检索项 检索词
  土壤学报  2022, Vol. 59 Issue (1): 206-217  DOI: 10.11766/trxb202006020213
0

引用本文  

宁琪, 陈林, 李芳, 等. 被孢霉对土壤养分有效性和秸秆降解的影响. 土壤学报, 2022, 59(1): 206-217.
NING Qi, CHEN Lin, LI Fang, et al. Effects of Mortierella on Nutrient Availability and Straw Decomposition in Soil. Acta Pedologica Sinica, 2022, 59(1): 206-217.

基金项目

国家重点研发计划项目(2016YFD0300802)、国家自然科学基金项目(41807017)和江苏省自然科学基金项目(BK20171106)共同资助

通讯作者Corresponding author

张佳宝, E-mail: jbzhang@issas.ac.cn

作者简介

宁琪(1992-)女, 湖南常德人, 博士研究生, 从事土壤地力提升的微生物研究。E-mail: qning@issas.ac.cn
被孢霉对土壤养分有效性和秸秆降解的影响
宁琪1,2, 陈林1, 李芳3, 张丛志1, 马东豪1, 蔡泽江4, 张佳宝1,2    
1. 土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所), 南京 210008;
2. 中国科学院大学, 北京 100049;
3. 河南农业大学资源与环境学院, 郑州 450002;
4. 中国农业科学院衡阳红壤实验站/祁阳农田生态系统国家野外试验站, 湖南祁阳 426182
摘要:腐生真菌被孢霉在富含有机质的土壤中丰度很高,为土壤碳及养分转化的关键微生物成员。然而目前关于土著被孢霉在秸秆分解过程中对土壤养分有效性影响的研究较少。采用常规平板稀释法从长期施用有机肥的红壤和砂姜黑土中分离真菌菌株,将分离得到的菌株序列与基因库(GenBank)中的序列进行比较,鉴定出了两株被孢霉菌株,即高山被孢霉(Mortierella alpina)和长孢被孢霉(Mortierella elongata)。通过设置盆栽试验,每盆土接种10 g菌剂,研究两株被孢霉对秸秆降解过程中土壤养分有效性和细菌群落的影响。结果表明,在红壤中,与未接种对照相比,接种高山被孢霉处理的土壤有效磷含量提高了29.0%,长孢被孢霉处理下土壤有效氮含量和β-葡萄糖苷酶活性分别提高了15.5%和81.3%。在砂姜黑土中,与对照相比,被孢霉菌株显著提高了土壤可溶性有机碳,速效氮和有效磷的含量以及β-葡萄糖苷酶和磷酸酶的活性。两株被孢霉在红壤中抑制了秸秆的降解,并显著改变细菌群落组成。而在砂姜黑土中,被孢霉菌株促进了秸秆降解,且对细菌群落结构影响不大。在红壤中,苍白杆菌属(Ochrobactrum)、无色杆菌属(Achromobacter)和链霉菌属(Streptomyces)是导致接种处理和对照之间细菌群落差异贡献最大的类群。本研究为土著被孢霉在农业土壤中秸秆分解和养分转化中的作用提供了理论依据。
关键词被孢霉    秸秆降解    土壤肥力    细菌群落    红壤    砂姜黑土    
Effects of Mortierella on Nutrient Availability and Straw Decomposition in Soil
NING Qi1,2, CHEN Lin1, LI Fang3, ZHANG Congzhi1, MA Donghao1, CAI Zejiang4, ZHANG Jiabao1,2    
1. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China;
4. Hengyang Red Soil Experimental Station of Chinese Academy of Agricultural Sciences/National Observation and Research Station of Farmland Ecosystem in Qiyang, Qiyang, Hunan 426182, China
Abstract: 【Objective】Saprophytic fungi can convert complex organic substances into available components, which is closely related to soil nutrient availability and carbon (C) sequestration. Mortierella has been reported to be substantially enhanced after long-term fertilization in agricultural soils. Studies in the past demonstrated that some species of Mortierella did make important contributions to soil nutrient transformation and availability, and were able to degrade hemicellulose, cellulose and lignin, and hence could directly affect straw decomposition and alter nutrient status of the soil. Furthermore, Mortierella species show great ability to excrete a large volume of polyunsaturated fatty acids, which contained abundant C sources, thus altering the soil microhabitat. It was therefore, presumed that Mortierella inoculants could affect soil microbial communities in part by changing their nutrient uptake, thus indirectly influencing soil nutrient transformation and availability in the soil. However, empirical evidence of the effects of Mortierella inoculants on the soil microbial communities under planting conditions is seldom available. The objective of this study was to explore how indigenous strains of Mortierella affect soil nutrient availability during the process of straw decomposition.【Method】Two strains of Mortierella (Mortierella alpina and Mortierella elongata) were isolated from two types of agricultural soils (red soil and Shajiang black soil) that had been applied with organic manure for decades. A pot experiment, designed to have three treatments, i.e. no inoculation (Control); inoculation with Mortierella alpina (Ma); and inoculation with Mortierella elongata (Me), and three replicates for each treatment, was conducted with the two soils packed in the pots separately and incorporated with straw. Availability of C, nitrogen (N) and phosphorus (P) and activities of β-glucosidase, N-acetyl-β-glucosaminidase and phosphatase were determined. Chemical C structure of the residual straw and bacterial community composition in the soil was analyzed with the aid of the solid state 13C-nuclear magnetic resonance (13C-NMR) spectroscopy and the technique of 16S rRNA gene amplicon sequencing, respectively.【Result】In red soil, Treatment Ma increased the content of soil available P by 29.0%, while Treatment Me did the content of soil available N and the activity of β-glucosidase by 15.5% and 81.3%, respectively. In Shajiang black soil, both Mortierella treatments notably increased the content of soil available N and the activity of β-glucosidase. In addition, Treatment Ma significantly increased the activity of phosphatase, while Treatment Me did the content of dissolved organic C and soil available P by 16.2% and 11.5%, respectively. In red soil, Mortierella inoculants inhibited straw decomposition and significantly altered composition and metabolic functions of the bacterial community, while in Shajiang black soil, they promoted straw degradation but had little effect on bacterial community structure. Ochrobactrum, Achromobacter and Streptomyces were the most influential taxa contributing to differences in bacterial community between the treatments and the control in red soil. Network analysis showed that the interactions between soil microbes were more complex connectedness in red soil than in Shajiang black soil. Lysobacter, Stenotrophomonas, Pantoea, Phyllobacteriaceae and Solirubrobacterales were identified as the keystone taxa in red soil, while Comamonadaceae, Lysobacter, Cytophagaceae and Serpens flexibilis were in Shajiang black soil. These keystone taxa acted as decomposers or biocontrol agents, and played important roles in maintaining microbial interactions and in potential processes of straw decomposition.【Conclusion】The present study has demonstrated that Mortierella alpina and Mortierella elongata can improve soil C, N and P availability and associated enzyme activities, and provide evidence of roles of indigenous strains of Mortierella strains on straw decomposition and nutrient transformation in agricultural soils.
Key words: Mortierella    Straw degradation    Soil fertility    Bacterial community    Red soil    Shajiang black soil    

真菌根据其功能可分为三大类:腐生真菌、致病菌和菌根共生菌。腐生真菌能够将复杂的有机物转化为可利用的组分,与土壤碳周转和储存密切相关[1]。土壤腐生真菌群落主要由子囊菌门(Ascomycota)和担子菌门(Basidiomycota)组成,它们在降解有机物方面起着重要作用。子囊菌主要在分解过程的早期降解秸秆残体的不稳定部分,而担子菌主要在分解过程的后期分解难降解有机物[2]。最近有研究表明,长期施肥能导致农田土壤中接合菌门(Zygomycota)中被孢霉属(Mortierella)的丰度大量增加[1-3],而某些特定的被孢霉菌对土壤养分转化和有效性具有重要贡献。例如,被孢霉(Mortierella sp.)具有通过在不同土壤中释放多种有机酸来溶解土壤磷的潜力[4]。被孢霉(Mortierella sp.)与丛枝菌根真菌的双接种在盐碱地相互作用,能够提高土壤磷酸酶活性,促进植物生长[5]。最近,Tamayo-Velez和Osorio[6]的研究发现,在果园土壤中添加被孢霉(Mortierella sp.)可显著增加有效磷、钾、钙、镁和硼的含量。本课题组早期的研究证明了一株长孢被孢霉菌株(Mortierella elongata SX)在矿质土壤的养分转化和促进植物生长方面起着关键作用[7]

目前,秸秆还田由于能够替代部分化肥,提高土壤肥力和作物产量,在近几十年来得到了广泛的应用。被孢霉能够降解半纤维素、纤维素和木质素[8-9],并可能直接影响秸秆的分解和土壤养分状况的改变。被孢霉是一种产油丝状真菌[10],其菌丝在有机降解过程中会影响其他微生物类群对养分的吸收。另一方面,发达的菌丝也能通过影响土壤团聚体而改变土壤微生境[11]。此外,被孢霉属的某些种类,尤其是高山被孢霉(Mortierella alpina),会产生广泛的多不饱和脂肪酸,如花生四烯酸、γ亚麻酸和二十碳五烯酸[10]。这些脂肪酸含有丰富的碳源,可能改变土壤微生物的生境。由此推测,接种被孢霉真菌可能会通过改变养分吸收和土壤微生境来影响土壤微生物群落,从而间接影响土壤养分转化和有效性。然而迄今为止,关于接种被孢霉在种植条件下对秸秆降解过程中养分转化和有效性及微生物群落影响的理论依据很少。

为了解决上述问题,本研究从两种长期施用有机肥的红壤和砂姜黑土中分别分离出了一株高山被孢霉和一株长孢被孢霉,通过设计盆栽试验将这两株土著被孢霉制作为菌剂施入土壤中,研究其对土壤养分有效性的影响,并通过高通量测序技术,测定了秸秆降解过程中被孢霉菌株对细菌群落组成的影响。

1 材料与方法 1.1 被孢霉菌株的分离与菌剂的制备

在位于湖南祁阳的长期定位施肥试验站采集红壤进行菌株筛选。通过采用常规平板稀释法分离真菌菌株,28℃条件下在马铃薯葡萄糖琼脂(PDA)上培养5~7 d,观察真菌菌落的生长情况。然后使用真菌DNA试剂盒(Omega Bioteck,Norcross,GA,美国)提取DNA。使用通用引物ITS1和ITS4扩增内转录间隔区基因。PCR反应条件为:95℃ 3 min;94℃ 30 s,60℃ 30 s每个循环下降1℃,72℃ 30 s,5个循环;94℃ 30 s,55℃ 30 s,72℃ 30 s,30个循环;72℃ 3 min。PCR产物用2%琼脂糖凝胶电泳检测,产物经纯化后,使用DNA分析仪(ABI 3730XL,Applied Biosystems,美国)进行测序。测序结果可以使用ChromasPro软件进行序列拼接,再将得到的菌株序列与基因库(GenBank)中的序列进行比较,确认分离得到的菌株为高山被孢霉(Mortierella alpina)相似度为100%。长孢被孢霉(Mortierella elongata)从施有机肥35 a的砂姜黑土中分离所得[7]

两株被孢霉菌株在含有30 g麦麸、40 g豆饼粉、30 g面粉和100 mL去离子水的无菌麦麸培养基中进行增殖。被孢霉菌剂的制备方法如下:将豆饼粉在蒸馏水中浸泡30 min,然后加入麦麸和面粉搅拌均匀。将菌剂转移至三角瓶中,进行高温高压灭菌。最后,在超净台中将马铃薯葡萄糖琼脂培养基上培养的被孢霉菌丝接种到经灭菌处理的菌剂中,在28℃的黑暗环境中培养10 d,直至长满菌丝。采用平板计数法计算被孢霉菌剂中活菌含量为104 CFU·g–1

1.2 盆栽试验设计与采样

从江西鹰潭和安徽太和两个农田土壤中采集的红壤和砂姜黑土用于盆栽试验。该红壤和砂姜黑土以往的施肥方式为化肥,且种植模式均为小麦-玉米轮作。红壤的基本理化性质为:土壤pH 4.69,有机碳含量6.91 g·kg–1,全氮0.59 g·kg–1,全磷0.38 g·kg–1,全钾14.98 g·kg–1,碱解氮46.79 mg·kg–1,有效磷9.88 mg·kg–1,速效钾115 mg·kg–1。砂姜黑土的基本理化性质为:土壤pH 8.06,有机碳10.18 g·kg–1,全氮1.12 g·kg–1,全磷0.74 g·kg–1,全钾12.32 g·kg–1,碱解氮83.77 mg·kg–1,有效磷11.68 mg·kg–1,速效钾194 mg·kg–1

将小麦秸秆剪成1~2 cm的小段,灭菌烘干,然后装入200目的尼龙网袋(8 cm×8 cm)。将2 kg土壤与10 g菌剂混匀后装盆,并在花盆中间放入网袋,调节土壤含水量至最大田间持水量的60%。试验使用2种土壤,设计3个处理,每个处理重复3次。处理为:接种无菌菌剂(CK)、接种高山被孢霉菌剂(Ma)和接种长孢被孢霉菌剂(Me)。

试验种植的植物为多年生黑麦草,该植物已被广泛用作控制条件下的模式植物[12]。将黑麦草种子表面用30%的H2O2消毒30 min,用自来水冲洗干净后再用蒸馏水洗几次。种子放置在一层浸过水的纱布上,在25℃的黑暗中发芽48 h。用吸水纸将种子表面的水分吸干后,选择大小相近的黑麦草种子0.8 g移植入盆中,置于植物生长室,设置为白天26℃,14 h,晚上20℃,10 h,相对湿度约为60%,每隔一天浇水一次。经过35 d的生长后,黑麦草被移出花盆。将收集到的土壤分为两部分,一部分风干后测定土壤pH和养分指标,另一部分在4℃保存,用来测定β-葡萄糖苷酶、乙酰氨基葡萄糖苷酶和磷酸酶。将收集到的秸秆分为两部分,一部分烘干,用来测定秸秆降解率及其化学结构,另一部分提取DNA,测定秸秆细菌群落。

1.3 土壤理化性质及秸秆化学结构测定

土壤理化性质的分析方法参照《土壤农业化学分析方法》[13]。土壤pH采用1︰2.5的土水比混合后用pH计测定;土壤硝态氮和铵态氮用2 mol·L–1 KCl溶液浸提后用比色法测定;土壤有效磷(Available phosphorus,AP)由NaHCO3浸提后,采用钼锑抗比色法进行测定;土壤可溶性有机碳(Dissolved organic carbon,DOC)和可溶性有机氮用0.5mol L–1 K2SO4浸提,上清液过0.45 μm滤膜后采用有机碳氮分析仪(multi N/C 3100,Analytik Jena AG,德国)测定。将土壤硝态氮、铵态氮和可溶性有机氮含量之和作为速效氮(Available nitrogen,AN)[14]。土壤酶活性采用鲜土测定:β -葡萄糖苷酶、乙酰氨基葡萄糖苷酶和磷酸酶分别以对硝基苯-β-D-吡喃葡萄糖苷(p-nitrophenyl-β-D- glucopyranoside)、对硝基苯乙酰基氨基葡萄糖苷(p-nitrophenyl-N-acetyl-β-D-glucosaminide)和对硝基苯磷酸二钠盐(p-nitrophenyl phosphate)为底物进行测定[14]

将一部分秸秆在60℃烘干至恒重,计算含水量及秸秆降解率。随后,将烘干的秸秆样品用球磨仪粉碎混匀,利用13C固态核磁共振(13C-NMR)技术对秸秆碳化学结构进行分析。将获得的化学结构波普分为四个官能团区[15]:烷基碳区(Alkyl C,δ=0~45)、烷氧碳区(O-alkyl C,δ= 45~110)、芳香碳区(Aromatic C,δ= 110~160)和羰基碳区(Carbonyl C,δ= 160~220)。

1.4 秸秆细菌高通量测序

秸秆样品DNA使用FastDNA Spin Kit试剂盒提取,每个样品称取0.2 g。秸秆细菌16S rRNA基因V4区扩增采用的引物为515F(5’-GTGCCAGCMG CCGCGGTAA-3’)/806R(5’-GGACTACHVGGGTW TCTAAT-3’)。在每个样品的前端引物中插入不同的5 bp barcode序列来区分不同的样品。PCR扩增条件为:94℃ 5 min;30×(94℃ 45 s,52℃ 30 s,72℃ 45 s);72℃ 7 min。PCR反应产物用AxyPrep Mag PCR Clean-up Kit进行纯化后,采用Illumina MiSeq测序仪进行序列测定。

测序得到的原始数据去除引物接头序列后进行拼接。采用QIIME[16]将低质量的序列(质量分数小于20,序列短于200 bp)去除。使用UCHIME[17]检测并去除嵌合体序列。剩下的高质量序列由UCLUST[18]以97%的相似度划分成OTU(操作分类单元),使用Greengenes数据库(13.8版本)进行比对注释。将注释为古菌和叶绿体的序列删除,并将所有样品随机抽取65 000条序列进行后续分析。

1.5 数据统计分析

在SPSS 17.0中进行单因素方差分析,采用最小显著差异法(LSD)检验,比较不同处理间土壤性状和秸秆化学结构的显著性差异。基于Bray-Curtis距离的非度量多维尺度分析(Nonmetric multidimensional scaling,NMDS)和置换多元方差分析(Permutation multivariate analysis of variance,PERMANOVA)以及相似性百分比分析(Similarity percentage analysis,SIMPER)在R软件的vegan包中进行。利用MINE软件,根据最大信息系数(MIC)得分建立细菌群落与土壤性状的共生网络。为了减少网络复杂度,通过SIMPER选取每两个处理间对群落影响最大的前100个OTU进行网络分析。进行成对比较后,只选取| r | > 0.80和MIC-ρ2 > 0.8的关系在Cytoscape v.3.6.1中构建网络。使用网络分析(NetworkAnalyser)工具计算网络拓扑参数,并将中介中心性得分最高的前五个OTUs作为关键类群。

2 结果 2.1 被孢霉对土壤养分、酶活性和秸秆降解的影响

在红壤中,两株被孢霉均有效提高了土壤pH;高山被孢霉处理下土壤有效磷含量提高了29.0%,长孢被孢霉处理下土壤速效氮含量和β-葡萄糖苷酶活性分别增加了15.5%和81.3%。在砂姜黑土中,与对照相比,两种被孢霉处理下速效氮含量和β-葡萄糖苷酶活性分别显著提高了22.3%~55.1%和25.8%~56.8%。此外,接种高山被孢霉还显著提高了磷酸酶活性;长孢被孢霉处理使可溶性有机碳和有效磷含量分别增加了16.2%和11.5%(表 1)。

表 1 接种两株被孢霉对红壤和砂姜黑土养分及酶活性的影响 Table 1 Effects of Mortierella inoculation on available nutrient contents and enzymes activities in red soil and Shajiang black soil

被孢霉对秸秆降解的影响在两种土壤中显示了不同的结果(表 2)。两株被孢霉显著促进了秸秆在砂姜黑土中的降解,但是抑制了秸秆在红壤中的降解。13C-NMR结果表明,与对照相比,接种被孢霉后烷氧碳的含量略微增加,而羰基碳的含量减少。

表 2 不同被孢霉处理对秸秆降解及其化学碳结构的影响 Table 2 Effects of Mortierella inoculation on decomposition and chemical carbon structure of wheat straw
2.2 被孢霉对秸秆细菌群落结构的影响

对细菌群落组成在门水平上进行分类(图 1),结果表明:在红壤中,接种高山被孢霉和长孢被孢霉使厚壁菌门(Firmicutes)的相对丰度分别提高了186.6% 和88.2%,β-变形菌门(Betaproteobacteria)的相对丰度分别下降了74.1% 和68.8%。在砂姜黑土中,接种高山被孢霉和长孢被孢霉使γ-变形菌门(Gammaproteobacteria)的相对丰度分别增加了13.9% 和55.6%,且接种长孢被孢霉使厚壁菌门(Firmicutes)的相对丰度增加了44.9%。NMDS展示了不同接菌处理之间细菌群落的变化。结果表明,不同处理间细菌群落结构在红壤中明显分离(P < 0.05)。在砂姜黑土中,被孢霉对细菌群落结构无显著影响(P = 0.122)(图 1)。

图 1 不同被孢霉处理下秸秆细菌群落非度量多维尺度分析(NMDS)及群落组成(门水平) Fig. 1 Nonmetric multidimensional scaling(NMDS)analysis of the bacterial community in Mortierella-inoculated straw and compositions of the communities in phylum level

SIMPER分析了对秸秆细菌群落组成差异贡献最大的前五个OTU(表 3)。在红壤中,苍白杆菌属(Ochrobactrum)、无色杆菌属(Achromobacter)和链霉菌属(Streptomyces)在两种被孢霉处理中对秸秆细菌群落组成变异的贡献均很大。高山被孢霉处理中微杆菌属(Microbacterium)和原小单孢菌属(Promicromonospora),以及长孢被孢霉处理中土壤杆菌属(Agrobacterium)和壤霉菌属(Agromyces)相对丰度的增加也解释了细菌群落组成的变化。在砂姜黑土中,两株被孢霉的接种处理均导致了泛菌属(Pantoea)相对丰度的增加和鞘脂杆菌科(Sphingobacteriaceae)相对丰度的降低。此外,高山被孢霉与对照之间细菌群落的变异也体现在土壤杆菌属(Agrobacterium)的减少,以及无色杆菌属(Achromobacter)和链霉菌属(Streptomyces)的增加。与对照相比,长孢被孢霉增加了土壤杆菌属(Agrobacterium)和寡养单胞菌(Stenotrophomonas)相对丰度,降低了链霉菌(Streptomyces)的相对丰度。

表 3 接种被孢霉对秸秆细菌群落差异影响最大的类群 Table 3 Most influential taxa contributing to variation of bacterial community in Mortierella-inoculated treatments
2.3 被孢霉对土壤微生物网络构建和关键类群的影响

在红壤中构建的网络由118个节点和549条相关关系组成(其中81%为正相关,2%为负相关),聚类系数为0.56。节点主要属于放线菌(Actinobacteria)和α-变形菌(Alphaproteobacteria)(图 2)。在砂姜黑土中构建的网络由114个节点和304条相关关系组成(其中66%为正相关,13%为负相关),聚类系数为0.37。节点主要为α-变形菌(Alphaproteobacteria)、拟杆菌(Bacteroidetes)和放线菌(Actinobacteria)。基于中介中心性得分最高的前5个OTU,叶杆菌科(Phyllobacteriaceae)、寡养单胞菌(Stenotrophomonas)、泛菌属(Pantoea)、Solirubrobacterales和溶杆菌属(Lysobacter)被鉴定为红壤中秸秆降解的关键类群;砂姜黑土中秸秆降解的关键类群是丛毛单胞菌科(Comamonadaceae)、溶杆菌属(Lysobacter)、噬纤维菌科(Cytophagaceae)和Serpens flexibilis表 4)。

注:灰线、蓝线和红线分别代表强烈的线性正相关(r > 0.8)、线性负相关(r < −0.8)和非线性相关(MIC-ρ2 > 0.8),线条的宽度与相关性的强度成正比。DOC:可溶性有机碳;AN:速效氮;AP:有效磷;GC:β-葡萄糖苷酶;NAG:乙酰氨基葡萄糖苷酶;PA:磷酸酶。  Note:Gray line,blue line,and red line represent strong positive linear correlation(r > 0.8),strong negative linear correlation(r < − 0.8)and strong nonlinear correlation(MIC-ρ2 > 0.8),respectively. Widths of the lines are proportional to strength of the correlation. DOC:Dissolved organic carbon;AN:Available N;AP:Available P;GC:β-glucosidase;NAG:N-acetyl-β-glucosaminidase;PA:Phosphatas. 图 2 被孢霉处理对红壤和砂姜黑土中秸秆细菌群落网络组成的影响 Fig. 2 Network analysis of composition of the straw bacterial communities in response to Mortierella inoculation in the red soil and Shajiang black soil

表 4 被孢霉处理下红壤和砂姜黑土秸秆降解过程中细菌群落的网络参数和关键类群 Table 4 Network parameters and keystone taxa of the bacterial community in decomposing straw as affected by Mortierella inoculation in red soil and Shajiang black soil
3 讨论 3.1 接种被孢霉影响了土壤养分和酶活性

高山被孢霉和长孢被孢霉缓解了红壤的酸化(表 1)。类似地,Tamayo-Vélez和Osorio[6]发现接种一株被孢霉(Mortierella sp.)会提升酸性果园土壤的pH。这是由于被孢霉分泌的草酸对铝离子有耐受性,而且被孢霉处理下土壤铁、锰离子含量的降低也与土壤pH的升高有关。砂姜黑土中添加被孢霉菌剂后土壤pH升高(表 1),则可能是由于被孢霉分泌的不饱和脂肪酸与土壤中的碳酸钙反应,增加了钙离子的溶解,从而提升了土壤pH。本研究中,被孢霉菌株显著提高了土壤可溶性有机碳、速效氮、有效磷含量以及碳、氮、磷相关的酶活性(表 1)。秸秆本身富含养分,添加长孢被孢霉菌剂促进了砂姜黑土中的秸秆降解,可溶性养分从秸秆中释放,使土壤中可溶性有机碳含量增加;而菌剂并未促进红壤中的秸秆降解,因而对红壤可溶性有机碳含量的影响较小。Detheridge等[19]研究发现,被孢霉与土壤硝态氮含量呈正相关,而且被孢霉是一种解磷真菌,能够从不同的土壤中释放磷[4],其中长孢被孢霉在土壤碳磷循环中起了重要的作用[7]。此外,秸秆降解的过程中也会释放磷,从而增加了土壤有效磷含量和磷酸酶活性。Hayano和Tubaki[20]研究表明,被孢霉能够提高菜地土壤β-葡萄糖苷酶活性,这与本研究中接种被孢霉提高土壤β-葡萄糖苷酶活性的结果(表 1)一致。

3.2 接种被孢霉影响了秸秆降解及其细菌群落结构

开发可降解秸秆的微生物菌种(如被孢霉)能够加速降解纤维素、半纤维素和木质素,促进养分循环,保持土壤肥力[21]。本研究中,与对照组相比,接种被孢霉后秸秆中烷氧碳的比例增加,而羰基碳比例下降(表 2)。烷氧碳主要代表碳水化合物(纤维素和/或半纤维素),羰基碳代表羧酸、酰胺和酮基[15]。可能是由于试验周期不够长(35 d),处理间的差异尚未达到显著水平,但是这一结果仍然可以表明,高山被孢霉和长孢被孢霉具有将稳定且难分解的有机物降解为不稳定的纤维素类化合物的能力。

利用16S rRNA基因测序技术研究了不同接菌处理的秸秆细菌群落特征。由于研究用的秸秆在试验开展前进行了灭菌处理,所以理论上,秸秆中所测得的微生物均来自于土壤。接种高山被孢霉和长孢被孢霉显著改变了红壤中秸秆的细菌群落组成,对砂姜黑土的影响不显著(图 1)。红壤和砂姜黑土中的土著微生物群落本身存在一定差异,而红壤中的土著细菌群落对加入的被孢霉菌剂更加敏感,从而导致了红壤中秸秆细菌群落结构的显著变化。在红壤中,接种了被孢霉后放线菌门(Actinomycetes)相对丰度增加。而放线菌门的某些成员(如Actinomadura)可促进土壤碳和氮的代谢[22]。另一方面,放线菌对一些降解秸秆的真菌具有拮抗作用,其对被孢霉的抑制作用可能与抗真菌代谢产物的产生和超寄生有关[23]。因此,放线菌对被孢霉的拮抗作用抵消了被孢霉菌株对秸秆降解的积极作用,降低了红壤中的秸秆降解率(表 2)。厚壁菌门(Firmicutes)在红壤中两种被孢霉菌株处理后的秸秆样品中表现出明显的增加,尤其是接种高山被孢霉的处理(图 1)。厚壁菌门(Firmicutes)是一种富营养细菌,在营养丰富的条件下(例如在施氮和磷的土壤中)快速增长[24]。此外,厚壁菌门的某些类群具有溶磷作用,能够提高土壤中磷的有效性[25]。这也从另一方面解释了被孢霉对土壤有效磷含量和磷酸酶活性的积极影响。在砂姜黑土中,接种高山被孢霉和长孢被孢霉均促进了秸秆降解(表 2)。有研究表明,高山被孢霉在长期施用有机肥的农田土壤中显著增加,可能在初级分解者产生的有机质中起着次级分解者的作用[26]。长孢被孢霉具有降解木质素和一些有毒有机物的能力[79]。与以往的研究相比,本研究则直接证实了高山被孢霉和长孢被孢霉在砂姜黑土中对秸秆降解的作用。

在红壤中接种高山被孢霉和长孢被孢霉,苍白杆菌属(Ochrobactrum)、无色杆菌属(Achromobacter)和链霉菌属(Streptomyces)对细菌群落组成的变异有很大贡献(表 3)。苍白杆菌属(Ochrobactrum)能够利用分解大量的有机磷化合物[27],无色杆菌属(Achromobacter)则具有降解有机氯农药的能力[28],它们均可用于严重污染土壤的生物修复和治理。链霉菌属(Streptomyces)是一种放线菌,对水稻具有较强的促生抗病效应[29]。泛菌属(Pantoea)相对丰度的增加是导致砂姜黑土细菌群落组成变异的主要原因。泛菌属(Pantoea)是一种内生菌,能有效降解秸秆和木质素[30]。这也进一步解释了接种被孢霉导致的砂姜黑土中秸秆降解率的增加。

3.3 接种被孢霉影响了土壤微生物网络构建和关键类群

本研究通过网络分析研究了在两种土壤中接种被孢霉后微生物群之间的相互作用,这不仅可以揭示微生物相互作用和潜在的过程,而且可以识别网络中的关键物种[31]。结果表明,与砂姜黑土相比,红壤具有更复杂的微生物相互作用(图 2)。两种土壤间微生物网络共生模式的差异可能是由于其土壤性质的差异所导致(如土壤pH,红壤本底pH为4.69,而砂姜黑土本底pH为8.06)。有研究表明,土壤pH是细菌群落组成的决定因素,它可直接或间接地调节微生物网络的结构[32]。与砂姜黑土相比,红壤中秸秆细菌之间表现出更多的正相关关系,但秸秆分解率较低(图 2)。这可能是由于在添加被孢霉菌株后,某些不同的微生物群体发挥了相似或相同的作用,导致了细菌群落的功能冗余[33]

关键类群对微生物群落有很强的影响,并与它们的丰度无关。这些关键类群通过影响其他类群来改变微生物群落组成[34]。因此,删除一个关键类群将导致微生物群落结构和功能的急剧变化。本研究通过网络分析,确定了溶杆菌属(Lysobacter)、寡养单胞菌(Stenotrophomonas)、泛菌属(Pantoea)、叶杆菌科(Phyllobacteriaceae)和Solirubrobacterales是红壤中的关键类群(表 4)。不同种类的溶杆菌(Lysobacter)能够通过产生胞外酶和抗菌化合物作为一系列病原体的拮抗剂[35-36],而寡养单胞菌(Stenotrophomonas)能够分解真菌菌丝[37],其中某些菌株还具有降解有机农药和修复污水与废弃物的能力[38]。叶杆菌(Phyllobacteriaceae)和Solirubrobacterales在土壤中的功能尚不明确。砂姜黑土中的关键类群是丛毛单胞菌科(Comamonadaceae)、溶杆菌属(Lysobacter)、噬纤维细菌科(Cytophagaceae)和Serpens flexibilis。丛毛单胞菌科(Comamonadaceae)属于β-变形菌,可广泛利用有机碳类化合物,并对无机碳类进行自养同化[39]。噬纤维菌科(Cytophagaceae)可降解多糖并利用纤维素[40]Serpens flexibilis是一种极具灵活性和活动性的细菌,被认为在其生存环境中具有很强的竞争力[41]。在添加被孢霉菌剂后,红壤中秸秆的关键菌群主要在生物拮抗和污染修复方面有着重要功能;而砂姜黑土中秸秆的关键类群则主要发挥着分解者的作用,这与砂姜黑土中被孢霉菌剂促进秸秆降解的结果(表 2)相一致。总体而言,这些关键类群对维持秸秆分解过程中的微生物相互作用和潜在过程非常重要。

4 结论

高山被孢霉和长孢被孢霉的应用提高了红壤和砂姜黑土的养分有效性和碳、氮、磷相关酶的活性,能有效缓解红壤的酸化。被孢霉菌株显著改变了红壤中秸秆的细菌群落结构,降低了秸秆降解速率,但促进了砂姜黑土中秸秆的降解。网络分析表明,与砂姜黑土相比,接种被孢霉后红壤中的秸秆具有更复杂的微生物相互作用。本研究是将被孢霉菌株应用到土壤中的初步探索,之后需要进一步研究被孢霉菌株对土壤细菌与真菌群落相互作用的机制。此外,混合接种多种菌株能够结合不同的有益微生物,增强土壤和作物健康效应的有效性和可靠性,因此,之后的研究可以考虑两种或两种以上菌株的复合菌剂的应用。

参考文献
[1]
Sun R B, Dsouza M, Gilbert J A, et al. Fungal community composition in soils subjected to long-term chemical fertilization is most influenced by the type of organic matter[J]. Environmental Microbiology, 2016, 18(12): 5137-5150. DOI:10.1111/1462-2920.13512 (0)
[2]
Francioli D, Schulz E, Lentendu G, et al. Mineral vs. organic amendments: Microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies[J]. Frontiers in Microbiology, 2016, 7: 1446. (0)
[3]
Ning Q, Chen L, Jia Z J, et al. Multiple long-term observations reveal a strategy for soil pH-dependent fertilization and fungal communities in support of agricultural production[J]. Agriculture, Ecosystems & Environment, 2020, 293: 106837. (0)
[4]
Osorio N W, Habte M. Soil phosphate desorption induced by a phosphate-solubilizing fungus[J]. Communications in Soil Science and Plant Analysis, 2014, 45(4): 451-460. DOI:10.1080/00103624.2013.870190 (0)
[5]
Zhang H S, Wu X H, Li G, et al. Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus(Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities[J]. Biology and Fertility of Soils, 2011, 47(5): 543-554. DOI:10.1007/s00374-011-0563-3 (0)
[6]
Tamayo-Vélez Á, Osorio N W. Soil fertility improvement by litter decomposition and inoculation with the fungus Mortierella sp in avocado plantations of Colombia[J]. Communications in Soil Science and Plant Analysis, 2018, 49(2): 139-147. DOI:10.1080/00103624.2017.1417420 (0)
[7]
Li F, Chen L, Redmile-Gordon M, et al. Mortierella elongata's roles in organic agriculture and crop growth promotion in a mineral soil[J]. Land Degradation & Development, 2018, 29(6): 1642-1651. (0)
[8]
Koechli C, Campbell A N, Pepe-Ranney C, et al. Assessing fungal contributions to cellulose degradation in soil by using high-throughput stable isotope probing[J]. Soil Biology & Biochemistry, 2019, 130: 150-158. (0)
[9]
Qiao Q, Wang H, Yao R S, et al. Degradation of lignin by Mortierella elongata PFY (In Chinese)[J]. Chemical Industry and Engineering Progress, 2012, 31(S1): 80-85. [乔乔, 王淮, 姚日生, 等. 长孢被孢霉PFY降解木质素的初步研究[J]. 化工进展, 2012, 31(S1): 80-85.] (0)
[10]
Dai P, Chen H Q, Gu Z N, et al. Research progress in fermentation condition for polyunsaturated fatty acids by Mortierella Alpina (In Chinese)[J]. Science and Technology of Food Industry, 2014, 35(5): 354-359. [代鹏, 陈海琴, 顾震南, 等. 高山被孢霉生产多不饱和脂肪酸发酵条件的研究进展[J]. 食品工业科技, 2014, 35(5): 354-359.] (0)
[11]
Cao L Y, Jiang X J, Zhang L, et al. Correlation between content of ergosterol and size fraction of soil aggregates (In Chinese)[J]. Acta Pedologica Sinica, 2008, 45(6): 1184-1188. DOI:10.3321/j.issn:0564-3929.2008.06.025 [曹良元, 蒋先军, 张磊, 等. 麦角固醇与不同粒级团聚体土壤的相关性[J]. 土壤学报, 2008, 45(6): 1184-1188.] (0)
[12]
Chen L, Brookes P C, Xu J, et al. Structural and functional differentiation of the root-associated bacterial microbiomes of perennial ryegrass[J]. Soil Biology & Biochemistry, 2016, 98: 1-10. (0)
[13]
Lu R K. Analytical methods for soil and agro-chemistry (In Chinese). Beijing: China Agricultural Science and Technology Press, 2000. [鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科学技术出版社, 2000.] (0)
[14]
Chen L, Redmile-Gordon M, Li J, et al. Linking cropland ecosystem services to microbiome taxonomic composition and functional composition in a sandy loam soil with 28-year organic and inorganic fertilizer regimes[J]. Applied Soil Ecology, 2019, 139: 1-9. DOI:10.1016/j.apsoil.2019.03.011 (0)
[15]
Wang H, Liu S R, Wang J X, et al. Dynamics and speciation of organic carbon during decomposition of leaf litter and fine roots in four subtropical plantations of China[J]. Forest Ecology and Management, 2013, 300: 43-52. DOI:10.1016/j.foreco.2012.12.015 (0)
[16]
Caporaso J G, Kuczynski J, Stombaugh J, et al. QⅡME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335-336. DOI:10.1038/nmeth.f.303 (0)
[17]
Edgar R C, Haas B J, Clemente J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16): 2194-2200. DOI:10.1093/bioinformatics/btr381 (0)
[18]
Edgar R C. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010, 26(19): 2460-2461. DOI:10.1093/bioinformatics/btq461 (0)
[19]
Detheridge A P, Brand G, Fychan R, et al. The legacy effect of cover crops on soil fungal populations in a cereal rotation[J]. Agriculture, Ecosystems & Environment, 2016, 228: 49-61. (0)
[20]
Hayano K, Tubaki K. Origin and properties of β-glucosidase activity of tomato-field soil[J]. Soil Biology and Biochemistry, 1985, 17(4): 553-557. DOI:10.1016/0038-0717(85)90024-0 (0)
[21]
Wei W, Wu H, Song S L, et al. Effects of compound microbial agents on wheat straw degradation rate, soil enzyme activity and microbial community (In Chinese)[J]. Soils, 2019, 51(5): 955-963. [魏蔚, 吴昊, 宋时丽, 等. 复合菌剂对小麦秸秆降解速率、土壤酶和土壤微生物类群的影响[J]. 土壤, 2019, 51(5): 955-963.] (0)
[22]
de Andrade Santos A, Silveira J A G, de Araujo Guilherme E, et al. Changes induced by co-inoculation in nitrogen-carbon metabolism in cowpea under salinity stress[J]. Brazilian Journal of Microbiology, 2018, 49(4): 685-694. DOI:10.1016/j.bjm.2018.01.007 (0)
[23]
Jayasinghe B A T D, Parkinson D. Actinomycetes as antagonists of litter decomposer fungi[J]. Applied Soil Ecology, 2008, 38(2): 109-118. DOI:10.1016/j.apsoil.2007.09.005 (0)
[24]
Ling N, Chen D M, Guo H, et al. Differential responses of soil bacterial communities to long-term N and P inputs in a semi-arid steppe[J]. Geoderma, 2017, 292: 25-33. DOI:10.1016/j.geoderma.2017.01.013 (0)
[25]
Tapia-Torres Y, Rodríguez-Torres M D, Elser J J, et al. How to live with phosphorus scarcity in soil and sediment: Lessons from bacteria[J]. Applied and Environmental Microbiology, 2016, 82(15): 4652-4662. DOI:10.1128/AEM.00160-16 (0)
[26]
Sekiguchi H, Kushida A, Takenaka S. Effects of cattle manure and green manure on the microbial community structure in upland soil determined by denaturing gradient gel electrophoresis[J]. Microbes and Environments, 2007, 22(4): 327-335. DOI:10.1264/jsme2.22.327 (0)
[27]
Ermakova I T, Shushkova T V, Sviridov A V, et al. Organophosphonates utilization by soil strains of Ochrobactrum anthropi and Achromobacter sp[J]. Archives of Microbiology, 2017, 199(5): 665-675. DOI:10.1007/s00203-017-1343-8 (0)
[28]
Fang L. Isolation and selection of strains used to degrade organic chlorine pesticides and application effects (In Chinese)[J]. Chinese Journal of Applied Ecology, 2000, 11(2): 249-252. DOI:10.3321/j.issn:1001-9332.2000.02.024 [方玲. 降解有机氯农药的微生物菌株分离筛选及应用效果[J]. 应用生态学报, 2000, 11(2): 249-252.] (0)
[29]
王世强. 链霉菌JD211对水稻的防病促生效应及机制[D]. 南昌: 江西农业大学, 2014.
Wang S Q. Research on the effects of Streptomyces JD211 on rice growth promotion and disease prevention mechanism[D]. Nanchang: Jiangxi Agricultural University, 2014. (0)
[30]
Xiong X Q, Liao H D, Ma J S, et al. Isolation of a rice endophytic bacterium, Pantoea sp Sd-1, with ligninolytic activity and characterization of its rice straw degradation ability[J]. Letters in Applied Microbiology, 2014, 58(2): 123-129. DOI:10.1111/lam.12163 (0)
[31]
Chen L J, Jiang Y J, Liang C, et al. Competitive interaction with keystone taxa induced negative priming under biochar amendments[J]. Microbiome, 2019, 7(1): 1-18. DOI:10.1186/s40168-018-0604-3 (0)
[32]
Banerjee S, Baah-Acheamfour M, Carlyle C N, et al. Determinants of bacterial communities in Canadian agroforestry systems[J]. Environmental Microbiology, 2016, 18(6): 1805-1816. DOI:10.1111/1462-2920.12986 (0)
[33]
Banerjee S, Kirkby C A, Schmutter D, et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil[J]. Soil Biology & Biochemistry, 2016, 97: 188-198. (0)
[34]
Ma B B, Huang R L, Zhang N, et al. Effect of straw-derived biochar on molecular ecological network between bacterial and fungal communities in rhizosphere soil (In Chinese)[J]. Acta Pedologica Sinica, 2019, 56(4): 964-974. [马泊泊, 黄瑞林, 张娜, 等. 秸秆生物质炭对根际土壤细菌-真菌群落分子生态网络的影响[J]. 土壤学报, 2019, 56(4): 964-974.] (0)
[35]
Wang N, Wu K Y, Cui L J, et al. Advance in bacteria identification and biocontrol mechanism of Lysobacter spp (In Chinese)[J]. Journal of Northwest A&F University(Natural Science Edition), 2015, 43(5): 174-182, 191. [王娜, 武坤毅, 崔浪军, 等. 溶杆菌属细菌鉴定及生防机制概况[J]. 西北农林科技大学学报(自然科学版), 2015, 43(5): 174-182, 191.] (0)
[36]
Liu Y F, Wu R M, Zhang C J, et al. Effects of film mulching on soil biological properties and bacterial diversity in pepper fields (In Chinese)[J]. Acta Pedologica Sinica, 2019, 56(4): 986-993. [刘岳飞, 吴人敏, 张传进, 等. 地膜对植椒土壤生物学特性和细菌多样性的影响[J]. 土壤学报, 2019, 56(4): 986-993.] (0)
[37]
Brabcová V, Nováková M, Davidová A, et al. Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community[J]. The New Phytologist, 2016, 210(4): 1369-1381. DOI:10.1111/nph.13849 (0)
[38]
Wang Y L, Hua R M, Tang X Y. Application of Stenotrophomonas in environmental protection (In Chinese)[J]. Journal of Anhui Agricultural Sciences, 2010, 38(28): 15796-15797, 15800. DOI:10.3969/j.issn.0517-6611.2010.28.135 [王昀璐, 花日茂, 唐欣昀. 寡养单胞菌在环境保护中的应用研究进展[J]. 安徽农业科学, 2010, 38(28): 15796-15797, 15800.] (0)
[39]
Nuccio E E, Hodge A, Pett-Ridge J, et al. An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition[J]. Environmental Microbiology, 2013, 15(6): 1870-1881. DOI:10.1111/1462-2920.12081 (0)
[40]
Estendorfer J, Stempfhuber B, Haury P, et al. The influence of land use intensity on the plant-associated microbiome of Dactylis glomerata L[J]. Frontiers in Plant Science, 2017, 8: 930. DOI:10.3389/fpls.2017.00930 (0)
[41]
Zhao S, Zhou N, Zhao Z Y, et al. Endophytic bacterial diversity and dynamics in root of Salicornia europaea estimated via high throughput sequencing (In Chinese)[J]. Acta Microbiologica Sinica, 2016, 56(6): 1000-1008. [赵帅, 周娜, 赵振勇, 等. 基于高通量测序分析盐角草根部内生细菌多样性及动态规律[J]. 微生物学报, 2016, 56(6): 1000-1008.] (0)