2. 浙江大学环境与资源学院土水资源与环境研究所, 杭州 310058;
3. 浙江工业大学环境学院, 杭州 310014
2. Institute of Soil, Water Resources and Environmental Sciences, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China;
3. College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
砷(As)是自然界广泛存在的一类高毒致癌物质,土壤中砷的自然背景值约为5~10 mg·kg-1[1]。近年来,含砷矿石开采冶炼、含砷工业“三废”排放及含砷农药产品使用等人类活动使大量砷排放至自然环境中,造成土壤和水体砷污染[2],中国约有1 958万人生活在地下水砷超标的高风险地区[3]。土壤和水体砷污染会对人类健康产生极大威胁,因此开展砷污染修复研究具有重要的实际意义。传统的物理化学砷修复方法存在成本高、破坏土壤结构和功能、易产生二次污染等问题,而生物成矿技术因其成本低廉、适应性强、原位无污染等特点,逐渐在环境污染治理领域受到关注[4-5]。
微生物成矿是自然界普遍存在的一种现象,微生物代谢可直接或间接地将可溶性的金属离子沉淀为金属矿物[6]。土壤中存在能够钝化金属离子的微生物[7],该微生物可直接氧化还原金属促使其钝化,或者通过分泌物与重金属离子发生吸附、沉淀等反应实现金属离子的钝化[8-9];微生物的适应能力较强,在一些极端条件下仍具备成矿能力[10-12]。生物成矿分为生物诱导成矿和生物控制成矿[7]:生物诱导成矿是微生物固定重金属的主要方式,一方面微生物或胞外聚合物(Extracellular polymeric substances,EPS)具有吸附金属离子能力;另一方面细胞代谢产生CO32-、S2-等物质改变周围环境的物化性质,从而使得环境中金属离子在局部过饱和条件下形成晶核并生长,进一步改变这些元素在周围环境的存在形态[13-14]。例如,产脲酶菌通过分泌脲酶诱导尿素水解产生碳酸盐沉淀,铁锰氧化菌可诱导产生铁锰氧化物和砷铁矿物,硫酸盐还原菌可诱导生成硫砷矿物,或生成其他硫化物对砷吸附或共沉淀的方式达到去除砷的目的。生物控制成矿是主动成矿的过程,金属离子以细胞分泌的有机质作为模板进行自组装,矿物的生长、形貌和位置等均受上述有机物的调控。本文对近些年砷的生物成矿研究进行了整理,从生物诱导碳酸盐矿物、铁锰氧化物和硫化物三个方面分别进行阐述,同时概括了各因素对成矿过程的影响,为微生物成矿技术在环境砷污染修复中的应用提供参考。
1 微生物对砷成矿的类型和机理 1.1 碳酸盐矿化菌对砷的成矿作用微生物的新陈代谢活动可影响环境中碳酸钙的沉淀过程,这会对土壤和水体中砷的存在形态、可移动性等产生重要影响。促进碳酸盐矿物形成的微生物在土壤和水体中广泛分布,微生物代谢过程产生碳酸根和一些碱性产物(如NH3),当环境中存在大量Ca2+时,可形成以方解石为主的碳酸盐晶体,这一过程称为微生物诱导碳酸钙沉淀(Microbial induced carbonate precipitation,MICP)[15-16]。碳酸根浓度可改变金属离子在土壤中的赋存形态,因此,碳酸根的产率和产量是优选碳酸盐矿化菌(Carbonate mineralization microorganism,CMM)的关键参数。产脲酶菌具有碳酸根产率高和产量大的特点,因而成为目前微生物成矿研究的热点[5, 17]。MICP是高产脲酶菌的一系列生化反应结果,微生物的主要作用是提供脲酶和晶核[14]。微生物生长过程中产生的大量EPS可作为某些成矿产物成核的附着面,这些EPS具有大量带负电的官能团,如羧基(-COOH)、羟基(-OH)、羰基(C=O)等,可吸附溶液中Ca2+、Mg2+等阳离子;此时,细菌和带有阳离子的EPS成为碳酸钙(CaCO3)沉淀的有效位点,CaCO3在其表面形成晶核,并逐渐长大形成矿物结晶。
方解石作为一种碳酸盐矿物,可通过吸附和共沉淀两种方式去除土壤或水体中的As[18]。对于吸附过程,Alexandratos等[19]结合吸附样品的扩展X射线吸收精细光谱结构(Extended X-ray absorption fine structure,EXAFS)数据,发现As直接与方解石表面配位,表明方解石是As的有效吸附剂,方解石表面对砷酸根离子有很强的亲和力。Benedetto等[18]认为由于方解石在较高pH时表面带正电荷,因此可在方解石上吸附砷氧阴离子,Sadiq[20]发现在pH介于7.5和9之间时,碳酸盐可能对土壤中砷的吸附起重要作用。对于共沉淀过程,砷酸根可替代方解石矿物中的碳酸根离子,砷酸盐在方解石中的加入量很小,其四面体结构和氧化状态无明显变化[19-21]。使用初始pH约为9.8的H3AsO3溶液研究亚砷酸盐和方解石表面之间的相互作用,结果表明,As可通过AsO33-基团取代CO32-基团的形式与方解石结合[22-23]。Costagliola等[24]认为,相较于简单吸附于矿物表面的砷,结合在方解石结构中的砷可迁移性更弱,因此方解石去除的砷更加稳定。碳酸盐矿化菌对砷的成矿机制如图 1所示。
![]() |
注:CMM:碳酸盐矿化菌。 Note: CMM: Carbonate mineralization microorganism. 图 1 碳酸盐矿化菌对砷的成矿机制[25] Fig. 1 Mechanism of carbonate mineralizing microorganisms mineralizing arsenic [25] |
铁氧化菌(Iron-oxidizing bacteria,FeOB)是一类可将Fe(Ⅱ)氧化为Fe(Ⅲ)的微生物,通常存在于铁含量高的沟渠、湿地、根际土壤、沉积物以及海洋热液喷口中,主要有好氧嗜酸铁氧化菌、好氧嗜中性铁氧化菌、厌氧铁氧化光合细菌和厌氧硝酸盐还原铁氧化菌等[26-28]。不同的FeOB对砷的生物成矿途径不同,形成的砷矿物类型亦不同,其对砷的成矿机理主要分为两类。第一类是微生物产物直接与砷形成矿物,某些好氧嗜酸FeOB以氧气作为电子受体将Fe(Ⅱ)氧化为Fe(Ⅲ),砷酸盐再迅速与Fe(Ⅲ)反应生成臭葱石(FeAsO4·2H2O)(式(1)~式(2)),此过程中并不是微生物诱导了矿物的生成,而是氧化生成Fe(Ⅲ)后促进了其与砷结合,此时砷直接参与了矿物形成[29-30]。第二类是微生物氧化后的铁先跟氢氧根形成矿物,然后由新生成的矿物吸附去除砷。在这一过程中,FeOB将Fe(Ⅱ)氧化成Fe(Ⅲ),诱导生成赤铁矿、纤铁矿等铁(氢)氧化物沉淀吸附砷[31]。如好氧嗜中性FeOB在中性条件下利用氧气作为电子受体,诱导生成Fe(OH)3或FeOOH沉淀(式(3))[32-33];厌氧铁氧化光合细菌在pH为6.5~7条件下,利用光能将游离的Fe(Ⅱ)氧化为Fe(Ⅲ),从而形成无定形铁的氧化物或氢氧化物(式(4))[34-35];厌氧硝酸盐还原铁氧化菌在中性条件下,以NO3-/NO2-作为电子受体,氧化Fe(Ⅱ)生成Fe(Ⅲ)矿物沉淀(式(5))[36-38]。砷可被吸附或共沉淀在上述铁矿物表面,从而达到去除效果。铁氧化菌对砷的成矿机制如图 2所示。
$ {\rm{F}}{{\rm{e}}^{{\rm{2}} + }} + {\rm{0}}{\rm{.25}}{{\rm{O}}_{\rm{2}}} + {{\rm{H}}^ + } \to {\rm{F}}{{\rm{e}}^{{\rm{3}} + }} + {\rm{0}}{\rm{.5}}{{\rm{H}}_{\rm{2}}}{\rm{O}} $ | (1) |
$ {\rm{F}}{{\rm{e}}^{{\rm{3}} + }}{\rm{ + As}}{{\rm{O}}_{\rm{4}}}^{{\rm{3}} - }{\rm{ + 2}}{{\rm{H}}_{\rm{2}}}{\rm{O}} \to {\rm{FeAs}}{{\rm{O}}_{\rm{4}}} \cdot {\rm{2}}{{\rm{H}}_{\rm{2}}}{\rm{O (Scorodite)}} $ | (2) |
$ {\rm{2F}}{{\rm{e}}^{{\rm{2}} + }} + {\rm{0}}{\rm{.5}}{{\rm{O}}_{\rm{2}}} + {\rm{5}}{{\rm{H}}_{\rm{2}}}{\rm{O}} \to {\rm{2Fe(OH}}{{\rm{)}}_{\rm{3}}} + {\rm{4}}{{\rm{H}}^ + } $ | (3) |
$ {\rm{4F}}{{\rm{e}}^{{\rm{2}} + }}{\rm{ + C}}{{\rm{O}}_{\rm{2}}}{\rm{ + 11}}{{\rm{H}}_{\rm{2}}}{\rm{O + }}hv \to {\rm{C}}{{\rm{H}}_{\rm{2}}}{\rm{O + 4Fe(OH}}{{\rm{)}}_{\rm{3}}}{\rm{ + 8}}{{\rm{H}}^ + } $ | (4) |
$ {\rm{10FeC}}{{\rm{O}}_{\rm{3}}} + {\rm{2N}}{{\rm{O}}_{\rm{3}}}^ - + {\rm{10}}{{\rm{H}}_{\rm{2}}}{\rm{O}} \to {\rm{F}}{{\rm{e}}_{{\rm{10}}}}{{\rm{O}}_{{\rm{14}}}}{({\rm{OH}})_{\rm{2}}} + {\rm{10HC}}{{\rm{O}}_{\rm{3}}}^ - + {{\rm{N}}_{\rm{2}}} + {\rm{8}}{{\rm{H}}^ + } $ | (5) |
![]() |
注:FeOB:铁氧化菌。 Note: FeOB: Iron-oxidizing bacteria. 图 2 铁氧化菌对砷的成矿机制[39-40] Fig. 2 Mechanism of iron-oxidizing bacteria mineralizing arsenic [39-40] |
锰氧化菌(Manganese-oxidizing bacteria,MnOB)通常存在于淡水、土壤和海洋含锰沉积物中,因其可氧化Mn(Ⅱ)生成锰氧化物从而对环境中金属离子的固定起着重要作用。其中研究最多的主要为恶臭假单胞菌(Pseudomonas putida MnB1)、芽孢杆菌(Bacillus sp. SG-1)和生盘纤发菌(Leptothrix discophora SS-1)3种模式菌株,这些微生物主要通过分泌多铜氧化酶(MCOs)、过氧化物酶氧化Mn(Ⅱ)[41-42]。生物合成的锰氧化物具有结晶弱、粒径小、比表面积大以及八面体结构中空穴多等特性,因而对重金属离子具有很强的表面吸附和氧化能力[43]。MnOB去除As的机理与FeOB成矿机理类似,MnOB首先氧化Mn(Ⅱ)生成氧化锰沉淀,由于氧化锰具有强氧化性,As(Ⅲ)可被氧化成As(Ⅴ),然后被氧化锰沉淀吸附去除。除了锰氧化细菌,一些真菌也可实现Mn(Ⅱ)的氧化,常见的如枝顶孢菌属(Acremonium)、盾壳霉属(Coniothyrium)和担子菌(Basidiomycetes)等。这些真菌分泌的锰过氧化物酶、木质素过氧化物酶或漆酶是重要的木质素分解酶,可通过对锰的氧化促进木质素的降解过程[44]。真菌氧化Mn(Ⅱ)与细菌的区别是,真菌的活性物质对底物的专一性不强;同时真菌氧化Mn(Ⅱ)的速度要相对慢于细菌,因而对MnOB的应用研究也更多[45]。
除了铁锰氧化物本身的氧化性,As(Ⅲ)氧化微生物(As(Ⅲ)-Oxidizing microorganism)也对As(Ⅲ)的氧化起着重要的作用,这种微生物在1918年首次被发现[46]。As(Ⅲ)氧化微生物在自然界中分布极其广泛,如在矿区、地下水、海洋、热泉以及各种极端环境等均有分布。从生物学分类上,砷氧化微生物主要属于无色杆菌属(Achromobacter)、土壤杆菌属(Agrobacterium)、产碱菌属(Alcazigenes)、芽孢杆菌属(Bacillus)、假单胞菌属(Pseudomonas)、根瘤菌属(Rhizobium)、栖热菌属(Thermus)、硫单胞菌属(Thiomonas)和黄单胞菌属(Xanthomonas)[47-48]。微生物砷氧化是指微生物通过砷氧化酶AioAB将毒性强的As(Ⅲ)氧化为毒性较弱的As(Ⅴ)的过程[49]。土壤中的铁(氢)氧化物和锰氧化物对As(Ⅴ)有较强的吸附能力,As(Ⅲ)被微生物氧化为As(Ⅴ)后可被吸附或共沉淀在铁锰矿物表面,从而降低砷活性[50]。
1.3 硫酸盐还原菌对砷的成矿作用硫酸盐还原菌(Sulfate reducing bacteria,SRB)是一类兼性厌氧菌,广泛存在于缺氧环境中,如沉积物、地下管道、油气井及土壤中[51]。近十年来,研究者发现SRB介导的硫酸盐还原过程间接参与了砷的生物地球化学循环,认为这一类微生物在砷的生物成矿中起着重要作用[51-54]。耐砷SRB可用于砷污染环境的修复,已知的这些菌群主要有:脱硫弧菌属(Desulfovibrio)、脱硫肠菌属(Desulfotomaculum)、脱硫微杆菌属(Desulfomicrobium)以及芽孢弯曲菌属(Desulfosporosinus)等[55-57]。在厌氧还原条件下,SRB对硫酸盐进行还原形成H2S、HS-和S2-的混合物;SRB利用电子供体将As(Ⅴ)还原为As(Ⅲ)(式(6)~式(7))[52, 58],形成的As(Ⅲ)进一步与H2S反应生成硫砷矿物(Arsenic-sulfifide mineral,ASM)沉淀(式(8))[58-59]。除了As2S3,其他形态ASM矿物也可能产生,如AsS(式(9))[60]。最常见的ASM有雌黄(As2S3)、雄黄(AsS)和砷黄铁矿(FeAsS)[61]。在铁存在条件下,亚砷酸会被吸附在FeS或者FeS2上,进一步反应形成FeAsS矿物(式(10)~式(13))[57, 62-63]。在上述过程中,环境中溶解态的砷一方面可被转化为稳定的ASM[54, 64],另一方面也可被吸附至生物成因的硫化铁矿物上,从而降低砷的生态风险[65]。硫酸盐还原菌对砷的成矿机制如图 3所示。
$ {\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{CHOHCO}}{{\rm{O}}^ - }{\rm{ + 2HAs}}{{\rm{O}}_{\rm{4}}}^{2 - }{\rm{ + }}{{\rm{H}}^ + } \to {\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{CO}}{{\rm{O}}^ - }{\rm{ + 2}}{{\rm{H}}_{\rm{2}}}{\rm{As}}{{\rm{O}}_{\rm{3}}}^ - {\rm{ + HC}}{{\rm{O}}_{\rm{3}}}^ - $ | (6) |
$ {\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{CO}}{{\rm{O}}^ - }{\rm{ + 4HAs}}{{\rm{O}}_{\rm{4}}}^{{\rm{2}} - }{\rm{ + 7}}{{\rm{H}}^ + } \to {\rm{4}}{{\rm{H}}_{\rm{3}}}{\rm{As}}{{\rm{O}}_{\rm{3}}}{\rm{ + 2HC}}{{\rm{O}}_{\rm{3}}}^ - $ | (7) |
$ {{\rm{H}}_{\rm{3}}}{\rm{As}}{{\rm{O}}_{\rm{3}}} + 1.5{{\rm{H}}_{\rm{2}}}{\rm{S}} \to {\rm{0}}{\rm{.5A}}{{\rm{s}}_{\rm{2}}}{{\rm{S}}_{\rm{3}}} \downarrow + {\rm{3}}{{\rm{H}}_{\rm{2}}}{\rm{O}} $ | (8) |
$ {\rm{A}}{{\rm{s}}_{\rm{2}}}{{\rm{S}}_{\rm{3}}} + {{\rm{H}}_{\rm{2}}}{\rm{S}} \to {\rm{2AsS}} + {{\rm{H}}_{\rm{2}}}{{\rm{S}}_{\rm{2}}} $ | (9) |
$ {\rm{F}}{{\rm{e}}^{{\rm{2}} + }}{\rm{ + }}{{\rm{S}}^{{\rm{2}} - }} \to {\rm{FeS}} $ | (10) |
$ {\rm{F}}{{\rm{e}}^{{\rm{2}} + }}{\rm{ + }}{{\rm{H}}_{\rm{2}}}{\rm{S}} \to {\rm{FeS + 2}}{{\rm{H}}^ + } $ | (11) |
$ {\rm{3FeS}} + {\rm{As(OH}}{{\rm{)}}_{\rm{3}}} \to {\rm{Fe}}{{\rm{S}}_{\rm{2}}} + {\rm{FeAsS}} + {\rm{Fe(OH}}{{\rm{)}}_{\rm{3}}} $ | (12) |
$ {\rm{7Fe}}{{\rm{S}}_{\rm{2}}}{\rm{ + }}2{\rm{As(OH}}{{\rm{)}}_{\rm{3}}} \to 3{\rm{Fe}}{{\rm{S}}_{\rm{4}}}{\rm{ + }}2{\rm{FeAsS + }}2{\rm{Fe(OH}}{{\rm{)}}_{\rm{3}}} $ | (13) |
![]() |
注:SRB:硫酸盐还原菌。 Note: SRB: sulfate reducing bacteria. 图 3 硫酸盐还原菌对砷的成矿机制[53-54] Fig. 3 Mechanism of sulfate reducing bacteria mineralizing arsenic [53-54] |
表 1列举了MICP、FeOB/MnOB和SRB对砷污染的废水的处理。He等[66]在序批式反应器中首次使用好氧颗粒污泥(AGS)技术处理As(Ⅲ)含量较高的底灰渗滤液,结果发现As(Ⅲ)的去除效率达到83%,其中约60.2%的砷是通过与碳酸盐结合而被去除。Catelani等[67]从温泉里分离出地衣芽孢杆菌Bacillus licheniformis BD5,将其分别在固体培养基和液体培养基中培养,发现均对砷有去除效果,并且在液体培养基中细菌方解石样品的砷富集系数是固体培养基的50倍,X射线衍射(XRD)分析显示,方解石晶体中碳酸根被尺寸更大的砷酸根取代。
![]() |
表 1 水体中微生物对砷的成矿 Table 1 Mineralization of arsenic by microorganisms in water |
微生物诱导的铁锰氧化物成矿作用在废水除砷方面也具有巨大潜力。Gonzalez-Contreras等[30]在pH 0.8和温度80℃条件下,探究了嗜酸嗜热铁氧化菌Acidianus sulfifidivorans利用空气中氧气作为氧化剂对砷的固定作用,结果发现:在含750 mg·L-1的Fe(Ⅱ)和1 000 mg·L-1的As(Ⅴ)水溶液中,在FeOB的作用下砷去除率可达80%;并且经XRD、热重分析(TGA)和扫描电子显微镜(SEM)等分析表明,生物成因的臭葱石在性质上与天然臭葱石相似,均具有较高的稳定性。Hohmann等[68-69]发现在Fe(Ⅱ)存在下,铁氧化菌Acidovorax sp. strain BoFeN1对As(Ⅲ)(1.5 mg·L-1)和As(Ⅴ)(3.75 mg·L-1)的去除率可达96%以上,EXAFS数据表明砷不是被包含在晶体结构中,而是在铁氧化物或氢氧化物表面形成了内层络合物。
Singh等[70]从地下水中分离获得一株MnOB(Acinetobacter sp.),该菌在单独游离条件下仅能去除20%的As(Ⅲ),而介导生成锰氧化物后,As(Ⅲ)的去除率可达64.5%。Katsoyiannis等[71]利用培养有MnOB菌的水过滤装置处理含砷地下水,结果发现As(Ⅲ)和As(Ⅴ)的去除效果均可达80%左右;此外,相比于非生物成因的锰氧化物,生物成因的锰氧化物氧化As(Ⅲ)的速度更快。He等[72]利用Mn-AGS技术可有效去除有机废水中的砷,As(Ⅲ)先是吸附至污泥表面,然后As(Ⅲ)在微生物、生物氧化锰和芬顿反应的共同作用下被氧化成As(Ⅴ),最后结合至无定形铁水化合物和生物氧化锰上。由于铁锰氧化物常以结核或胶膜形式同时存在,生物诱导铁锰氧化物原位修复地下水中的Fe、Mn和As污染具有良好应用前景。
大量研究表明SRB也可用于处理水体砷污染。大量学者对SRB去除地下水砷污染进行了相关研究。Keimowitz等[73]通过向土著SRB提供乙酸盐(作为碳源),发现地下水砷浓度从最高值148 μg·L-1降低至22 μg·L-1。Teclu等[74]研究发现利用SRB可将地下水中As(Ⅲ)从1 000 μg·L-1降低至300 μg·L-1,As(Ⅴ)从1 000 μg·L-1降低至130 μg·L-1。SRB对砷的成矿作用还可应用在酸性矿山废水治理中,在极低的pH(2.5~3.5)条件下,SRB能够通过自身代谢调节环境pH,从而去除水体中的重金属[75-76]。Le Pape等[60]通过室内试验发现,利用土著的SRB可高效去除AMD中高浓度的砷(79.4 mg·L-1),同时通过SEM/TEM-EDXS和EXAFS光谱分析发现As主要以As2S3和AsS沉淀形式去除。Altun等[55]研究发现向AMD中添加Fe(Ⅱ)可有效去除水体中的砷污染,当Fe(Ⅱ)浓度升高至200 mg·L-1时,酸性废水中As的去除率可达85%;砷主要以As2S3和FeAsS矿物形式或与FeS和FeS2共沉淀形式从废水中去除。
2.2 微生物成矿技术在土壤修复中的应用表 2列举了MICP、FeOB/MnOB和SRB对砷污染土壤的修复。MICP是一种生态友好的砷污染土壤修复技术。Achal等[77]从砷污染土壤中分离出一株耐砷细菌Sporosarcina ginsenggisoli CR5,此菌能产生大量脲酶,Sporosarcina ginsenggisoli CR5应用于As污染土壤治理时,处理后的土壤中碳酸盐结合态的砷含量显著升高,而可交换态砷含量降低了96.6%,XRD结果证实形成了方解石-砷共沉淀物。许燕波等[78]选取一株碳酸盐矿化菌进行污染土壤的实际修复,将制备得到的大量碳酸盐矿化菌液与底物尿素混匀后喷洒于受污染土壤,结果发现砷的钝化率达到83%,从而大大降低了作物的吸收风险。
![]() |
表 2 土壤中微生物对砷的成矿 Table 2 Mineralization of arsenic by microorganisms in soil |
FeOB、MnOB和As(Ⅲ)氧化菌也已被应用于土壤砷污染修复。王兆苏等[79]从砷污染稻田中分离出厌氧FeOB,通过模拟厌氧稻田环境,发现该菌诱导的铁氧化沉淀对As(Ⅲ)的去除效果显著;沉淀中的砷主要以As(Ⅴ)的形式存在,说明Fe(Ⅱ)氧化的过程中,As(Ⅲ)也被氧化。He等[80]研究了模式锰氧化菌Pseudomonas putida MnB1在土壤砷污染方面的应用效果。污染土壤添加菌液和MnCl2后,可提取态总砷下降了51%,通过分析土壤中砷的赋存形态,发现砷主要以稳定的铁锰氧化物结合态和有机态结合态形式存在。Xiao等[81]从湖南郴州受砷污染的稻田土中分离获得了三株耐砷铁氧化菌,分别为Bacillus sp. T2、Pseudomonas sp. Yangling I4和Bacillus sp. TF1-3。将这三株菌接种至土壤中,可增加水稻根表铁膜中的Fe浓度,从而吸附更多的砷,盆栽和田间试验表明稻米中的砷浓度分别降低了3.7%~13.3%和4.6%~12.1%。
土壤中广泛存在SRB[82-83],SRB在进行硫酸盐还原的同时,还与As(Ⅴ)和Fe(Ⅲ)的还原密切相关[56, 64]。邹丽娜[84]通过盆栽和大田试验,向砷污染土壤中添加Na2SO4显著增加了硫酸盐还原基因dsrA的表达量,证实硫酸盐的存在可促进SRB生长。微生物硫酸盐还原产生的硫化物可与砷和铁形成硫化物沉淀,降低砷和铁的迁移性。Burton等[64]对砷污染漫滩土进行了研究,在前10周试验期内,当土壤中仅有很少量的微生物进行硫酸盐还原时,淹水会引起Fe(Ⅲ)和As(Ⅴ)的还原,导致土壤溶液中Fe(Ⅱ)和As(Ⅲ)浓度升高;由于微生物对SO42-持续的还原作用,促进FeS的形成,从而土壤溶液中的Fe(Ⅱ)和As(Ⅲ)浓度又随之降低。通过X-射线荧光光谱发现形成的FeS吸附了大量砷,砷主要是以As2S3形式与四方黄铁矿结合。
3 微生物成矿作用固定砷的影响因素 3.1 砷初始浓度研究表明砷的浓度过高会影响成矿效果。当被污染的水中初始砷浓度为1.5 mg·L-1时,添加铁氧化菌处理之后,溶液中砷浓度降低至10 μg·L-1以下;当处理浓度升高至3.75 mg·L-1时,溶液中的砷浓度则会高于饮用水限定值[69]。同样在锰氧化菌的处理下,当砷的初始浓度为3.75 mg·L-1时,生物氧化锰的最大砷去除率为83%;当浓度提高至7.5 mg·L-1时,去除率下降至67%[85]。Teclu等[74]通过14 d的试验发现,当砷的初始浓度为1 mg·L-1时,在SRB的作用下水溶液中砷的去除率为70%;而当砷的初始浓度升高至5 mg·L-1时,砷的去除率降低至61%。
3.2 pH对于不同成矿类型,pH对砷的成矿效率影响有所差异。许燕波等[78]分析了不同pH条件下MICP菌对底物的分解能力,结果发现,碱性条件较弱酸性条件下底物分解量增加15%。而对SRB而言,碱性条件不适合形成砷矿物,因为在碱性条件下容易形成硫代砷酸盐,从而限制了砷的生物成矿作用[86],但最佳pH尚未定论。Rodriguez-Freire等[53]研究发现当pH从7.2降低至6.1时,砷的去除率提高了17倍,弱酸性环境下更容易形成硫化砷矿物。最优pH范围需要同时考虑微生物活性和成矿条件两个因素[73, 87]。在实际生物成矿应用中,需考虑FeOB/MnOB适应pH的范围,从而获得更好的成矿效果。例如,好氧嗜酸铁氧化菌Acidovorax brierleyi的最佳生长pH为1.5-2.0[88]。在不同的pH条件下,Acidovorax sp. BoFeN1产生的次生矿物不同,当pH为7.0时生成纤铁矿和少量针铁矿;在pH为6.3时Fe(Ⅱ)氧化速率变慢,无针铁矿出现;而在pH为7.7时,Fe(Ⅱ)氧化速率加快,生成的针铁矿丰度大于纤铁矿[89]。张琼[90]分析了pH 5.0到pH 9.0条件下MnOB生长和生成MnO2的情况,发现当低pH时细胞密度较大,随着pH升高,细胞密度减小;pH小于8时,MnO2浓度逐渐增大,当pH大于8时,MnO2明显降低,表明中性条件下有利于Mn的氧化。
3.3 温度在微生物成矿过程中温度是关键的影响因素之一。一方面,随着温度升高,重金属溶解度增加,溶液重金属浓度也随之升高。另一方面,不同类型的微生物代谢活性对温度的需求不同,野外环境中温度的变化会影响微生物代谢,从而显著影响重金属成矿速率[91]。许燕波等[78]研究了15℃和30℃条件下MICP菌对底物尿素的分解速率,反应72 h后,尿素浓度从初始的120 g·L-1分别降至60 g·L-1(15℃)和39 g·L-1(30℃),15℃的底物分解量较30℃时少25%,证明30℃条件下脲酶的活性更高。Achal等[92]分离获得一株产脲酶菌-Kocuria flava CR1,该菌能通过诱导方解石沉淀从而固定重金属,同时探究了在不同温度条件下其对Cu的去除能力,结果表明最佳温度为30℃,此温度条件下去除率可接近100%。硫酸盐还原菌大部分都是中温性,其适宜生存温度在30~40℃。
3.4 重金属离子许燕波等[78]通过分析尿素浓度变化来研究重金属离子对脲酶的影响,Pb2+含量在5.17 mg·L-1时对脲酶活性抑制作用并不明显,在浓度为10.35 mg·L-1时,底物浓度从120 g·L-1被分解至87 g·L-1,对脲酶活性的抑制达到50%,进而影响重金属离子转变成碳酸盐矿物态。同样,高浓度的重金属也会对SRB产生毒性作用,进而影响砷的成矿过程。Kaksonen和Puhakka[87]研究发现,Cd(6 mg·L-1)、Cr(23 mg·L-1)、Cu(4 mg·L-1)、Pb(25 mg·L-1)、Ni(10 mg·L-1)和Zn(13 mg·L-1)对SRB生长具有显著抑制作用。Labastida-Núñez等[93]发现高浓度的Pb显著降低SRB对硫酸盐的还原能力。另一方面某些重金属的存在可能会有利于砷的去除,如Sahinkaya等[57]研究发现当存在重金属(Fe、Zn、Ni和Cu)时,砷的去除率有所升高,一方面因为形成了砷黄铁矿(FeAsS),另一方面因为砷被吸附至形成的重金属硫化物上。
对于铁锰氧化菌而言,初始Fe和Mn浓度会影响砷的成矿效率。在Okibe等[94]试验中,当Fe(Ⅱ)浓度大于1 000 mg·L-1时,黄钾铁矾成为主要的次生矿物,仅有少量的砷被固定;Fe(Ⅱ)浓度小于1 000 mg·L-1,主要形成无定形砷酸铁沉淀;而在1 000 mg·L-1的Fe(Ⅱ)浓度下,As(Ⅲ)氧化速率最大,形成的主要次生矿物为非晶态砷酸铁(Scorodite)。土壤试验中,随着MnCl2用量从0提高至40 mg·kg-1,As(Ⅲ)的去除率明显提高。相较于未添加Mn的空白组,当MnCl2用量为40 mg·kg-1时,As(Ⅲ)的去除率增加了1.1倍,As(Ⅴ)的生成率增加了3.9倍[80]。
3.5 其他因素尿素含量及CaCl2含量均会影响脲酶的生产和砷的成矿效果。在Govarthanan等[95]的研究中,当尿素含量为18 g·L-1、CaCl2含量为8.3 g·L-1、pH为9.0时,脲酶产量最高,为920 U·mL-1,砷的去除率为59%;当尿素含量为6 g·L-1、CaCl2含量为8.3 g·L-1、pH为10.0时,脲酶产量最低,为390 U·mL-1,砷的去除率为29%。铁氧化菌实验中,外源添加矿物晶种会对FeOB诱导矿物去除砷的效率产生影响。Okibe等[94]发现,在实验组中加入黄钾铁矾,会抑制Acidianus brierleyi对于As(Ⅲ)的氧化,且无臭葱石晶体生成。对于硫酸盐还原菌而言,硫酸盐的浓度对砷修复至关重要。Rodriguez-Freire等[53]发现高硫酸盐浓度会产生过量的水溶态H2S,从而促进硫代砷酸盐的形成,不利于形成砷的矿物。但是如果硫酸盐浓度太低,SRB和产甲烷菌之间的竞争也会影响砷的成矿效率。Saunders等[96]在孟加拉地区的含水土层中进行了原位修复试验,通过向含水土层充入硫酸盐和碳源来提高SRB的活性,从而形成含砷的黄铁矿,使得砷的含量从200 μg·L-1降低至世界卫生组织(WHO)的限定值(10 μg·L-1)以下。但是随着试验时间的延长,SO42-还原过程结束后,在铁还原菌(Iron-reducing bacteria,FeRB)的作用下水体中可溶性砷又上升至处理之前的浓度。
4 结论与展望本文依据微生物成矿产物的类型将矿化菌进行分类,并对不同类型矿化菌的成矿机制及钝化规律进行归纳:一方面,矿化菌可直接形成重金属沉淀,如硫酸盐还原菌通过产生S2-生成硫砷矿物,从而降低砷的活性。铁氧化细菌(FeOB)可将Fe(Ⅱ)氧化成Fe(Ⅲ),促进砷形成晶型臭葱石,从而固定砷。另一方面,矿化菌的成矿产物能够有效吸附砷或与砷形成共沉淀,如产脲酶菌产生CO32-,引发方解石-砷共沉淀。铁锰氧化菌生物成因的铁氧化物和锰氧化物具有结晶弱、粒径小和表面积大等特性,因而对于砷具有很强的表面吸附和氧化能力。
微生物成矿是一种具有应用潜力的环境砷污染治理技术,然而在应用至实际污染治理过程中尚需更完善的研究。首先,由于微生物复杂的细胞结构和独特的生理特性,成矿过程中矿化菌对金属离子的成矿场所和胞内转运机制研究尚显不足,需要结合生物学、环境科学和矿物学等领域的先进技术进一步探索微生物对砷成矿过程及机理。其次,微生物生长和代谢需要适宜的条件,有必要筛选重金属耐性和成矿能力强的微生物,同时增加环境因素与矿化菌的适配性筛选以提高成矿效率。此外,微生物成矿在一定时间和条件下能起到很好的砷固定效果,但是随着时间延续和环境条件变化,可能会引起成矿作用固定砷的再活化,影响含砷矿物长期稳定存在。因此有必要研究含砷矿物在不同环境条件下的溶出和迁移规律,进而寻找更稳定的方法以减少矿物中砷的再次溶出。
[1] |
唐冰培. 硫素对氧化还原条件下水稻土铁、锰、镉和砷形态的影响[D]. 郑州: 河南农业大学, 2014. Tang B P. Effects of sulfur on the forms of iron, manganese, cadmium and arsenic in paddy soil under redox conditions[D]. Zhengzhou: Henan Agricultural University, 2014. ( ![]() |
[2] |
Wu W F, Xu Y, Shi D Q, et al. The arsenic pollution status of the rivers and lakes in China and the research progress on arsenic removal techniques (In Chinese)[J]. Environmental Science and Technology, 2015, 38(S1): 190-197. [吴万富, 徐艳, 史德强, 等. 我国河流湖泊砷污染现状及除砷技术研究进展[J]. 环境科学与技术, 2015, 38(S1): 190-197.]
( ![]() |
[3] |
An L H, Liu M C, Zhang J Q, et al. Sources of arsenic in soil and affecting factors of migration and release: A review (In Chinese)[J]. Soils, 2020, 52(2): 234-246. [安礼航, 刘敏超, 张建强, 等. 土壤中砷的来源及迁移释放影响因素研究进展[J]. 土壤, 2020, 52(2): 234-246.]
( ![]() |
[4] |
Gadd G M. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization[J]. Current Opinion in Biotechnology, 2000, 11(3): 271-279. DOI:10.1016/S0958-1669(00)00095-1
( ![]() |
[5] |
Dang Z, Dai Q W, Zhao Y L, et al. Research progress of biomineralization in the treatment of heavy metal contamination (In Chinese)[J]. Research of Environmental Sciences, 2018, 31(7): 1182-1192. [党政, 代群威, 赵玉连, 等. 生物矿化在重金属污染治理领域的研究进展[J]. 环境科学研究, 2018, 31(7): 1182-1192.]
( ![]() |
[6] |
He X H. Research progress of bioremediation and microbial mineralization in the treatment of heavy metal contaminated soil (In Chinese)[J]. Science and Technology Innovation and Application, 2018(23): 66-68. [贺旭红. 生物修复和微生物矿化在重金属污染土壤处理中的研究进展[J]. 科技创新与应用, 2018(23): 66-68.]
( ![]() |
[7] |
Gadd G M. Metals, minerals and microbes: Geomicrobiology and bioremediation[J]. Microbiology, 2010, 156(3): 609-643. DOI:10.1099/mic.0.037143-0
( ![]() |
[8] |
Keren R, Lavy A, Mayzel B, et al. Culturable associated-bacteria of the sponge Theonella swinhoei show tolerance to high arsenic concentrations[J]. Frontiers in Microbiology, 2015, 6: 154.
( ![]() |
[9] |
Nagajyoti P C, Lee K D, Sreekanth T V M. Heavy metals, occurrence and toxicity for plants: A review[J]. Environmental Chemistry Letters, 2010, 8(3): 199-216. DOI:10.1007/s10311-010-0297-8
( ![]() |
[10] |
Sitte J, Akob D M, Kaufmann C, et al. Microbial links between sulfate reduction and metal retention in uranium-and heavy metal-contaminated soil[J]. Applied and Environmental Microbiology, 2010, 76(10): 3143-3152. DOI:10.1128/AEM.00051-10
( ![]() |
[11] |
Kiran M G, Pakshirajan K, Das G. Heavy metal removal from multicomponent system by sulfate reducing bacteria: Mechanism and cell surface characterization[J]. Journal of Hazardous Materials, 2017, 324(A): 62-70.
( ![]() |
[12] |
Martins M, Faleiro M L, Barros R J, et al. Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination[J]. Journal of Hazardous Materials, 2009, 166(2/3): 706-713.
( ![]() |
[13] |
Benzerara K, Miot J, Morin G, et al. Significance, mechanisms and environmental implications of microbial biomineralization[J]. Comptes Rendus Geoscience, 2011, 343(2/3): 160-167.
( ![]() |
[14] |
Wang M L, Wu S J, Yang Y Q, et al. Microbial induced carbonate precipitation and its application for immobilization of heavy metals: A review (In Chinese)[J]. Research of Environmental Sciences, 2018, 31(2): 206-214. [王茂林, 吴世军, 杨永强, 等. 微生物诱导碳酸盐沉淀及其在固定重金属领域的应用进展[J]. 环境科学研究, 2018, 31(2): 206-214.]
( ![]() |
[15] |
Zhu T T, Dittrich M. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: A review[J]. Frontiers in Bioengineering and Biotechnology, 2016, 4: 4.
( ![]() |
[16] |
Ji B, Chen W, Fan J, et al. Research progress on microbial induced calcium precipitation by ureolytic microbes and its prospect in engineering application (In Chinese)[J]. Journal of Nanjing University(Natural Science Edition), 2017(1): 191-198. [季斌, 陈威, 樊杰, 等. 产脲酶微生物诱导钙沉淀及其工程应用研究进展[J]. 南京大学学报(自然科学版), 2017(1): 191-198.]
( ![]() |
[17] |
Mugwar A J, Harbottle M J. Toxicity effects on metal sequestration by microbially-induced carbonate precipitation[J]. Journal of Hazardous Materials, 2016, 314: 237-248. DOI:10.1016/j.jhazmat.2016.04.039
( ![]() |
[18] |
Benedetto D F, Costagliola P, Benvenuti M, et al. Arsenic incorporation in natural calcite lattice: Evidence from electron spin echo spectroscopy[J]. Earth and Planetary Science Letters, 2006, 246(3/4): 458-465.
( ![]() |
[19] |
Alexandratos V G, Elzinga E J, Reeder R J. Arsenate uptake by calcite: Macroscopic and spectroscopic characterization of adsorption and incorporation mechanisms[J]. Geochimica et Cosmochimica Acta, 2007, 71(17): 4172-4187. DOI:10.1016/j.gca.2007.06.055
( ![]() |
[20] |
Sadiq M. Arsenic chemistry in soils: An overview of thermodynamic predictions and field observations[J]. Water, Air, and Soil Pollution, 1997, 93(1/2/3/4): 117-136. DOI:10.1007/BF02404751
( ![]() |
[21] |
Román-Ross G, Cuello G J, Turrillas X, et al. Arsenite sorption and co-precipitation with calcite[J]. Chemical Geology, 2006, 233(3): 328-336.
( ![]() |
[22] |
Cheng L, Fenter P, Sturchio N C, et al. X-ray standing wave study of arsenite incorporation at the calcite surface[J]. Geochimica et Cosmochimica Acta, 1999, 63(19/20): 3153-3157.
( ![]() |
[23] |
Kumari D, Qian X Y, Pan X L, et al. Microbially-induced carbonate precipitation for immobilization of toxic metals[J]. Advances in Applied Microbiology, 2016, 94: 79-108.
( ![]() |
[24] |
Costagliola P, Bardelli F, Benvenuti M, et al. Arsenic-bearing calcite in natural travertines: Evidence from sequential extraction, μXAS, and μXRF[J]. Environmental Science & Technology, 2013, 47(12): 6231-6238.
( ![]() |
[25] |
Li Q W, Csetenyi L, Gadd G M. Biomineralization of metal carbonates by Neurospora crassa[J]. Environmental Science & Technology, 2014, 48(24): 14409-14416.
( ![]() |
[26] |
Emerson D, Fleming E J, McBeth J M. Iron-oxidizing bacteria: An environmental and genomic perspective[J]. Annual Review of Microbiology, 2010, 64(1): 561-583. DOI:10.1146/annurev.micro.112408.134208
( ![]() |
[27] |
Hedrich S, Schlömann M, Johnson D B. The iron-oxidizing proteobacteria[J]. Microbiology(Reading, England), 2011, 157(Pt 6): 1551-1564.
( ![]() |
[28] |
修伟. 耐砷铁氧化菌的除砷特征及其机理研究[D]. 北京: 中国地质大学, 2016. Xiu W. Research on arsenic removal characteristics and mechanism of arsenic-tolerant iron oxidizing bacteria[D]. Beijing: China University of Geosciences, 2016. ( ![]() |
[29] |
Demopoulos G P, Droppert D J, van Weert G. Precipitation of crystalline scorodite(FeAsO4 · 2H2O) from chloride solutions[J]. Hydrometallurgy, 1995, 38(3): 245-261. DOI:10.1016/0304-386X(94)00062-8
( ![]() |
[30] |
Gonzalez-Contreras P, Weijma J, van der Weijden R, et al. Biogenic scorodite crystallization by Acidianus sulfidivorans for arsenic removal[J]. Environmental Science & Technology, 2010, 44(2): 675-680.
( ![]() |
[31] |
Xie Y, Zhou L X. Thermodynamics and kinetics of adsorption of arsenite in acid mining drainage by biogenic secondary iron minerals (In Chinese)[J]. Acta Pedologica Sinica, 2012, 49(3): 481-490. [谢越, 周立祥. 生物成因次生铁矿物对酸性矿山废水中三价砷的吸附[J]. 土壤学报, 2012, 49(3): 481-490.]
( ![]() |
[32] |
Emerson D, Moyer C. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH[J]. Applied and Environmental Microbiology, 1997, 63(12): 4784-4792. DOI:10.1128/AEM.63.12.4784-4792.1997
( ![]() |
[33] |
Sobolev D, Roden E E. Characterization of a neutrophilic, chemolithoautotrophic Fe(Ⅱ)-oxidizing β -proteobacterium from freshwater wetland sediments[J]. Geomicrobiology Journal, 2004, 21(1): 1-10. DOI:10.1080/01490450490253310
( ![]() |
[34] |
Ehrenreich A, Widdel F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism[J]. Applied and Environmental Microbiology, 1994, 60(12): 4517-4526. DOI:10.1128/AEM.60.12.4517-4526.1994
( ![]() |
[35] |
Kappler A, Newman D K. Formation of Fe(Ⅲ)-minerals by Fe(Ⅱ)-oxidizing photoautotrophic bacteria[J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1217-1226. DOI:10.1016/j.gca.2003.09.006
( ![]() |
[36] |
Benz M, Brune A, Schink B. Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria[J]. Archives of Microbiology, 1998, 169(2): 159-165. DOI:10.1007/s002030050555
( ![]() |
[37] |
Kappler A, Schink B, Newman D K. Fe(Ⅲ) mineral formation and cell encrustation by the nitrate-dependent Fe(Ⅱ)-oxidizer strain BoFeN1[J]. Geobiology, 2005, 3(4): 235-245. DOI:10.1111/j.1472-4669.2006.00056.x
( ![]() |
[38] |
Straub K L, Benz M, Schink B, et al. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron[J]. Applied and Environmental Microbiology, 1996, 62(4): 1458-1460. DOI:10.1128/AEM.62.4.1458-1460.1996
( ![]() |
[39] |
Bai Y H, Yang T T, Liang J S, et al. The role of biogenic Fe-Mn oxides formed in situ for arsenic oxidation and adsorption in aquatic ecosystems[J]. Water Research, 2016, 98: 119-127. DOI:10.1016/j.watres.2016.03.068
( ![]() |
[40] |
Sharma V K, Sohn M. Aquatic arsenic: Toxicity, speciation, transformations, and remediation[J]. Environment International, 2009, 35(4): 743-759. DOI:10.1016/j.envint.2009.01.005
( ![]() |
[41] |
Miyata N, Tani Y, Sakata M, et al. Microbial manganese oxide formation and interaction with toxic metal ions[J]. Journal of Bioscience and Bioengineering, 2007, 104(1): 1-8. DOI:10.1263/jbb.104.1
( ![]() |
[42] |
Meng Y T, Zheng Y M, Zhang L M, et al. Formation and reactions of biogenic manganese oxides with heavy metals in environment (In Chinese)[J]. Environmental Science, 2009, 30(2): 574-582. DOI:10.3321/j.issn:0250-3301.2009.02.044 [孟佑婷, 郑袁明, 张丽梅, 等. 环境中生物氧化锰的形成机制及其与重金属离子的相互作用[J]. 环境科学, 2009, 30(2): 574-582.]
( ![]() |
[43] |
Zhou D H, Kim D G, Ko S O. Heavy metal adsorption with biogenic manganese oxides generated by Pseudomonas putida strain MnB1[J]. Journal of Industrial and Engineering Chemistry, 2015, 24: 132-139. DOI:10.1016/j.jiec.2014.09.020
( ![]() |
[44] |
周娜娜. 生物氧化锰的形成及其对砷锑的吸附氧化作用[D]. 西安: 西安建筑科技大学, 2014. Zhou N N. Formation of biomanganese oxide and its adsorption and oxidation of arsenic and antimony[D]. Xi'an: Xi'an University of Architecture and Technology, 2014. ( ![]() |
[45] |
Liang J S, Bai Y H, Hu C Z, et al. Research progress of biogenic manganese oxides and application potential in water treatment process (In Chinese)[J]. Chinese Journal of Applied and Environmental Biology, 2013, 19(1): 11-19. [梁金松, 柏耀辉, 胡承志, 等. 锰生物氧化的研究进展及在水处理中的应用[J]. 应用与环境生物学报, 2013, 19(1): 11-19.]
( ![]() |
[46] |
Geeen H H. Description of a bacterium which oxidizes arsenite to arsenate, and of one which reduces arsenate to arsenite, isolated from a cattle-dipping tank[J]. South African Journal of Science, 1918(14): 465-467.
( ![]() |
[47] |
Fan H, Su C, Wang Y, et al. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China[J]. Journal of Applied Microbiology, 2008, 105(2): 529-539. DOI:10.1111/j.1365-2672.2008.03790.x
( ![]() |
[48] |
Quéméneur M, Heinrich-Salmeron A, Muller D, et al. Diversity surveys and evolutionary relationships of aoxB genes in aerobic arsenite-oxidizing bacteria[J]. Applied and Environmental Microbiology, 2008, 74(14): 4567-4573. DOI:10.1128/AEM.02851-07
( ![]() |
[49] |
Wang G J, Wang Q, Chen F, et al. Research progress of microbial arsenite oxidation regulation (In Chinese)[J]. Journal of Microbiology, 2014, 34(5): 1-7. DOI:10.3969/j.issn.1005-7021.2014.05.001 [王革娇, 王倩, 陈芳, 等. 微生物砷氧化调控研究进展[J]. 微生物学杂志, 2014, 34(5): 1-7.]
( ![]() |
[50] |
Andrianisa H A, Ito A, Sasaki A, et al. Biotransformation of arsenic species by activated sludge and removal of bio-oxidised arsenate from wastewater by coagulation with ferric chloride[J]. Water Research, 2008, 42(19): 4809-4817. DOI:10.1016/j.watres.2008.08.027
( ![]() |
[51] |
Alam R, McPhedran K N. Applications of biological sulfate reduction for remediation of arsenic-A review[J]. Chemosphere, 2019, 222: 932-944. DOI:10.1016/j.chemosphere.2019.01.194
( ![]() |
[52] |
Kirk M F, Roden E E, Crossey L J, et al. Experimental analysis of arsenic precipitation during microbial sulfate and iron reduction in model aquifer sediment reactors[J]. Geochimica et Cosmochimica Acta, 2010, 74(9): 2538-2555. DOI:10.1016/j.gca.2010.02.002
( ![]() |
[53] |
Rodriguez-Freire L, Sierra-Alvarez R, Root R, et al. Biomineralization of arsenate to arsenic sulfides is greatly enhanced at mildly acidic conditions[J]. Water Research, 2014, 66: 242-253. DOI:10.1016/j.watres.2014.08.016
( ![]() |
[54] |
Sun J, Quicksall A N, Chillrud S N, et al. Arsenic mobilization from sediments in microcosms under sulfate reduction[J]. Chemosphere, 2016, 153: 254-261. DOI:10.1016/j.chemosphere.2016.02.117
( ![]() |
[55] |
Altun M, Sahinkaya E, Durukan I, et al. Arsenic removal in a sulfidogenic fixed-bed column bioreactor[J]. Journal of Hazardous Materials, 2014, 269: 31-37. DOI:10.1016/j.jhazmat.2013.11.047
( ![]() |
[56] |
Saalfield S L, Bostick B C. Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems[J]. Environmental Science & Technology, 2009, 43(23): 8787-8793.
( ![]() |
[57] |
Sahinkaya E, Yurtsever A, Toker Y, et al. Biotreatment of As-containing simulated acid mine drainage using laboratory scale sulfate reducing upflow anaerobic sludge blanket reactor[J]. Minerals Engineering, 2015, 75: 133-139. DOI:10.1016/j.mineng.2014.08.012
( ![]() |
[58] |
Briones-Gallardo R, Escot-Espinoza V M, Cervantes-González E. Removing arsenic and hydrogen sulfide production using arsenic-tolerant sulfate-reducing bacteria[J]. International Journal of Environmental Science and Technology, 2017, 14(3): 609-622. DOI:10.1007/s13762-016-1174-1
( ![]() |
[59] |
Kocar B D, Borch T, Fendorf S. Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite[J]. Geochimica et Cosmochimica Acta, 2010, 74(3): 980-994. DOI:10.1016/j.gca.2009.10.023
( ![]() |
[60] |
Le Pape P, Battaglia-Brunet F, Parmentier M, et al. Complete removal of arsenic and zinc from a heavily contaminated acid mine drainage via an indigenous SRB consortium[J]. Journal of Hazardous Materials, 2017, 321(5): 764-772.
( ![]() |
[61] |
Rodriguez-Freire L, Moore S E, Sierra-Alvarez R, et al. Arsenic remediation by formation of arsenic sulfide minerals in a continuous anaerobic bioreactor[J]. Biotechnology and Bioengineering, 2016, 113(3): 522-530. DOI:10.1002/bit.25825
( ![]() |
[62] |
Bostick B C, Fendorf S. Arsenite sorption on troilite(FeS) and pyrite(FeS2)[J]. Geochimica et Cosmochimica Acta, 2003, 67(5): 909-921. DOI:10.1016/S0016-7037(02)01170-5
( ![]() |
[63] |
Liu F J, Zhang G P, Liu S R, et al. Bioremoval of arsenic and antimony from wastewater by a mixed culture of sulfate-reducing bacteria using lactate and ethanol as carbon sources[J]. International Biodeterioration & Biodegradation, 2018, 126: 152-159.
( ![]() |
[64] |
Burton E D, Johnston S G, Kocar B D. Arsenic mobility during flooding of contaminated soil: The effect of microbial sulfate reduction[J]. Environmental Science & Technology, 2014, 48(23): 13660-13667.
( ![]() |
[65] |
Yan L, Lin Z J, Wang X, et al. Effects of organic manure fertilizers and its amendment of sulfates on availability of arsenic and cadmium in soil-rice system (In Chinese)[J]. Acta Pedologica Sinica, 2020, 57(3): 667-679. [严露, 林朝君, 王欣, 等. 有机肥及复配硫酸盐对土壤-水稻系统砷镉有效性的调控[J]. 土壤学报, 2020, 57(3): 667-679.]
( ![]() |
[66] |
He Z F, Zhang Q Y, Wei Z, et al. Simultaneous removal of As(Ⅲ) and Cu(Ⅱ) from real bottom ash leachates by manganese-oxidizing aerobic granular sludge: Performance and mechanisms[J]. Science of the Total Environment, 2020, 700: 134510. DOI:10.1016/j.scitotenv.2019.134510
( ![]() |
[67] |
Catelani T, Perito B, Bellucci F, et al. Arsenic uptake in bacterial calcite[J]. Geochimica et Cosmochimica Acta, 2018, 222: 642-654. DOI:10.1016/j.gca.2017.11.013
( ![]() |
[68] |
Hohmann C, Morin G, Ona-Nguema G, et al. Molecular-level modes of As binding to Fe(Ⅲ)(oxyhydr) oxides precipitated by the anaerobic nitrate-reducing Fe(Ⅱ)-oxidizing Acidovorax sp. strain BoFeN1[J]. Geochimica et Cosmochimica Acta, 2011, 75(17): 4699-4712. DOI:10.1016/j.gca.2011.02.044
( ![]() |
[69] |
Hohmann C, Winkler E, Morin G, et al. Anaerobic Fe(Ⅱ)-oxidizing bacteria show as resistance and immobilize as during Fe(Ⅲ) mineral precipitation[J]. Environmental Science & Technology, 2010, 44(1): 94-101.
( ![]() |
[70] |
Singh A L, Singh V K, Yadav A. Arsenic sequestration by manganese-oxidizing acinetobacter sp[J]. Indian Journal of Biotechnology, 2016, 15(4): 525-530.
( ![]() |
[71] |
Katsoyiannis I A, Zouboulis A I, Jekel M. Kinetics of bacterial as(Ⅲ) oxidation and subsequent as(V) removal by sorption onto biogenic manganese oxides during groundwater treatment[J]. Industrial & Engineering Chemistry Research, 2004, 43(2): 486-493.
( ![]() |
[72] |
He Z F, Zhang Q Y, Wei Z, et al. Multiple-pathway arsenic oxidation and removal from wastewater by a novel manganese-oxidizing aerobic granular sludge[J]. Water Research, 2019, 157: 83-93. DOI:10.1016/j.watres.2019.03.064
( ![]() |
[73] |
Keimowitz A R, Mailloux B J, Cole P, et al. Laboratory investigations of enhanced sulfate reduction as a groundwater arsenic remediation strategy[J]. Environmental Science & Technology, 2007, 41(19): 6718-6724.
( ![]() |
[74] |
Teclu D, Tivchev G, Laing M, et al. Bioremoval of arsenic species from contaminated waters by sulphate-reducing bacteria[J]. Water Research, 2008, 42(19): 4885-4893. DOI:10.1016/j.watres.2008.09.010
( ![]() |
[75] |
Lin H, Li Z, He Y H, et al. Advances in treatment of acid mine drainage by sulfate-reducing bacteria (In Chinese)[J]. Environmental Protection Science, 2019, 45(5): 25-31. [林海, 李真, 贺银海, 等. 硫酸盐还原菌治理酸性矿山废水研究进展[J]. 环境保护科学, 2019, 45(5): 25-31.]
( ![]() |
[76] |
Xu S, Zhang D C, Wu M, et al. Application of sulfate-reducing bacteria in treating acid mine wastewater (In Chinese)[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 92-97. [徐师, 张大超, 吴梦, 等. 硫酸盐还原菌在处理酸性矿山废水中的应用[J]. 有色金属科学与工程, 2018, 9(1): 92-97.]
( ![]() |
[77] |
Achal V, Pan X L, Fu Q L, et al. Biomineralization based remediation of As(Ⅲ) contaminated soil by Sporosarcina ginsengisoli[J]. Journal of Hazardous Materials, 2012, 201/202: 178-184. DOI:10.1016/j.jhazmat.2011.11.067
( ![]() |
[78] |
Xu Y B, Qian C X, Lu Z W. Remediation of heavy metal contaminated soils by bacteria biomineralization (In Chinese)[J]. Chinese Journal of Environmental Engineering, 2013, 7(7): 2763-2768. [许燕波, 钱春香, 陆兆文. 微生物矿化修复重金属污染土壤[J]. 环境工程学报, 2013, 7(7): 2763-2768.]
( ![]() |
[79] |
Wang Z S, Wang X J, Chen X P, et al. The effect of microbial iron oxidation on arsenic mobility and transformation (In Chinese)[J]. Acta Scientiae Circumstantiae, 2011, 31(2): 328-333. [王兆苏, 王新军, 陈学萍, 等. 微生物铁氧化作用对砷迁移转化的影响[J]. 环境科学学报, 2011, 31(2): 328-333.]
( ![]() |
[80] |
He Z F, Li Z Y, Zhang Q Y, et al. Simultaneous remediation of As(Ⅲ) and dibutyl phthalate(DBP) in soil by a manganese-oxidizing bacterium and its mechanisms[J]. Chemosphere, 2019, 220: 837-844. DOI:10.1016/j.chemosphere.2018.12.213
( ![]() |
[81] |
Xiao A W, Li W C, Ye Z H. Effects of Fe-oxidizing bacteria(FeOB) on iron plaque formation, As concentrations and speciation in rice(Oryza sativa L.)[J]. Ecotoxicology and Environmental Safety, 2020, 190: 110136. DOI:10.1016/j.ecoenv.2019.110136
( ![]() |
[82] |
Jia Y, Bao P, Zhu Y G. Arsenic bioavailability to rice plant in paddy soil: Influence of microbial sulfate reduction[J]. Journal of Soils and Sediments, 2015, 15(9): 1960-1967. DOI:10.1007/s11368-015-1133-3
( ![]() |
[83] |
Xu X W, Wang P, Zhang J, et al. Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction[J]. Environmental Pollution, 2019, 251: 952-960. DOI:10.1016/j.envpol.2019.05.086
( ![]() |
[84] |
邹丽娜. 硫肥和猪粪肥对土壤-水稻系统砷迁移转化的影响及微生物作用机制[D]. 杭州: 浙江大学, 2018. Zou L N. Effect of sulfur fertilizer and pig manure on the migration and transformation of arsenic in soil-rice system and microbial mechanism[D]. Hangzhou: Zhejiang University, 2018. ( ![]() |
[85] |
周静晓. 深海细菌锰氧化物特性和对砷的氧化解毒研究[D]. 武汉: 华中农业大学, 2011. Zhou J X. Research on the characteristics of manganese oxide and oxidative detoxification of arsenic in deep sea bacteria[D]. Wuhan: Huazhong Agricultural University, 2011. ( ![]() |
[86] |
Wilkin R T, Wallschläger D, Ford R G. Speciation of arsenic in sulfidic waters[J]. Geochemical Transactions, 2003, 4: 1. DOI:10.1186/1467-4866-4-1
( ![]() |
[87] |
Kaksonen A H, Puhakka J A. Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals[J]. Engineering in Life Sciences, 2007, 7(6): 541-564. DOI:10.1002/elsc.200720216
( ![]() |
[88] |
Okibe N, Koga M, Morishita S, et al. Microbial formation of crystalline scorodite for treatment of As(Ⅲ)-bearing copper refinery process solution using Acidianus brierleyi[J]. Hydrometallurgy, 2014, 143: 34-41. DOI:10.1016/j.hydromet.2014.01.008
( ![]() |
[89] |
Larese-Casanova P, Haderlein S B, Kappler A. Biomineralization of lepidocrocite and goethite by nitrate-reducing Fe(Ⅱ)-oxidizing bacteria: Effect of pH, bicarbonate, phosphate, and humic acids[J]. Geochimica et Cosmochimica Acta, 2010, 74(13): 3721-3734. DOI:10.1016/j.gca.2010.03.037
( ![]() |
[90] |
张琼. 生物氧化锰的形成及其与砷的交互作用[D]. 山西临汾: 山西师范大学, 2013. Zhang Q. Formation of biomanganese oxide and its interaction with arsenic[D]. Linfen, Shanxi: Shanxi Normal University, 2013. ( ![]() |
[91] |
Jiang L H, Liu X D, Yin H Q, et al. The utilization of biomineralization technique based on microbial induced phosphate precipitation in remediation of potentially toxic ions contaminated soil: A mini review[J]. Ecotoxicology and Environmental Safety, 2020, 191: 110009. DOI:10.1016/j.ecoenv.2019.110009
( ![]() |
[92] |
Achal V, Pan X, Zhang D Y. Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation[J]. Ecological Engineering, 2011, 37(10): 1601-1605. DOI:10.1016/j.ecoleng.2011.06.008
( ![]() |
[93] |
Labastida-Núñez I, Lázaro I, Celis L B, et al. Kinetic of biogenic sulfide production for microbial consortia isolated from soils with different bioaccessible concentrations of lead[J]. International Journal of Environmental Science and Technology, 2013, 10(4): 827-836. DOI:10.1007/s13762-012-0123-x
( ![]() |
[94] |
Okibe N, Koga M, Sasaki K, et al. Simultaneous oxidation and immobilization of arsenite from refinery waste water by thermoacidophilic iron-oxidizing archaeon, Acidianus brierleyi[J]. Minerals Engineering, 2013, 48: 126-134. DOI:10.1016/j.mineng.2012.08.009
( ![]() |
[95] |
Govarthanan M, Mythili R, Kamala-Kannan S, et al. In-vitro bio-mineralization of arsenic and lead from aqueous solution and soil by wood rot fungus, trichoderma sp[J]. Ecotoxicology and Environmental Safety, 2019, 174: 699-705. DOI:10.1016/j.ecoenv.2019.03.034
( ![]() |
[96] |
Saunders J A, Lee M K, Shamsudduha M, et al. Geochemistry and mineralogy of arsenic in(natural) anaerobic groundwaters[J]. Applied Geochemistry, 2008, 23(11): 3205-3214. DOI:10.1016/j.apgeochem.2008.07.002
( ![]() |