2. 教育部植物-土壤相互作用重点实验室, 北京 100193;
3. 农业部华北耕地保育重点实验室, 北京 100193;
4. 农业农村部环境保护科研监测所, 天津 300191
2. Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, China;
3. Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, Beijing 100193, China;
4. Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
在日新月异的今天,工农业活动在满足人们温饱且带来极大便益的同时,无疑也带来了众多土壤污染问题。土壤污染问题关乎国计民生,受到社会各界广泛关注,在“十三五”期间启动关于“农业面源和重金属污染农田综合防治与修复技术研发”的重点专项中,农田镉(Cd)和砷(As)污染被列为重点研究对象[1]。在“有色金属之乡”湖南,株洲某县受镉和砷复合(Cd-As)污染的耕地面积约有23.23 km2[2]。据统计我国所有粮食作物中稻米Cd-As超标率最高[3],严重威胁我国的粮食安全。Cd主要以Cd(Ⅱ)阳离子的形式存在,通过电镀、塑料色素、绘画以及电池制造等工业活动进入环境[4]。As主要以As(Ⅲ)和As(V)的形式存在,且As(Ⅲ)的毒性强,通过施用农药、燃烧化石燃料和采矿进入土壤。进入土壤的Cd和As易累积、难降解、造成的污染几乎不可逆转[5],导致作物产量低和品质差,经食物链进入人体后危害人体健康[6],Cd会影响肾脏和骨骼,长期接触导致骨质疏松、脊柱畸形等[7],As在体内长期积累会引起皮肤癌、肝癌和肺癌等[8]。故Cd-As污染防治刻不容缓,传统修复方法:客土、异位和原位土壤淋洗等对土壤破坏太大,而化学固定相对经济、简单、快速且破坏性较小[9],植物修复破坏性虽小,但为使植物正常生长,仍需添加化学物质调节土壤理化性质、降低重金属的有效性[10]。由于Cd-As化学性质及存在形态上的差异,它们的生物有效性受土壤理化性质的影响情况复杂,实际钝化修复效果通常顾此失彼[11],加之国内外相关研究成果较少,增加了Cd-As复合污染修复的难度。本文对近年来国内外有关研究进行总结,以期为土壤Cd-As复合污染防治提供参考。
1 镉砷复合污染特征据2014年中国环境保护部公布的第二次全国土地调查结果显示,Cd-As复合污染造成的耕地问题正在给我国造成越来越大的经济损失[12]。Mu等[13]采集了中国四个主要水稻产区19个省份的113个土壤样本,发现土壤中Cd和As的平均浓度分别为0.45 mg·kg-1和11.80 mg·kg-1,其中超过国家允许Cd和As含量的土壤分别占比33.6%和6.19%。土壤复合污染指两种或两种以上重金属元素同时存在,且每种重金属浓度均大于国家土壤环境质量标准,或未超过相应标准但已经对土壤质量产生一定影响[14]。重金属复合污染的土壤中各种重金属元素相互作用极其复杂,且这种作用会因各元素存在浓度的不同而表现出不同的作用形式。据报道,目前Cd-As复合污染在不同土壤环境下主要是拮抗和协同作用[15-16]。Wu等[16]发现加入Cd(Ⅱ)会使土壤对As(Ⅲ)的吸附抑制15.0%~33.0%,但As(Ⅲ)的存在会使土壤对Cd(Ⅱ)的吸附增强3.0%~16.0%,这是由于静电作用和形成的B型三元表面络合物引起了As对Cd的协同作用。Cd-As间存在的上述不同作用方式,极大地增加了它们的修复难度,一般土壤pH升高,Cd的生物有效性降低,但As的生物有效性增强;随土壤Eh升高,Cd的生物有效性增强,但As的生物有效性降低[17]。在淹水条件下,Fe(Ⅲ)被还原,吸附在铁氧化物上的As会被重新释放,增强了As的生物有效性,而Cd的生物有效性可能由于还原硫的产生被沉淀而降低[18-19],所以为防止Cd-As复合污染土壤的生物有效性此消彼长,要积极探寻绿色、高效的钝化剂协调土壤pH和Eh,以达到同时钝化Cd和As两种重金属的目的。
2 钝化材料类型和钝化机制由于重金属在不同类型土壤中的迁移能力和有效性不同[20],重金属的生物有效性取决于其有效成分的含量,而非全量。原位化学钝化修复是向重金属污染的土壤中加入化学物质,通过吸附、沉淀、离子交换、氧化还原、点位竞争等作用,降低重金属在土壤中的迁移性和生物有效性,进而减轻重金属的毒害和在农产品中的迁移累积[21]。目前,常用的钝化剂主要包括:生物质炭类、磷酸盐类、金属及其氧化物类、含硅类材料、黏土矿物类、有机堆肥以及其他钝化材料。表 1展示了这些钝化剂不同结构、组成成分和获取难易程度以评价其优缺点。
![]() |
表 1 钝化材料的优缺点 Table 1 Advantages and disadvantages of the passivation materials |
生物质炭是生物质厌氧热解产生的一类含碳多孔物质[22],因其具有多孔、较大的比表面积和丰富的官能团等特点,可作为一种理想的土壤修复材料[23]。有研究表明,不同原料生产的生物质炭对Cd(Ⅱ)等重金属阳离子的吸附均有较好的效果[24]。生物质炭对砷酸盐、亚砷酸盐等阴离子的吸附能力受表面负电荷的限制[25],对As的修复能力较弱。为实现生物质炭类修复材料对Cd-As污染物同时固定,多数生物质炭材料会与其他材料配合施用或对生物质炭材料进行改性。
![]() |
表 2 生物质炭材料对Cd-As的钝化效果 Table 2 Effect of biochar materials on Cd-As passivation |
生物质炭可提高土壤pH,增加土壤表面净负电荷[33],与Cd通过表面沉淀机制形成氢氧化物、碳酸盐或磷酸盐沉淀[34],也能增加阳离子交换位点[35],促进Cd(Ⅱ)与Ca(Ⅱ)和Mg(Ⅱ)等进行交换。由于Cd的离子半径(0.97 nm)大于As的离子半径(0.58 nm)[36],As可扩散进入吸附了Cd的生物质炭微孔中,降低As的有效性[37]。当土壤中As含量较高时,吸附了Cd的土壤正电荷增多,通过静电吸附作用,在土壤表面形成了Cd-As复合物[16]。此外,生物质炭表面的羟基(≡MOH)可能释放或吸收质子,如式(1)和式(2)的酸碱反应,其还能与土壤溶液中的Cd-As发生反应(如式(3)~(5)),降低重金属的生物有效性[38]。
$ \equiv {\rm{M}} - {\rm{OH}} \leftrightarrow \equiv {\rm{M}} - {{\rm{O}}^ - } + {{\rm{H}}^{\rm{ + }}} $ | (1) |
$ \equiv {\rm{M}} - {\rm{OH + }}{{\rm{H}}^{\rm{ + }}} \leftrightarrow \equiv {\rm{M}} - {\rm{OH}}_{\rm{2}}^{\rm{ + }} $ | (2) |
$ \equiv {\rm{M}} - {{\rm{O}}^ - } + {\rm{C}}{{\rm{d}}^{\rm{2}}} \leftrightarrow \equiv {\rm{M}} - {\rm{OC}}{{\rm{d}}^{\rm{ + }}} $ | (3) |
$ \equiv {\rm{M}} - {\rm{OH}} + {\rm{C}}{{\rm{d}}^2}^ + \leftrightarrow \equiv M - {\rm{OC}}{{\rm{d}}^{\rm{ + }}}{\rm{ + }}{{\rm{H}}^{\rm{ + }}} $ | (4) |
$ M - 0{\mathop{\rm H}\nolimits} + {\rm{AsO}}_{\rm{4}}^{{\rm{3}} - } \leftrightarrow \equiv {\rm{M}} - {\rm{OAsO}}_{\rm{3}}^{{\rm{2}} - }{\rm{ + O}}{{\rm{H}}^ - } $ | (5) |
但多数生物质炭含有较少的酸性基团,对As的钝化能力较弱,所以用铁基材料对生物质炭进行改性或与肥料等进行配施,可增强生物质炭对As的修复性能[38]。
2.2 磷酸盐类含磷酸盐类的物质包括可溶性磷酸盐化合物和磷酸盐矿物。其中可溶性磷酸盐包括磷酸盐和磷酸,常用的磷酸盐矿物包括天然磷灰石和合成磷灰石、羟基磷灰石等,它们在重金属的污染修复方面得到了广泛的研究。吴宝麟[39]研究表明Ca(H2PO4)2和Fe2(SO4)3的最佳复配比为[Fe3+]/[PO43-]=2.16:1,能修复Cd-As复合污染土壤,分步加入Ca(H2PO4)2和Fe2(SO4)3的钝化效率优于二者同时加入,对土壤有效态Cd和As的钝化率分别为47%和51%。铁基与磷基钝化剂复配能同时固定土壤中的Cd-As,Fe(Ⅲ)与PO43-物质的量之比为7.2:1时,7 d后土壤有效态Cd和As钝化率分别为41%和69%[40]。Yuan等[41]施用10%的铁羟基磷灰石,土壤中二乙烯三胺五乙酸(DTPA)提取态Cd含量降低44%,碳酸钠提取态As含量降低69%。Ding等[42]施用1 g·kg-1钙镁磷肥和叶面喷施2 mmol·L-1亚硒酸钠显著减少油菜中Cd-As的浓度,并增强油菜叶片中超氧化物歧化酶和抗坏血酸过氧化物酶的活性。
可溶性磷酸盐可通过络合或沉淀反应,与Cd形成难溶的金属正磷酸盐,通过点位竞争,降低对As的吸附。含磷酸盐的矿物则通过吸附或同晶替代固定Cd[43]。铁粉、铁盐等铁基类材料施入土壤通过氧化还原反应生成FeOOH,与磷酸盐材料配施后通过络合反应等实现对As的钝化,所以磷酸盐和含铁类材料配施能同时钝化Cd-As。此外磷酸盐还可作为肥料,为植物生长提供养分。但磷酸盐极易流失,容易造成二次污染[44]。Liu和Zhao[45]开发了一种稳定的磷酸盐纳米颗粒(羧甲基纤维素稳定磷酸铁和磷酸钙),它不仅具有较强的吸附能力,而且释放的纳米颗粒不会像可溶性磷酸盐迅速扩散,从而实现较好的原位钝化修复效果。
2.3 金属及其氧化物类金属及其氧化物对吸附或固定重金属污染物具有良好的效果。有研究表明通过对污染河流下游进行5年的重金属浓度检测,发现在固相颗粒中,金属通常与铝氧化物结合,而As与铁氧化物结合[46]。土壤污染修复领域,常见的金属及其氧化物主要包括:零价铁、硫酸亚铁、硫酸铁、针铁矿、水合氧化锰、水钠锰矿、赤泥等。
金属及其氧化物具有较大的比表面积和两性性质,可通过专性吸附和共沉淀钝化Cd,通过氧化还原和络合反应等机理钝化As[55]。施用含铁材料,有利于增加根际无定形态铁氧化合物,促进根表铁膜的形成,Cd-As在铁膜中积累,进而降低了植物对Cd-As的吸收[10]。氧化铁配位壳层中的羟基和水合铵可被As(Ⅲ,Ⅴ)取代,形成螯合物[56]。零价铁易被氧化,形成无定形态的氧化铁(式(6)),或与H+/H2O反应生成Fe(Ⅱ)(式(7)和式(8)),通过生物或非生物过程(式(9)和式(10))进一步氧化形成无定形的铁氢氧化合物,如铁水化合物(am-FeOOH),这些产物均为Cd-As提供了更多的吸附位点[10, 57]。
$ 4{\rm{F}}{{\rm{e}}^{\rm{0}}} + 3{{\rm{O}}_{\rm{2}}} + 2{{\rm{H}}_2}{\rm{O}} \to {\rm{4}}am - {\rm{FeOOH}} $ | (6) |
$ {\rm{F}}{{\rm{e}}^{\rm{0}}} + 2{{\rm{H}}^{\rm{ + }}} \to {\rm{F}}{{\rm{e}}^{{\rm{2 + }}}} + {{\rm{H}}_{\rm{2}}} $ | (7) |
$ {\rm{F}}{{\rm{e}}^{\rm{0}}}2{{\rm{H}}_2}{\rm{O}} \to {\rm{F}}{{\rm{e}}^{{\rm{2 + }}}}{\rm{ + }}2{\rm{O}}{{\rm{H}}^ - }{\rm{ + }}{{\rm{H}}_{\rm{2}}} $ | (8) |
$ {\rm{F}}{{\rm{e}}^{{\rm{2 + }}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}{{\rm{O}}_{\rm{2}}}{\rm{ + }}\frac{{\rm{3}}}{{\rm{2}}}{{\rm{H}}_{\rm{2}}}{\rm{O}} \to am - {\rm{FeOOH + 2}}{{\rm{H}}^{\rm{ + }}} $ | (9) |
![]() |
表 3 金属及其氧化物对Cd-As钝化作用 Table 3 Effect of metals and their oxides on Cd-As passivation |
$ \begin{align} & \text{F}{{\text{e}}^{2\text{+}}}+\frac{1}{5}\text{NO}_{3}^{^{-}}\text{+}\frac{7}{5}{{\text{H}}_{2}}\text{O}\underrightarrow{铁氧化细菌}am-\text{FeOOH} \\ & \text{+}\frac{\text{1}}{\text{10}}{{\text{N}}_{2}}(\text{g}){{\text{H}}^{\text{+}}} \\ \end{align} $ | (10) |
$ 14{\rm{F}}{{\rm{e}}^2}^{\rm{ + }}{\rm{ + SO}}_4^{2 - }{\rm{ + AsO}}_3^{3 - }{\rm{ + }}14{{\rm{H}}^{\rm{ + }}} \to {\rm{FeAsS + 13F}}{{\rm{e}}^{{\rm{3 + }}}}{\rm{ + }}7{{\rm{H}}_2}{\rm{O}} $ | (11) |
所以铁氧化合物与具有碱性的材料配施或改性可同时有效钝化Cd-As,且有研究表明,碳的存在可能会加速零价铁的反应过程,极大地增强钝化效率[58]。锰氧化物对Cd等阳离子的吸附能力大于铁氧化物,而铁氧化物对As的吸附量则远大于锰氧化物,有研究表明铁锰氧化物结合淹水措施,能有效降低水稻中Cd和As含量[59]。在田间修复实践中,可溶的金属氧化物在土壤中保留时间短,制成稳定的金属氧化物纳米颗粒,如磁铁矿和Fe/Mn二元氧化物等,从而更好地发挥金属及其氧化物对Cd-As的钝化能力[60]。
2.4 含硅类材料含硅钝化材料主要包括单硅酸盐和硅肥等[61],其中单硅酸盐包括硅酸钾、硅酸钠、硅酸钙等,硅肥包括硅钾肥、硅钙肥、钢渣等[62]。施用含硅类材料可在不改变土壤结构和理化性质的条件下,有效缓解重金属对植物的毒害,促进植物生长,不会造成二次污染,同时可为植物生长提供营养。
Yao等[63]通过盆栽实验,施用3 g·kg-1、6 g·kg-1和1 g·kg-1的新型铁硅材料,小白菜中Cd和As浓度分别降低38.0%~87.0%和84.0%~94.0%,在6 g·kg-1的施用量下,有效态As含量下降最多,当施用量为10 g·kg-1时有效态Cd下降最多,X射线衍射(XRD)分析表明铁硅材料促进Cd和As形成难溶的硅酸盐、磷酸盐、氢氧化物和砷酸盐化合物,硅酸钙提高pH,使得化学吸附和沉淀机制进一步增强,保证了修复过程的不可逆性和对环境变化的适应性。李园星露等[64]通过盆栽实验,施用矿物硅肥和速溶硅肥30 kg·hm-2和200 g·hm-2,并在水稻分蘖期喷一次3.3 g·L-1速溶硅肥,在淹水措施下,矿物硅肥和速溶硅肥以及两种硅肥的结合均可有效降低稻米Cd和As含量,其中两种硅肥结合效果最好,糙米中Cd和As含量分别降低65.1%和47.6%。王学礼等[65]通过盆栽实验,3 g·kg-1钙钾硅肥显著提高土壤pH,玉米地上部Cd和As含量分别降低31.6%和24.76%。郭娟等[66]通过盆栽实验,模拟酸雨条件,发现配施6 g·kg-1铁硅材料和20 g·kg-1鸡粪生物质炭(350℃和700℃),可有效抵御酸雨的不良影响,土壤中Cd和As有效态含量最大可降低70%和64.7%,油菜地上部Cd和As含量显著降低,但随生物质炭裂解温度的升高这种降低效果减弱。于焕云等[67]开展了4 a的大田试验,喷施7 500 mL·hm-2的“降镉灵”,稻米Cd和As含量分别从0.59 mg·kg-1和0.21 mg·kg-1降至0.32 mg·kg-1和0.15 mg·kg-1,降幅分别为45%和27%。Wang等[68]等通过田间试验,比较施用量为900 kg·hm-2和9 000 kg·hm-2的硅钙肥、硅钾肥、硅钾肥半成品、硅酸钠和稻秆(含硅50 g·kg-1~100 g·kg-1)对水稻阻控吸收Cd和As的效果,发现硅钙肥在施用量为900 kg·hm-2和9 000 kg·hm-2水稻籽粒中Cd分别降低71.5%和48%,硅钾肥在施用量为9 000 kg·hm-2时水稻籽粒中As含量降低20.1%,所以同时施用两种硅肥可同时降低水稻籽粒中Cd和As含量。Greger和Landberg[69]施用500 kg·hm-2的硅酸钾、硅粉(非晶质SiO2)以及CaSiO3、Ca3Si2O7和CaO的混合物,发现土豆、胡萝卜、洋葱和小麦的可食用部分Cd和As含量分别降低10.0%~25.0%和20.0%~40.0%,Si含量增加12%~28%,土壤中有效态Cd和As含量无显著变化,Si含量增加10倍,所以生物有效态Si含量的增加可降低植物对Cd和As的吸收。
含硅类材料能提高土壤pH,有效降低土壤有效态Cd含量并将其转化为有机硫化物结合态和残渣态,以及通过共沉淀方式形成硅酸镉沉淀[65]。含硅类材料对As的钝化主要通过专性吸附等机理[66]。此外,Si通常以硅酸根的形态被植物吸收,这种形态与磷酸根性质相似,二者竞争土壤中的结合位点,土壤中磷的有效性提高,一般旱地土壤中As主要以五价的形式存在,磷砷为同族元素,化学性质相近,经验证多类植物吸收As是通过磷的转运体系被植物吸收利用[65]。水稻田中As(Ⅲ)通过硅转运通道进入水稻,通过竞争吸附抑制水稻对As(Ⅲ)的吸收[67]。但施用硅肥成本较高,在土壤中易流失,难以大面积施用。
2.5 黏土矿物类黏土矿物主要包括海泡石、膨润土、高岭土、沸石、凹凸棒石、硅藻土、坡缕石等,因其对重金属具有良好吸附性能、绿色环保、成本低廉等特性,被广泛应用于农田修复[70]。王英杰等[5]通过盆栽试验,发现两种组配改良剂(石灰石、海泡石和二氧化钛(8:4:2)混合物;石灰石、海泡石和硫酸铁(8:4:2)混合物)用量为16 g·kg-1时效果最好,土壤中Cd含量由0.41 mg·kg-1分别下降至0.11 mg·kg-1和0.20 mg·kg-1,As含量由0.08 mg·kg-1下降至0.05 mg·kg-1和0.04 mg·kg-1,施用第一种组配改良剂后糙米中Cd和As含量分别下降64.7%和40.7%,施用第二种组配改良剂后糙米中Cd和As含量分别降低34.1%和36.2%。韩晓晴等[71]通过土壤培养实验,发现施用20 g·kg-1改性羟基铁铝海泡石,42 d后土壤有效态Cd由38.8 mg·kg-1下降至20.6 mg·kg-1,下降了47.6%,有效态As含量由4.18 mg·kg-1下降至1.35 mg·kg-1,下降了67.0%。王辉等[72]通过盆栽试验,发现配施0.5 g·kg-1、1 g·kg-1和2 g·kg-1的海泡石和铁锰复合氧化物,土壤pH和阳离子交换量增加,土壤有效态Cd和As含量显著降低,糙米Cd和As含量分别降低28.1%~56.5%和26.2%~82.9%,2 g·kg-1施用量下效果最好。Yang等[73]通过盆栽实验,施用2 g·kg-1的组合钝化剂(高岭土、碳酸钙和熔融钙镁磷肥),糙米中Cd和As的含量显著降低43.6%和32.0%。Yu等[74]通过浸出实验,发现四甲基铵或十二烷基三甲铵改性后的膨润土对土壤中Cd-As有显著的钝化效果,且对Cd的主要固定机制是阳离子交换作用,对As的固定机制是专性吸附和静电引力。
由于黏土矿物具有较大的比表面积、可交换阳离子以及(Si-OH)基团[68],可通过离子交换和沉淀等反应实现对Cd的钝化[63]。但黏土矿物对As几乎无吸附能力,所以黏土矿物需要与其他钝化剂配施或者进行改性。由于黏土矿物对重金属的吸附能力有限,通常需要大剂量的黏土矿物,所以需要提高修复效率,减少用量,降低成本,同时也需要长期监测评估黏土矿物对重金属污染土壤修复的长期稳定性。
2.6 有机肥类有机肥类主要指生物固体和动物粪便堆肥。生物固体是在处理生活废弃物过程中产生的固体残渣,动物粪便的主要来源是鸡、猪、肉牛和奶制品等家禽粪便,目前随着废弃物处理技术的进步和污水处理厂工业废水的分离,生物固体和动物粪便中的重金属含量不断下降,可用于重金属污染修复[38]。
王学礼等[75]通过田间试验,发现施用15 t·hm-2滤泥有机肥,玉米籽粒中Cd由0.038 mg·kg-1下降至0.031 mg·kg-1,降低了18.4%,As由0.35 mg·kg-1下降至0.21 mg·kg-1,下降了40%。赵述华等[76]通过浸出实验,发现无论是单施石灰、粉煤灰和堆肥化污泥还是两两组合配施,样品浸出液的pH均显著升高,Cd和As的浸出浓度均显著降低,其中粉煤灰和堆肥化污泥配施效果最好,Cd和As的浸出率分别下降72.2%和72.0%。动物粪便如鸡和猪等家禽粪便是一种很有价值的土壤有机改良剂,虽然在家禽粪便中发现了高浓度的铜和锌,但多数粪肥产品中重金属含量较低,使用明矾处理后的家禽粪中水溶性Cd和As的浓度降低[77]。宋克超等[78]发现由硅酸盐、微生物菌剂和有机物料腐熟剂组成的生物修复菌剂与以牛粪为主的禽粪便组配,特殊菌种将土壤中Cd-As转变成活性较低的络合态。
有机堆肥中含微生物以及腐殖质化程度很高的有机质,除显著提高土壤pH、CEC和腐殖酸的含量外,土壤中的微生物可通过置换作用、生物矿化等作用改变Cd形态,因Cd(Ⅱ)的氧化电位较微生物所必需的元素高(如K、Ca、Na等),对巯基具有很强的亲和力,可通过置换作用取代原本结合位点上的必需元素[79]。Cd(Ⅱ)的生物矿化作用主要是与磷酸盐、碳酸盐和硫化物等物质矿化生成沉淀[80]。部分微生物在新陈代谢过程中会产生碘化物[81]和蛋白质[82]等,在此过程中可提供大量的阴离子络合基团,增强对Cd的螯合能力。微生物通过氧化还原、甲基化和去甲基化改变砷的形态[83]。在枯草芽孢杆菌中加入Fe(Ⅲ)后,在胞外聚合物作用下细胞表面形成无定型铁(氢)氧化物纳米粒子,对As(Ⅴ)的吸附能力提高了11倍[84]。微生物通过将无机砷甲基化生成可挥发的有机砷,有效降低As的毒性[85]。添加秸秆的稻田中,产甲烷细菌增加,根际土壤As的甲基化程度会增强2个数量级[86]。
2.7 其他类型钝化剂除上述提到的常见钝化剂外,也有一些研究者开发新型或特殊钝化剂,对Cd-As复合污染的土壤也能达到很好的治理效果。例如通过表面修饰技术将巯基、氨基等官能团枝接到无机氧化物基体上,显著提高钝化剂对Cd和As的吸附量[87]。丁兆龙等[88]提出谷聚多在土壤修复中可发挥重要作用,它的主要成分为聚谷氨酸,具有较高的吸附缓冲和催化能力,降解产物氨基酸可被植物直接吸收利用,此外它还含有丰富的羧基、羟基和羰基等基团,可通过离子交换、络合等反应钝化重金属。刘承帅等[89]将零价铁、二氧化锰和腐殖质混合制成复合材料,能同时降低土壤中Cd和As的有效性。冯人伟等[90]将CO(NH)2、KH2PO4、K2SO4N与粉末状的Na2SeO3或Na2SeO4施入土壤,插秧前一周,土壤进行淹水处理,水稻根系形态和数量发生显著变化,稻米中Cd和As含量显著降低。周益辉[91]按一定比例将生物质炭、羟基磷酸钙、腐殖酸钾、α-环糊精、硅藻土和草木灰混合制成钝化剂,通过离子交换、络合和沉淀作用等实现钝化Cd和As,同时能改善土壤理化性质。杨广群和曹丽萍[92]将模拟酸雨浸泡和高低温交替处理过的鱼鳞粉和茶梗粉混合,发现对Cd和As的吸附率均在91.2%以上,还能有效抑制吸附过程中微生物的滋生。岳克[93]施用石膏和亚硒酸钠,发现施硫和硒促进水稻根表形成胶膜,并影响根际水稻土中Cd和As的赋存形态,抑制水稻对Cd-As的吸收。刘传平和李芳柏[94]以酸性硅溶胶和壳聚糖溶液包裹的铁基生物质炭、高岭石和生物淀粉制成缓释型钝化剂,较普通铁基生物质炭钝化效率更高,钝化效果可持续4个生长季。龚亚龙等[95]将钠基膨润土、沸石粉、巯基-铁基改性生物质炭、还原铁粉和氧化钙混合能同时钝化Cd和As,效率高且具有长期稳定性。
3 问题与展望土壤镉砷复合污染土壤中元素间相互作用复杂,在不同氧化还原电位和pH的土壤环境中,容易出现镉砷活性此消彼长的现象,本文通过分析,提出以下几个观点:
(1)含少量酸性基团的生物质炭、零价铁、部分金属氧化物、钙钾硅肥、滤泥有机肥、粉煤灰通过单施就可同时钝化镉砷,但钝化效率较低。其他钝化材料均需进行配施或者改性,其中混施生物质炭和纳米级零价铁、铁羟基磷灰石、新型铁硅材料以及配施粉煤灰和堆肥化污泥效果最好,对镉砷的钝化率可达到50%以上。
(2)仅有少部分改性后的钝化剂可通过形成钝化剂-镉-砷的三元复合物对镉砷进行钝化,大部分钝化剂主要通过配合施用实现对镉砷的同时钝化。对镉的钝化作用主要是通过沉淀作用、离子交换、络合作用以及微生物作用等,对砷的钝化作用主要是通过沉淀作用、点位竞争、络合作用、氧化还原以及微生物作用等。
(3)关于微生物与重金属的相互作用,其机理复杂多样,特别是微生物、钝化剂以及重金属之间的相互作用,深入的相关研究可更好地通过相关微生物技术修复镉砷复合污染土壤。
(4)部分钝化材料组分含有一定量的重金属元素,施用过量可能造成二次污染,所以寻求高效、绿色和环境友好的新型钝化修复材料是目前钝化剂研发的热点。
(5)目前对钝化剂效果的评估,大多是通过盆栽试验进行,难以反映田间的复杂情况,但对于开展了田间修复试验的钝化剂,仍需对钝化剂的长效性和稳定性进行评估,并探究最佳施用量,兼顾产量和品质,实现经济和生态效益的最大化。
[1] |
Xu C C, Zheng G, Lin Y H. Brief introduction to research projects on prevention and control of cadmium and arsenic pollution in croplands supported by National Key R & D Program of China in Five-Year Period (In Chinese)[J]. Journal of Agro-Environment Science, 2018, 37(7): 1321-1325. [徐长春, 郑戈, 林友华. "十三五"国家重点研发计划农田镉砷污染防治领域资助情况概述[J]. 农业环境科学学报, 2018, 37(7): 1321-1325.]
( ![]() |
[2] |
Zhou J C, Tie B Q, Liu X L, et al. Spatial characteristics and potential risk assessment of heavy metal pollution in farmland in Hunan mining area (In Chinese)[J]. Hunan Agricultural Sciences, 2017(4): 75-79. [周俊驰, 铁柏清, 刘孝利, 等. 湖南矿区县域耕地重金属污染空间特征及潜在风险评价[J]. 湖南农业科学, 2017(4): 75-79.]
( ![]() |
[3] |
Zhao F J, Ma Y B, Zhu Y G, et al. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2): 750-759.
( ![]() |
[4] |
Mohan D, Singh K P. Single-and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse-an agricultural waste[J]. Water Research, 2002, 36(9): 2304-2318. DOI:10.1016/S0043-1354(01)00447-X
( ![]() |
[5] |
Wang Y J, Zou J L, Yang W T, et al. Synergetic control of bioavailability of Pb, Cd and As in rice paddy system by combined amendments (In Chinese)[J]. Chinese Journal of Environmental Science, 2016, 37(10): 4004-4010. [王英杰, 邹佳玲, 杨文弢, 等. 组配改良剂对稻田系统Pb、Cd和As生物有效性的协同调控[J]. 环境科学, 2016, 37(10): 4004-4010.]
( ![]() |
[6] |
Zhu W, Zhou H, Wu Y J, et al. Effects of combined amendment on forms of Cd/Pb in paddy soil and accumulation of Cd/Pb in brown rice (In Chinese)[J]. Acta Scientiae Circumstantiae, 2015, 35(11): 3688-3694. [朱维, 周航, 吴玉俊, 等. 组配改良剂对稻田土壤中镉铅形态及糙米中镉铅累积的影响[J]. 环境科学学报, 2015, 35(11): 3688-3694.]
( ![]() |
[7] |
Luo L, Ma C Y, Ma Y B, et al. New insights into the sorption mechanism of cadmium on red mud[J]. Environmental Pollution, 2011, 159(5): 1108-1113. DOI:10.1016/j.envpol.2011.02.019
( ![]() |
[8] |
Tseng C H. Cardiovascular disease in arsenic-exposed subjects living in the arseniasis-hyperendemic areas in Taiwan[J]. Atherosclerosis, 2008, 199(1): 12-18. DOI:10.1016/j.atherosclerosis.2008.02.013
( ![]() |
[9] |
Komárek M, Vaněk A, Ettler V. Chemical stabilization of metals and arsenic in contaminated soils using oxides-A review[J]. Environmental Pollution, 2013, 172: 9-22. DOI:10.1016/j.envpol.2012.07.045
( ![]() |
[10] |
Qiao J T, Liu T X, Wang X Q, et al. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils[J]. Chemosphere, 2018, 195: 260-271. DOI:10.1016/j.chemosphere.2017.12.081
( ![]() |
[11] |
Sun Y B, Zhou Q X, Ren L P. Growth responses of Rorippa globosa and its accumulation characteristics of cadmium/arsenic under the Cd/As combined pollution (In Chinese)[J]. Chinese Journal of Environmental Science, 2007, 28(6): 1355-1360. DOI:10.3321/j.issn:0250-3301.2007.06.033 [孙约兵, 周启星, 任丽萍. 镉超富集植物球果蔊菜对镉-砷复合污染的反应及其吸收积累特征[J]. 环境科学, 2007, 28(6): 1355-1360.]
( ![]() |
[12] |
Gu J F, Zhou H, Yang W T, et al. Effects of an additive(hydroxyapatite-biochar-zeolite) on the chemical speciation of Cd and As in paddy soils and their accumulation and translocation in rice plants[J]. Environmental Science and Pollution Research, 2018, 25(9): 8608-8619. DOI:10.1007/s11356-017-0921-2
( ![]() |
[13] |
Mu T T, Wu T Z, Zhou T, et al. Geographical variation in arsenic, cadmium, and lead of soils and rice in the major rice producing regions of China[J]. The Science of the Total Environment, 2019, 677: 373-381. DOI:10.1016/j.scitotenv.2019.04.337
( ![]() |
[14] |
Zhou D M, Wang Y J, Cang L, et al. Advances in the research of combined pollution in soil and soil-plant systems (In Chinese)[J]. Technology and Equipment for Environmental Pollution Control, 2005, 5(10): 1-8. [周东美, 王玉军, 仓龙, 等. 土壤及土壤-植物系统中复合污染的研究进展[J]. 环境污染治理技术与设备, 2005, 5(10): 1-8.]
( ![]() |
[15] |
Huang D Q, Wang P, Wang Y J, et al. Growth and uptake of Pb, Cd and As of rice in polluted soils (In Chinese)[J]. Soils, 2008, 40(4): 626-629. DOI:10.3321/j.issn:0253-9829.2008.04.023 [黄德乾, 汪鹏, 王玉军, 等. 污染土壤上水稻生长及对Pb、Cd和As的吸收[J]. 土壤, 2008, 40(4): 626-629.]
( ![]() |
[16] |
Wu J Z, Huang D, Liu X M, et al. Remediation of As(Ⅲ) and Cd(Ⅱ) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar[J]. Journal of Hazardous Materials, 2018, 348: 10-19. DOI:10.1016/j.jhazmat.2018.01.011
( ![]() |
[17] |
Wang X Q, Liu C P, Du Y H, et al. Effects of stabilizing remediation of Cd and as in paddy rice by applying combined zero-valent iron and humus (In Chinese)[J]. Ecology and Environmnet, 2018, 27(12): 2329-2336. [王向琴, 刘传平, 杜衍红, 等. 零价铁与腐殖质复合调理剂对稻田镉砷污染钝化的效果研究[J]. 生态环境学报, 2018, 27(12): 2329-2336.]
( ![]() |
[18] |
Yu H, Li F, Liu C, et al. Iron redox cycling coupled to transformation and immobilization of heavy metals: Implications for paddy rice safety in the red soil of South China[J]. Advances in Agronomy, 2016, 137: 279-317.
( ![]() |
[19] |
Barrett K, McBride M B. Dissolution of zinc-cadmium sulfide solid solutions in aerated aqueous suspension[J]. Soil Science Society of America Journal, 2007, 71(2): 322-328. DOI:10.2136/sssaj2006.0124
( ![]() |
[20] |
Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. DOI:10.1021/ac50043a017
( ![]() |
[21] |
Tao X, Yang H, Ji R, et al. Stabilizers and their applications in remediation of heavy metal-contaminated soil (In Chinese)[J]. Soils, 2016, 48(1): 1-11. [陶雪, 杨琥, 季荣, 等. 固定剂及其在重金属污染土壤修复中的应用[J]. 土壤, 2016, 48(1): 1-11.]
( ![]() |
[22] |
Ahmad M, Rajapaksha A U, Lim J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review[J]. Chemosphere, 2014, 99: 19-33. DOI:10.1016/j.chemosphere.2013.10.071
( ![]() |
[23] |
Johannes L. Biochar for Environmental Management: Science, Technology and Implementation[J]. Science and Technology, 2015, 25(1): 15801-15811.
( ![]() |
[24] |
Kolodynska D, Wnetrzak R, Leahy J J, et al. Kinetic and adsorptive characterization of biochar in metal ions removal[J]. Chemical Engineering Journal, 2012, 197(197): 295-305.
( ![]() |
[25] |
Wang S S, Gao B, Zimmerman A R, et al. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite[J]. Bioresource Technology, 2015, 175: 391-395. DOI:10.1016/j.biortech.2014.10.104
( ![]() |
[26] |
Li G, Khan S, Ibrahim M, et al. Biochars induced modification of Dissolved organic matter(DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium[J]. Journal of Hazardous Materials, 2018, 348: 100-108. DOI:10.1016/j.jhazmat.2018.01.031
( ![]() |
[27] |
刘书四. 改性生物炭对水稻土壤中镉和砷生物有效性以及根际微生态的影响[D]. 广州: 华南理工大学, 2017. Liu S S. Effects of modified biochar on cadmium and arsenic bioavailability and rhizosphere microecology in paddy soil[D]. Guangzhou: South China University of Technology, 2017. ( ![]() |
[28] |
刘小诗. 砷镉超标农田钝化剂的筛选及调控效应研究[D]. 北京: 中国农业科学院, 2015. Liu X S. Research on selection of amendments and the immobilization effects of arsenic and cadmium contaminated farmlands[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. ( ![]() |
[29] |
Gu J F, Zhou H, Yang W T, et al. Effect of combined soil amendment regulating chemical forms of cadmium and arsenic in paddy soil and their bioaccumulation and translocation in rice (In Chinese)[J]. Acta Pedologica Sinica, 2016, 53(6): 1576-1585. [辜娇峰, 周航, 杨文弢, 等. 复合改良剂对镉砷化学形态及在水稻中累积转运的调控[J]. 土壤学报, 2016, 53(6): 1576-1585.]
( ![]() |
[30] |
Cao J, Chen Z, Wu J, et al. Mitigation of cadmium and arsenic in rice plant by soil application of steel slag and/or biochar with water management (In Chinese)[J]. Journal of Agro-Environment Science, 2018, 37(7): 1475-1483. [曹健, 陈喆, 吴箐, 等. 基施钢渣及生物炭结合水分管理阻控水稻镉砷吸收研究[J]. 农业环境科学学报, 2018, 37(7): 1475-1483.]
( ![]() |
[31] |
Xiong J, Guo L L, Li S P, et al. Optimizing the formulation and stabilization effects of an amendment for cadmium and arsenic contaminated soil (In Chinese)[J]. Journal of Agro-Environment Science, 2019, 38(8): 1909-1918. [熊静, 郭丽莉, 李书鹏, 等. 镉砷污染土壤钝化剂配方优化及效果研究[J]. 农业环境科学学报, 2019, 38(8): 1909-1918.]
( ![]() |
[32] |
Wu P P, Li L J, Li M. Effects of biochar and Fe-loaded biochar on the leaching and fraction transformation of Cd, Cu and As in multi-contaminated soil (In Chinese)[J]. Acta Scientiae Circumstantiae, 2017, 37(10): 3959-3967. [吴萍萍, 李录久, 李敏. 生物炭负载铁前后对复合污染土壤中Cd、Cu、As淋失和形态转化的影响研究[J]. 环境科学学报, 2017, 37(10): 3959-3967.]
( ![]() |
[33] |
Houben D, Evrard L, Sonnet P. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar[J]. Chemosphere, 2013, 92(11): 1450-1457. DOI:10.1016/j.chemosphere.2013.03.055
( ![]() |
[34] |
Beesley L, Moreno-Jiménez E, Gomez-Eyles J L, et al. A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils[J]. Environmental Pollution, 2011, 159(12): 3269-3282. DOI:10.1016/j.envpol.2011.07.023
( ![]() |
[35] |
Harvey O R, Herbert B E, Rhue R D, et al. Metal interactions at the biochar-water interface: Energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry[J]. Environmental Science & Technology, 2011, 45(13): 5550-5556.
( ![]() |
[36] |
Nguyen B T, Lehmann J, Kinyangi J, et al. Long-term black carbon dynamics in cultivated soil[J]. Biogeochemistry, 2009, 92(1/2): 163-176.
( ![]() |
[37] |
王红岩. 硅肥以及水钠锰矿负载型稻壳生物炭对稻田砷和镉的共同阻控作用[D]. 北京: 中国地质大学(北京), 2016. Wang H Y. Study on co-remediation effects of silicon fertilizers and birnessite-modified biochar for arsenic and cadmium pollution in paddy soils[D]. Beijing: China University of Geosciences, 2016. ( ![]() |
[38] |
Gong Y Y, Zhao D Y, Wang Q L. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade[J]. Water Research, 2018, 147: 440-460. DOI:10.1016/j.watres.2018.10.024
( ![]() |
[39] |
吴宝麟. 铅镉砷复合污染土壤钝化修复研究[D]. 长沙: 中南大学, 2014. Wu B L. The immobilization remediation of lead, cadmium and arsenic in contaminated soil[D]. Changsha: Central South University, 2014. ( ![]() |
[40] |
Wu B L, Yang Z H, Chai L Y, et al. Remediation effects of phosphorus and ferric amendments on the soil complexly contaminated by Pb, Cd and As and the process optimization (In Chinese)[J]. Journal of Safety and Environment, 2015, 15(5): 314-319. [吴宝麟, 杨志辉, 柴立元, 等. 磷基及铁基钝化剂对Pb、Cd、As复合污染土壤的修复效果及其工艺条件优化[J]. 安全与环境学报, 2015, 15(5): 314-319.]
( ![]() |
[41] |
Yuan Y N, Chai L Y, Yang Z H, et al. Simultaneous immobilization of lead, cadmium, and arsenic in combined contaminated soil with iron hydroxyl phosphate[J]. Journal of Soils and Sediments, 2017, 17(2): 432-439. DOI:10.1007/s11368-016-1540-0
( ![]() |
[42] |
Ding Y Z, Wang Y J, Zheng X Q, et al. Effects of foliar dressing of selenite and silicate alone or combined with different soil ameliorants on the accumulation of As and Cd and antioxidant system in Brassica campestris[J]. Ecotoxicology and Environmental Safety, 2017, 142: 207-215. DOI:10.1016/j.ecoenv.2017.04.001
( ![]() |
[43] |
Bolan N S, Adriano D C, Naidu R. Role of phosphorus in(im) mobilization and bioavailability of heavy metals in the soil-plant system[M]//Reviews of Environmental Contamination and Toxicology. New York, NY: Springer New York, 2003: 1-44.
( ![]() |
[44] |
Liu R Q, Zhao D Y. In situ immobilization of Cu(Ⅱ) in soils using a new class of iron phosphate nanoparticles[J]. Chemosphere, 2007, 68(10): 1867-1876. DOI:10.1016/j.chemosphere.2007.03.010
( ![]() |
[45] |
Liu R Q, Zhao D Y. Synthesis and characterization of a new class of stabilized apatite nanoparticles and applying the particles to in situ Pb immobilization in a fire-range soil[J]. Chemosphere, 2013, 91(5): 594-601. DOI:10.1016/j.chemosphere.2012.12.034
( ![]() |
[46] |
Casiot C, Egal M, Elbaz-Poulichet F, et al. Hydrological and geochemical control of metals and arsenic in a Mediterranean river contaminated by acid mine drainage(the Amous River, France); preliminary assessment of impacts on fish(Leuciscus cephalus)[J]. Applied Geochemistry, 2009, 24(5): 787-799. DOI:10.1016/j.apgeochem.2009.01.006
( ![]() |
[47] |
Yang J X, Guo Q J, Yang J, et al. Red mud(RM)-Induced enhancement of iron plaque formation reduces arsenic and metal accumulation in two wetland plant species[J]. International Journal of Phytoremediation, 2016, 18(3): 269-277. DOI:10.1080/15226514.2015.1085830
( ![]() |
[48] |
Lee S, Kim E Y, Park H H, et al. In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products[J]. Geoderma, 2011, 161: 1-7. DOI:10.1016/j.geoderma.2010.11.008
( ![]() |
[49] |
Wang X Q, Yu H Y, Li F B, et al. Enhanced immobilization of arsenic and cadmium in a paddy soil by combined applications of woody peat and Fe(NO3)3: Possible mechanisms and environmental implications[J]. The Science of the Total Environment, 2019, 649: 535-543. DOI:10.1016/j.scitotenv.2018.08.387
( ![]() |
[50] |
Makino T, Nakamura K, Katou H, et al. Simultaneous decrease of arsenic and cadmium in rice(Oryza sativa L.) plants cultivated under submerged field conditions by the application of iron-bearing materials[J]. Soil Science and Plant Nutrition, 2016, 62(4): 340-348. DOI:10.1080/00380768.2016.1203731
( ![]() |
[51] |
张静静. 蚕沙生物炭混施不同铁基材料对土壤镉、铅、砷钝化修复效果研究[D]. 南宁: 广西大学, 2017. Zhang J J. Research about the effects of mixed application of silkworm excrement biochar and different iron-based materials on the passivation of cadmium, lead and arsenic in soil[D]. Nanning: Guangxi University, 2017. ( ![]() |
[52] |
Jiang K, Zhou K G. Chemical immobilization of lead, cadmium, and arsenic in a smelter-contaminated soil using 2, 4, 6-trimercaptotriazine, trisodium salt, nonahydrate and ferric sulfate[J]. Journal of Soils and Sediments, 2018, 18(3): 1060-1065. DOI:10.1007/s11368-017-1822-1
( ![]() |
[53] |
Lu M X, Li F Y, Zhang C L, et al. Effects of different soil amendments on the immobilization and remediation of cadmium and arsenic in soil (In Chinese)[J]. Journal of Guangxi University(Natural Science Edition), 2016, 41(5): 1667-1675. [卢美献, 李方圆, 张超兰, 等. 不同固定剂对土壤中镉砷钝化修复效果研究[J]. 广西大学学报(自然科学版), 2016, 41(5): 1667-1675.]
( ![]() |
[54] |
Tang J X, Sun L N, Sun T H, et al. Research on the arsenic and cadmium-fixing effects of ameliorant in combined contamination soils[J]. Advanced Materials Research, 2012, 518(518/519/520/521/522/523): 2770-2774.
( ![]() |
[55] |
Warren G P, Alloway B J. Reduction of arsenic uptake by lettuce with ferrous sulfate applied to contaminated soil[J]. Journal of Environmental Quality, 2003, 32(3): 767-772. DOI:10.2134/jeq2003.7670
( ![]() |
[56] |
Zhou A M, Wang D S, Tang H X. Adsorption of phosphorus on sediment-water interface (In Chinese)[J]. Acta Scientiae Circumstantiae, 2005, 25(1): 64-69. [周爱民, 王东升, 汤鸿霄. 磷(P)在天然沉积物-水界面上的吸附[J]. 环境科学学报, 2005, 25(1): 64-69.]
( ![]() |
[57] |
Ramaswami A, Tawachsupa S, Isleyen M. Batch-mixed iron treatment of high arsenic waters[J]. Water Research, 2001, 35(18): 4474-4479. DOI:10.1016/S0043-1354(01)00168-3
( ![]() |
[58] |
Dou X M, Li R, Zhao B, et al. Arsenate removal from water by zero-valent iron/activated carbon galvanic couples[J]. Journal of Hazardous Materials, 2010, 182(1/2/3): 108-114.
( ![]() |
[59] |
Suda A, Makino T. Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: A review[J]. Geoderma, 2016, 270(270): 68-75.
( ![]() |
[60] |
Liang Q Q, Zhao D Y. Immobilization of arsenate in a sandy loam soil using starch-stabilized magnetite nanoparticles[J]. Journal of Hazardous Materials, 2014, 271: 16-23. DOI:10.1016/j.jhazmat.2014.01.055
( ![]() |
[61] |
Aydın A A, Aydın A. Development of an immobilization process for heavy metal containing galvanic solid wastes by use of sodium silicate and sodium tetraborate[J]. Journal of Hazardous Materials, 2014, 270: 35-44. DOI:10.1016/j.jhazmat.2013.12.017
( ![]() |
[62] |
Wu C H, Li L, Lei C, et al. Research and application of silicate passivation agent in remediation of heavy metal-contaminated soil: A review (In Chinese)[J]. Soils, 2017, 49(3): 446-452. [武成辉, 李亮, 雷畅, 等. 硅酸盐钝化剂在土壤重金属污染修复中的研究与应用[J]. 土壤, 2017, 49(3): 446-452.]
( ![]() |
[63] |
Yao A J, Wang Y N, Ling X D, et al. Effects of an iron-silicon material, a synthetic zeolite and an alkaline clay on vegetable uptake of As and Cd from a polluted agricultural soil and proposed remediation mechanisms[J]. Environmental Geochemistry and Health, 2017, 39(2): 353-367. DOI:10.1007/s10653-016-9863-8
( ![]() |
[64] |
Li Y, Ye C C, Liu Y L, et al. Bioavailability of silicon fertilizer coupled water management on soil bioavailability and cumulative control of rice in compound contaminated paddy soils (In Chinese)[J]. Chinese Journal of Environmental Science, 2018, 39(2): 944-952. [李园星露, 叶长城, 刘玉玲, 等. 硅肥耦合水分管理对复合污染稻田土壤As-Cd生物有效性及稻米累积阻控[J]. 环境科学, 2018, 39(2): 944-952.]
( ![]() |
[65] |
Wang X L, Lv L L, Huang X Q, et al. Effects of silicon-calcium-potassium fertilizer on cadmium and arsenic absorption of maize in combined polluted soil (In Chinese)[J]. Agricultural research and application, 2015(3): 8-14. [王学礼, 吕丽兰, 黄小青, 等. 硅钙钾肥对复合污染农田土壤上玉米吸收镉、砷的影响[J]. 农业研究与应用, 2015(3): 8-14.]
( ![]() |
[66] |
Guo J, Luo X L, Yao A J, et al. Effects of iron-silicon material and biochar on soil Cd and As speciation and vegetable uptake under simulated acid rain conditions (In Chinese)[J]. Journal of Agro-Environment Science, 2018, 37(7): 1495-1502. [郭娟, 罗小丽, 姚爱军, 等. 模拟酸雨条件下铁硅材料和生物炭对土壤镉砷形态及生物有效性的影响[J]. 农业环境科学学报, 2018, 37(7): 1495-1502.]
( ![]() |
[67] |
Yu H Y, Cui J H, Qiao J T, et al. Principle and technique of arsenic and cadmium pollution control in paddy field (In Chinese)[J]. Journal of Agro-Environment Science, 2018, 37(7): 1418-1426. [于焕云, 崔江虎, 乔江涛, 等. 稻田镉砷污染阻控原理与技术应用[J]. 农业环境科学学报, 2018, 37(7): 1418-1426.]
( ![]() |
[68] |
Wang H Y, Wen S L, Chen P, et al. Mitigation of cadmium and arsenic in rice grain by applying different silicon fertilizers in contaminated fields[J]. Environmental Science and Pollution Research, 2016, 23(4): 3781-3788. DOI:10.1007/s11356-015-5638-5
( ![]() |
[69] |
Greger M, Landberg T. Silicon reduces cadmium and arsenic levels in field-grown crops[J]. Silicon, 2019, 11(5): 2371-2375. DOI:10.1007/s12633-015-9338-z
( ![]() |
[70] |
Yuan G D, Theng B K G, Churchman G J, et al. Clays and clay minerals for pollution control[M]//Developments in Clay Science. Amsterdam: Elsevier, 2013: 587-644.
( ![]() |
[71] |
Han X Q, Bai L, Wei J L, et al. Immobilization remediation of arsenic and cadmium compound contaminated soil by pillared sepiolite (In Chinese)[J]. Hunan Nonferrous Metals, 2018, 34(2): 51-55, 64. [韩晓晴, 白璐, 韦建林, 等. 柱撑改性海泡石钝化修复砷镉复合污染土壤[J]. 湖南有色金属, 2018, 34(2): 51-55, 64.]
( ![]() |
[72] |
王辉, 许超, 王帅, 等. 组配改良剂对稻田系统镉砷生物有效性的协同调控[C]//中国土壤学会土壤环境专业委员会第二十次会议暨农田土壤污染与修复研讨会摘要集. 2018. Wang H, Xu C, Wang S, et al. Synergistic control of bioavailability of cadmium and arsenic in rice paddy system by combined amendments[C]//Summary of the 20th meeting of soil environment committee of China soil society and symposium on soil contamination and amendment. 2018. ( ![]() |
[73] |
Yang W T, Zhou H, Gu J F, et al. Effects of a combined amendment on pb, cd, and as availability and accumulation in rice planted in contaminated paddy soil[J]. Soil and Sediment Contamination: an International Journal, 2017, 26(1): 70-83. DOI:10.1080/15320383.2017.1235132
( ![]() |
[74] |
Yu K, Xu J, Jiang X H, et al. Stabilization of heavy metals in soil using two organo-bentonites[J]. Chemosphere, 2017, 184: 884-891. DOI:10.1016/j.chemosphere.2017.06.040
( ![]() |
[75] |
Wang X L, Huang X Q, Du R P, et al. Effects of filtered mud organic fertilizer on heavy metal accumulation in maize planted at Cd/As combined polluted farmland (In Chinese)[J]. Journal of Guangxi Agriculture, 2015, 30(3): 24-27. [王学礼, 黄小青, 杜芮萍, 等. 滤泥有机肥对镉砷复合污染农田玉米吸收重金属的影响[J]. 广西农学报, 2015, 30(3): 24-27.]
( ![]() |
[76] |
Zhao S H, Zhang T P, Chen Z L, et al. Solidification/stabilization treatment of gold mining waste residue (In Chinese)[J]. Chinese Journal of Environmental Engineering, 2013, 7(12): 4951-4957. [赵述华, 张太平, 陈志良, 等. 矿区炼金废渣的固化/稳定化处理[J]. 环境工程学报, 2013, 7(12): 4951-4957.]
( ![]() |
[77] |
Moore P, Daniel T C, Gilmour J T, et al. Decreasing metal runoff from poultry litter with aluminum sulfate[J]. Journal of Environmental Quality, 1998, 27(1): 92-99.
( ![]() |
[78] |
宋克超, 华怀峰, 李建中, 等. 一种能够钝化土壤重金属的生物有机肥料及其制备方法: CN201310324576. 9[P]. [2013-11-17] Song K C, Hua H F, Li JZ, et al. The invention relates to a biological organic fertilizer capable of passivating heavy metals in soil and a preparation method: CN201310324576. 9[P]. [2013-11-17] ( ![]() |
[79] |
Silver S, Phung L T. A bacterial view of the periodic table: Genes and proteins for toxic inorganic ions[J]. Journal of Industrial Microbiology and Biotechnology, 2005, 32(11/12): 587-605.
( ![]() |
[80] |
Zeng Y, Luo L Q. Research progress on the application and interaction mechanism between specific microorganisms and heavy metals in soil (In Chinese)[J]. Rock and Mineral Analysis, 2017, 36(3): 209-221. [曾远, 罗立强. 土壤中特异性微生物与重金属相互作用机制与应用研究进展[J]. 岩矿测试, 2017, 36(3): 209-221.]
( ![]() |
[81] |
Amachi S. Microbial contribution to global iodine cycling: Volatilization, accumulation, reduction, oxidation, and sorption of iodine[J]. Microbes and Environments, 2008, 23(4): 269-276. DOI:10.1264/jsme2.ME08548
( ![]() |
[82] |
Rene E R, Sahinkaya E, Lewis A, et al. Sustainable heavy metal remediation . Cham: Springer International Publishing, 2017.
( ![]() |
[83] |
Xue X M, Zhu Y G. Arsenic biotransformation in soils and its relationship with antibiotic resistance (In Chinese)[J]. Acta Pedologica Sinica, 2019, 56(4): 763-772. [薛喜枚, 朱永官. 土壤中砷的生物转化及砷与抗生素抗性的关联[J]. 土壤学报, 2019, 56(4): 763-772.]
( ![]() |
[84] |
Yang T, Chen M L, Liu L H, et al. Iron(Ⅲ) modification of Bacillus subtilis membranes provides record sorption capacity for arsenic and endows unusual selectivity for As(V)[J]. Environmental Science & Technology, 2012, 46(4): 2251-2256.
( ![]() |
[85] |
Huang J H. Impact of microorganisms on arsenic biogeochemistry: A review[J]. Water, Air, & Soil Pollution, 2014, 225(2): 1-25.
( ![]() |
[86] |
Yang Y P, Zhang H M, Yuan H Y, et al. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation[J]. Environmental Pollution, 2018, 236: 598-608.
( ![]() |
[87] |
Sierra I, Pérez-Quintanilla D. Heavy metal complexation on hybrid mesoporous silicas: An approach to analytical applications[J]. Chemical Society Reviews, 2013, 42(9): 3792-3807.
( ![]() |
[88] |
Ding Z L, Chen Y, Xia Y X, et al. The role of agglomerate in soil remediation (In Chinese)[J]. Science and Technology Guide, 2015(13): 27. [丁兆龙, 陈燕, 夏永香, 等. 谷聚多在土壤修复中的作用[J]. 科技致富向导, 2015(13): 27.]
( ![]() |
[89] |
刘承帅, 李芳柏, 童辉. 一种铁基-腐殖质复合材料及其在土壤重金属污染治理中的应用: CN104971938B[P]. [2017-02-22]. http://cprs.patentstar.com.cn/Search/Detail?ANE=AIHA9EHC9AIAAEIA4ADA4AEA9GAAGHHA9GEB9GAECIGA3DAA. Liu C S, Li F B, Tong H. The invention relates to an iron-based humus composite material and its application in soil heavy metal pollution control: CN104971938B[P]. [2017-02-22]. ( ![]() |
[90] |
冯人伟, 廖国健, 郭军康, 等. 一种降低水稻稻米镉、砷含量的方法: CN105612848A[P]. [2016-06-01]. http://cprs.patentstar.com.cn/Search/Detail?ANE=9CID7HAA9DFA9FAC3BBA6FBA3BCA9CHE9DBE9BHB9EDG9AFC. Feng R W, Liao G J, Guo J K, et al. A method to reduce cadmium and arsenic content in rice: CN105612848A[P]. [2016-06-01]. ( ![]() |
[91] |
周益辉. 一种复合污染土壤修复剂及应用: CN105583223B[P]. [2018-08-07]. http://cprs.patentstar.com.cn/Search/Detail?ANE=9GED9FGC4ADA9ECD3CAA5AFA6FBA7AAA9CDF9DDF9FDD9DFB. Zhou Y H. The invention relates to a compound soil remediation agent and its application: CN105583223B[P]. [2018-08-07]. ( ![]() |
[92] |
杨广群, 曹丽萍. 一种鱼鳞粉及其在重金属土壤修复中的应用: CN106000595A[P]. [2016-10-12]. http://cprs.patentstar.com.cn/Search/Detail?ANE=6DBA9GFC9IBB9GEH3CAA3BCA9GDD3AAA9FCH9DIE9GIH9GGF. Yang G Q, Cao L P. The invention relates to fish scale powder and its application in heavy metal soil remediation: CN106000595A[P]. [2016-10-12]. ( ![]() |
[93] |
岳克. 硫硒对水稻根际微域镉与砷赋存形态及生物有效性的影响[D]. 郑州: 河南农业大学, 2017. Yue K. Effects of sulfur and selenium on Cd and As speciation and bioavailability in rhizosphere and non rhizoshere of rice[D]. Zhengzhou: Henan Agricultural University, 2017. ( ![]() |
[94] |
刘传平, 李芳柏. 一种缓释型铁基生物炭土壤重金属钝化剂的制备及使用方法: CN105524623B[P]. [2017-02-22]. http://cprs.patentstar.com.cn/Search/Detail?ANE=9GHG9GEB5EAA9DFF9HBA9IGF9IIH9BHG6FAA7ECA9GDA9GEF. Liu C P, Li F B. The invention relates to the preparation and application method of a slow-release iron-based biochar soil heavy metal passivation agent: CN105524623B[P]. [2017-02-22]. ( ![]() |
[95] |
龚亚龙, 黄雷, 刘登彪, 等. 一种重金属稳定剂: CN105062495B[P]. [2018-07-13]. http://cprs.patentstar.com.cn/Search/Detail?ANE=6AEA6CEA5AEA9BDC9BHA8DFA9DCD8BAA8IAACHFA9BBA8GAA. Long Y L, Huang L, LIU D B, et al. A heavy metal stabilizer: CN105062495B[P]. [2018-07-13]. ( ![]() |