J]. Chemosphere, 2019, 222: 527-533. DOI:10.1016/j.chemosphere.2019.01.159 (0)
[92]
Huerta Lwanga E, Thapa B, Yang X M, et al. Decay of low-density polyethylene by bacteria extracted from earthworm's guts:A potential for soil restoration[J]. Science of the Total Environment, 2018, 624: 753-757. DOI:10.1016/j.scitotenv.2017.12.144 (0)
[93]
Bombelli P, Howe C J, Bertocchini F. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella[J]. Current Biology, 2017, 27(8): R292-R293. DOI:10.1016/j.cub.2017.02.060 (0)
[94]
Chaudhary A K, Vijayakumar R P. Studies on biological degradation of polystyrene by pure fungal cultures[J]. Environment, Development and Sustainability, 2020, 22(5): 4495-4508. DOI:10.1007/s10668-019-00394-5 (0)
[95]
Auta H S, Emenike C U, Jayanthi B, et al. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment[J]. Marine Pollution Bulletin, 2018, 127: 15-21. DOI:10.1016/j.marpolbul.2017.11.036 (0)
[96]
Yoshida S, Hiraga K, Takehana T, et al. A bacterium that degrades and assimilates poly(ethylene terephthalate)[J]. Science, 2016, 351(6278): 1196-1199. DOI:10.1126/science.aad6359 (0)
[97]
Zhang S L, Wang J Q, Hao X H. Fertilization accelerates the decomposition of microplastics in mollisols[J]. Science of the Total Environment, 2020, 722: 137950. DOI:10.1016/j.scitotenv.2020.137950 (0)
[98]
de Souza Machado A A, Lau C W, Kloas W, et al. Microplastics can change soil properties and affect plant performance[J]. Environmental Science & Technology, 2019, 53(10): 6044-6052. (0)
[99]
de Souza Machado A A, Lau C W, Till J, et al. Impacts of microplastics on the soil biophysical environment[J]. Environmental Science & Technology, 2018, 52(17): 9656-9665. (0)
[100]
Wan Y, Wu C X, Xue Q, et al. Effects of plastic contamination on water evaporation and desiccation cracking in soil[J]. Science of the Total Environment, 2019, 654: 576-582. DOI:10.1016/j.scitotenv.2018.11.123 (0)
[101]
Qi Y L, Ossowicki A, Yang X M, et al. Effects of plastic mulch film residues on wheat rhizosphere and soil properties[J]. Journal of Hazardous Materials, 2020, 387: 121711. DOI:10.1016/j.jhazmat.2019.121711 (0)
[102]
Liu H F, Yang X M, Liu G B, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil[J]. Chemosphere, 2017, 185: 907-917. DOI:10.1016/j.chemosphere.2017.07.064 (0)
[103]
Rillig M C, Lehmann A. Microplastic in terrestrial ecosystems Research shifts from ecotoxicology to ecosystem effects and Earth system feedbacks[J]. Science, 2020, 368: 1430-1431. DOI:10.1126/science.abb5979 (0)
[104]
Rillig M C, Bonkowski M. Microplastic and soil protists:A call for research[J]. Environmental Pollution, 2018, 241: 1128-1131. DOI:10.1016/j.envpol.2018.04.147 (0)
[105]
Zhu Y G, Zhu D, Xu T, et al. Impacts of(micro)plastics on soil ecosystem:Progress and perspective (In Chinese)[J]. Journal of Agro-Environment Science, 2019, 38(1): 1-6. [朱永官, 朱冬, 许通, 等. (微)塑料污染对土壤生态系统的影响:进展与思考[J]. 农业环境科学学报, 2019, 38(1): 1-6.] (0)
[106]
Lei L L, Liu M T, Song Y, et al. Polystyrene(nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans[J]. Environmental Science:Nano, 2018, 5(8): 2009-2020. DOI:10.1039/C8EN00412A (0)
[107]
Zhu D, Chen Q L, An X L, et al. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition[J]. Soil Biology & Biochemistry, 2018, 116: 302-310. (0)
[108]
Gaylor M O, Harvey E, Hale R C. Polybrominated diphenyl ether(PBDE)accumulation by earthworms(Eisenia fetida)exposed to biosolids-, polyurethane foam microparticle-, and penta-BDE-amended soils[J]. Environmental Science & Technology, 2013, 47(23): 13831-13839. (0)
[109]
Rodriguez-Seijo A, Lourenço J, Rocha-Santos T A P, et al. Histopathological and molecular effects of microplastics in Eisenia andrei Bouché[J]. Environmental Pollution, 2017, 220: 495-503. DOI:10.1016/j.envpol.2016.09.092 (0)
[110]
Cao D D, Wang X, Luo X X, et al. Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil[J]. IOP Conference Series:Earth and Environmental Science, 2017, 61: 012148. DOI:10.1088/1755-1315/61/1/012148 (0)
[111]
Wang J, Coffin S, Sun C L, et al. Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil[J]. Environmental Pollution, 2019, 249: 776-784. DOI:10.1016/j.envpol.2019.03.102 (0)
[112]
Prendergast-Miller M T, Katsiamides A, Abbass M, et al. Polyester-derived microfibre impacts on the soil-dwelling earthworm Lumbricus terrestris[J]. Environmental Pollution, 2019, 251: 453-459. DOI:10.1016/j.envpol.2019.05.037 (0)
[113]
Ju H, Zhu D, Qiao M. Effects of polyethylene microplastics on the gut microbial community, reproduction and avoidance behaviors of the soil springtail, Folsomia candida[J]. Environmental Pollution, 2019, 247: 890-897. DOI:10.1016/j.envpol.2019.01.097 (0)
[114]
Zhu B K, Fang Y M, Zhu D, et al. Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus[J]. Environmental Pollution, 2018, 239: 408-415. DOI:10.1016/j.envpol.2018.04.017 (0)
[115]
Song Y, Cao C J, Qiu R, et al. Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails(Achatina fulica)after soil exposure[J]. Environmental Pollution, 2019, 250: 447-455. DOI:10.1016/j.envpol.2019.04.066 (0)
[116]
Selonen S, Dolar A, Jemec Kokalj A, et al. Exploring the impacts of plastics in soil-The effects of polyester textile fibers on soil invertebrates[J]. Science of the Total Environment, 2020, 700: 134451. DOI:10.1016/j.scitotenv.2019.134451 (0)
[117]
Yan C R, Mei X R, He W Q, et al. Present situation of residue pollution of mulching plastic film and controlling measures (In Chinese)[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(11): 269-272. DOI:10.3321/j.issn:1002-6819.2006.11.055 [严昌荣, 梅旭荣, 何文清, 等. 农用地膜残留污染的现状与防治[J]. 农业工程学报, 2006, 22(11): 269-272.] (0)
[118]
Lian J P, Shen M M, Liu W T. Effects of microplastics on wheat seed germination and seedling growth (In Chinese)[J]. Journal of Agro-Environment Science, 2019, 38(4): 737-745. [连加攀, 沈玫玫, 刘维涛. 微塑料对小麦种子发芽及幼苗生长的影响[J]. 农业环境科学学报, 2019, 38(4): 737-745.] (0)
[119]
Qi Y L, Yang X M, Pelaez A M, et al. Macro-and micro-plastics in soil-plant system:Effects of plastic mulch film residues on wheat(Triticum aestivum)growth[J]. Science of the Total Environment, 2018, 645: 1048-1056. DOI:10.1016/j.scitotenv.2018.07.229 (0)
[120]
Liao Y C, Nazygul J, Li M, et al. Effects of microplastics on the growth, physiology, and biochemical characteristics of wheat(Triticum aestivum) (In Chinese)[J]. Environmental Science, 2019, 40(10): 4661-4667. [廖苑辰, 娜孜依古丽·加合甫别克, 李梅, 等. 微塑料对小麦生长及生理生化特性的影响[J]. 环境科学, 2019, 40(10): 4661-4667.] (0)
[121]
Gao M L, Liu Y, Song Z G. Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce(Lactuca sativa L. var. ramosa Hort)[J]. Chemosphere, 2019, 237: 124482. DOI:10.1016/j.chemosphere.2019.124482 (0)
[122]
Bosker T, Bouwman L J, Brun N R, et al. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum[J]. Chemosphere, 2019, 226: 774-781. DOI:10.1016/j.chemosphere.2019.03.163 (0)
[123]
Boots B, Russell C W, Green D S. Effects of microplastics in soil ecosystems:Above and below ground[J]. Environmental Science & Technology, 2019, 53(19): 11496-11506. (0)
[124]
Wang F Y, Zhang X Q, Zhang S Q, et al. Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil[J]. Chemosphere, 2020, 254: 126791. DOI:10.1016/j.chemosphere.2020.126791 (0)
[125]
Jiang X T, Tian L L, Ma Y N, et al. Quantifying the bioaccumulation of nanoplastics and PAHs in the clamworm Perinereis aibuhitensis[J]. Science of the Total Environment, 2019, 655: 591-597. DOI:10.1016/j.scitotenv.2018.11.227 (0)
[126]
Li L Z, Zhou Q, Yin N, et al. Uptake and accumulation of microplastics in an edible plant (In Chinese)[J]. Chinese Science Bulletin, 2019, 64(9): 928-934. [李连祯, 周倩, 尹娜, 等. 食用蔬菜能吸收和积累微塑料[J]. 科学通报, 2019, 64(9): 928-934.] (0)
[127]
Li R J, Li L Z, Zhang Y C, et al. Uptake and accumulation of microplastics in a cereal plant wheat (In Chinese)[J]. Chinese Science Bulletin, 2020, 65(20): 2120-2127. [李瑞杰, 李连祯, 张云超, 等. 禾本科作物小麦能吸收和积累聚苯乙烯塑料微球[J]. 科学通报, 2020, 65(20): 2120-2127.] (0)
[128]
Li L Z, Luo Y M, Li R J, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode[J]. Nature Sustainability, 2020. DOI:10.1038/s41893-020-0567-9 (0)
[129]
Qian H, Zhang M, Liu G, et al. Effects of soil residual plastic film on soil microbial community structure and fertility[J]. Water, Air, & Soil Pollution, 2018, 229: 261. (0)
[130]
Awet T, Kohl Y, Meier F, et al. Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil[J]. Environmental Sciences Europe, 2018, 30(1): 1-10. DOI:10.1186/s12302-017-0129-6 (0)
[131]
Fei Y F, Huang S Y, Zhang H B, et al. Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil[J]. Science of the Total Environment, 2019, 707: 135634. (0)
[132]
Huang Y, Zhao Y R, Wang J, et al. LDPE microplastic films alter microbial community composition and enzymatic activities in soil[J]. Environmental Pollution, 2019, 254(Pt A): 112983. (0)
[133]
Richard H, Carpenter E J, Komada T, et al. Biofilm facilitates metal accumulation onto microplastics in estuarine waters[J]. Science of the Total Environment, 2019, 683: 600-608. DOI:10.1016/j.scitotenv.2019.04.331 (0)
[134]
Parrish K, Fahrenfeld N. Microplastic biofilm in fresh- and wastewater as a function of microparticle type and size class[J]. Environmental Science:Water Research & Technology, 2019, 5(3): 495-505. (0)
[135]
Prata J C. Airborne microplastics:Consequences to human health?[J]. Environmental Pollution, 2018, 234: 115-126. DOI:10.1016/j.envpol.2017.11.043 (0)
[136]
Pauly J, Stegmeier S J, Allaart H A, et al. Inhaled cellulosic and plastic fibers found in human lung tissue[J]. Cancer Epidemiology Biomarkers and Prevention, 1998, 7(5): 419-428. (0)
[137]
Liu C G, Li J, Zhang Y L, et al. Widespread distribution of PET and PC microplastics in dust in urban China and their estimated human exposure[J]. Environment International, 2019, 128: 116-124. DOI:10.1016/j.envint.2019.04.024 (0)
[138]
Kim J S, Lee H J, Kim S K, et al. Global pattern of microplastics(MPs)in commercial food-grade salts:Sea salt as an indicator of seawater MP pollution[J]. Environmental Science & Technology, 2018, 52(21): 12819-12828. (0)
[139]
Liebezeit G, Liebezeit E. Synthetic particles as contaminants in German beers[J]. Food Additives & Contaminants:Part A, 2014, 31(9): 1574-1578. (0)
[140]
Pivokonsky M, Cermakova L, Novotna K, et al. Occurrence of microplastics in raw and treated drinking water[J]. Science of the Total Environment, 2018, 643: 1644-1651. DOI:10.1016/j.scitotenv.2018.08.102 (0)
[141]
Hernandez L M, Xu E G, Larsson H C E, et al. Plastic teabags release billions of microparticles and nanoparticles into tea[J]. Environmental Science & Technology, 2019, 53(21): 12300-12310. (0)
[142]
Zhang J J, Wang L, Kannan K. Polyethylene terephthalate and polycarbonate microplastics in pet food and feces from the United States[J]. Environmental Science & Technology, 2019, 53(20): 12035-12042. (0)
[143]
Zuskin E, Mustajbegovic J, Schachter E N, et al. Respiratory findings in synthetic textile workers[J]. American Journal of Industrial Medicine, 1998, 33(3): 263-273. DOI:10.1002/(SICI)1097-0274(199803)33:3<263::AID-AJIM8>3.0.CO;2-X (0)
[144]
Deng Y F, Zhang Y, Lemos B, et al. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure[J]. Scientific Reports, 2017, 7: 46687. DOI:10.1038/srep46687 (0)
[145]
Jin Y X, Lu L, Tu W Q, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice[J]. Science of the Total Environment, 2019, 649: 308-317. DOI:10.1016/j.scitotenv.2018.08.353 (0)
[146]
Li B Q, Ding Y F, Cheng X, et al. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice[J]. Chemosphere, 2020, 244: 125492. DOI:10.1016/j.chemosphere.2019.125492 (0)
[147]
Dong C D, Chen C W, Chen Y C, et al. Polystyrene microplastic particles:In vitro pulmonary toxicity assessment[J]. Journal of Hazardous Materials, 2020, 385: 121575. DOI:10.1016/j.jhazmat.2019.121575 (0)
[148]
Tan H W, Yue T T, Xu Y, et al. Microplastics reduce lipid digestion in simulated human gastrointestinal system[J]. Environmental Science & Technology, 2020, 54(19): 12285-12294. (0)
[149]
Liao Y L, Yang J Y. Microplastic serves as a potential vector for Cr in an in-vitro human digestive model[J]. Science of the Total Environment, 2020, 703: 134805. DOI:10.1016/j.scitotenv.2019.134805 (0)