检索项 检索词
  土壤学报  2022, Vol. 59 Issue (2): 405-419  DOI: 10.11766/trxb202006040276
0

引用本文  

闫雪娇, 周亚利, 黄春长, 等. 汉江上游阶地黄土磁学特征研究. 土壤学报, 2022, 59(2): 405-419.
YAN Xuejiao, ZHOU Yali, HUANG Chunchang, et al. Magnetic Characteristics of Terrace Loess in the Upper Hanjiang River. Acta Pedologica Sinica, 2022, 59(2): 405-419.

基金项目

国家自然科学基金项目(42071112,41371209,41971116,41771110)资助

通讯作者Corresponding author

周亚利, E-mail: ylzhou109@163.com

作者简介

闫雪娇(1995—), 女, 甘肃张掖人, 硕士研究生, 主要从事环境磁学和气候变化研究。E-mail: 18293662208@163.com
汉江上游阶地黄土磁学特征研究
闫雪娇, 周亚利, 黄春长, 庞奖励, 刘丽方, 羊俊敏, 孙晓巍, 张岳敏    
陕西师范大学地理科学与旅游学院, 西安 710062
摘要:汉江上游地区位于北亚热带季风气候区边缘,对气候响应异常敏感。流域内发育不对称四级阶地,且阶地上覆盖有厚度不等的黄土堆积。以汉江上游三级阶地黄坪村(HPC)和高客站(GKZ)两个剖面作为研究对象,测量样品的磁化率和频率磁化率,并选取代表性样品进行热磁曲线、等温剩磁获得曲线和磁滞回线等的测定。结果表明,汉江上游黄土沉积物中的载磁矿物以磁铁矿和磁赤铁矿为主,同时含有一定量的赤铁矿和针铁矿,磁化率的增强以超顺磁和准单畴亚铁磁性矿物的贡献为主。GKZ剖面中低矫顽力亚铁磁性矿物含量低于HPC剖面,且黄土中含有更多的亚铁磁性矿物,HPC剖面中则黄土-古土壤中载磁矿物差别不大。汉江上游磁化率的降低与该区较高的有效降水量有关,季节性丰沛降水使土壤水分过饱和,在局部湿润的还原环境中,土壤中大量强磁性铁氧化物被溶解转化为能够在湿润环境中稳定存在的弱磁性矿物,磁性矿物的转化导致成壤强的汉江上游地区磁化率低于成壤弱的黄土高原地区。在成壤条件处于还原环境时,有效降水越高,还原程度也越高,强磁性铁氧化物被溶解的越多,磁化率就越低,这是GKZ剖面降水大于HPC剖面,但磁化率却更低的原因。
关键词汉江上游    黄土沉积    磁学特征    磁化率    
Magnetic Characteristics of Terrace Loess in the Upper Hanjiang River
YAN Xuejiao, ZHOU Yali, HUANG Chunchang, PANG Jiangli, LIU Lifang, YANG Junmin, SUN Xiaowei, ZHANG Yuemin    
School of Geography and Tourism, Shaanxi Normal University, Xi'an 710062, China
Abstract: 【Objective】The upper section of the Hanjiang River flows along the edge of the northern subtropical monsoon climate zone and the catchment is extremely sensitive to climate change. A special landform of asymmetric four-level terraces has been developed in the catchment, and the terraces are covered with loess deposits varying in thickness. In this study, two profiles, located in HPC (Huangpingcun) and GKZ (Gaokezhan) on the third-order terrace in the upper reaches of the Hanjiang River were selected as the research objects.【Method】Soil samples were collected from the two profiles for determination of magnetic susceptibility and frequency susceptibility, and furthermore, some representative samples were tested for measurement of thermomagnetic curves, IRM acquisition curves, and hysteresis loops.【Result】Results suggest that the main magnetic minerals in the paleosol and loess of the terrace are magnetite and maghemite, and a certain amount of hematite and goethite. Superparamagnetic and pseudo-single domain ferrimagnetic minerals are the major contributors of enhanced susceptibility. Profile GKZ is lower than Profile HPC in content of low-coercivity ferromagnetic minerals, and contains more ferromagnetic minerals in loess. But in Profile HPC section, little difference in content of magnetic minerals was found between loess and paleosol.【Conclusion】The lower magnetic susceptibility in the upper reaches of the Hanjiang River is related to the high effective precipitation in this area. Seasonal abundant precipitation makes soil moisture supersaturated in the area. In the locally humid reducing environment, a large volume of strongly ferromagnetic iron oxides in the soil are dissolved and transformed into weakly magnetic minerals that persist stably in humid environments. The transformation of magnetic minerals leads to lower magnetic susceptibility in the upper reaches of Hanjiang River strong in soil formation than in the Loess Plateau weak in soil formation. When the soil forming condition remains to be a reducing environment, the higher the effective precipitation and the reduction degree, the more the strongly magnetic iron oxide dissolved and the lower the magnetic susceptibility, which is the reason why GKZ is higher in precipitation larger than HPC section, but lower in magnetic susceptibility.
Key words: Upper Hanjiang River    Loess deposit    Magnetic characteristics    Magnetic susceptibility    

中国黄土高原风成黄土具有沉积厚度大、时间跨度长、地层连续性好等特点,通常被认为是可以和深海氧同位素记录相媲美的记录全球气候长期变迁的最好载体之一[1]。20世纪80年代初,Heller和Liu[2]在研究中国黄土地层最大年龄时,成功地将黄土剖面的磁化率曲线与深海氧同位素记录进行了对比,发现磁化率的变化依赖于气候,自此在黄土高原以及周边地区的古气候定量重建、东亚季风演化等研究中磁化率得到了极大的运用[3-8]。但是,对于磁化率的增强机制,多年来一直是学者们争论的焦点。已有研究认为,沉积物的压实和碳酸盐淋溶作用[2],物源物质的输入[9],植物死亡后残体的分解[10],自然条件下植物燃烧[11]等,均会使磁化率增强,但目前普遍认为成壤作用是主要原因,成壤过程中形成的大量强磁性的细粒磁性矿物,使得磁化率增强[12-14]。然而,近年来又有研究发现,在一些中国西北部干旱区,黄土磁化率主要与物源区物质携带的粗颗粒磁性矿物有关[15-18],而在另一些地区,则与阿拉斯加、西伯利亚相同,磁化率除了受到物源区距离的影响,还与风速和土壤水分有关[19-25]。由此可见,不同地区磁化率的增强机制可能不同,在选取磁化率作为气候替代性指标时,应首先考虑当地的自然环境特征。

秦岭是中国南方和北方气候的分界线,以北为温带季风气候,以南为亚热带季风气候,地理位置独特。汉江上游位于秦岭南麓,处于我国南北气候的过渡地带,因此对气候变化的响应异常敏感。因在地质历史时期经历过多次构造运动,使得流域内发育不对称的四级阶地,且每级阶地上均覆盖有不同厚度的风成黄土。已有的研究表明这些阶地风成黄土记录了区域气候变化的信息,能够用于古环境的研究[26-27]。然而,多年来对于汉江上游河流阶地黄土的研究大都集中在阶地地层年代框架的建立、古气候演化等方面[28-29],对于黄土-古土壤磁学特征的研究少之又少。在这样一个与黄土高原气候和地形条件完全不同的特殊区域,黄土-古土壤中载磁矿物是什么?磁学性质有什么特点?磁化率是否可以作为气候替代性指标?针对这些问题,本文选取汉江上游黄坪村(HPC)和高客站(GKZ)两个典型黄土剖面进行初步的磁学特征研究,并结合两剖面的地球化学参数,将研究结果与黄土高原的研究结果进行对比,为今后深入研究该区古环境演变提供黄土的磁学基础。

1 材料与方法 1.1 研究区概况

汉江是长江第一大支流,北有秦岭山脉,南以大巴山为屏,其源头位于陕西省宁强县,自西向东经汉中盆地、安康盆地、郧县盆地,于武汉汉口汇入长江。汉江上游是指丹江口水库以上河段,地处秦巴山区西段,属于北亚热带边缘湿润性季风气候区[30],年均温15℃以上,近50年来年均降水量863 mm,但因受季风气候影响,降水多集中在6—9月。汉江上游河谷盆地发育1~4级河流阶地及河漫滩堆积,分别高出汉江平均水面5~15 m,28~40 m,60~110 m以及130 m左右,其中三级阶地因出露地表时间长,受到后期的流水分割,大都被侵蚀为平缓长梁与孤立丘陵,仅有零星分布。本文选择汉江上游的黄坪村剖面(HPC)(110.72°E,32.83°N,海拔207 m)和高客站剖面(GKZ)(108.95°E,32.70°N,海拔310 m)作为研究对象,这两个剖面均位于汉江左岸三级河流阶地上,天然出露于三级阶地前沿,阶地面平坦且宽阔,高出汉江平均水位60~70 m,河漫滩二元结构之上覆盖有风成堆积,界限明显,层位清晰,具有典型的黄土-古土壤旋回。黄坪村剖面位于湖北省郧县柳陂镇,年平均气温13~16℃,年平均降水量和蒸发量分别为824 mm和1 520 mm,剖面厚25.2m,共发育8层古土壤,8层黄土。高客站剖面位于陕西省安康市高速客运站附近,年均温15~17℃,年均降水量1 050 mm,蒸发量1 287 mm,剖面厚16.1m,共发育5层黄土,4层古土壤层。两剖面地层沉积特征见表 1,颜色描述采用标准比色卡[31]。经古地磁年龄测定,HPC剖面底部年龄为1.05Ma[32],GKZ剖面底部年龄不超过0.78Ma(数据未发表),均是在早更新世晚期以后发育的,同属一个地质时期,沉积环境基本相似,因此可以用它来作对比。

表 1 HPC、GKZ地层沉积特征描述 Table 1 Description of the stratigraphic sequences of HPC and GKZ Profile

图 1 汉江上游地区概况图 Fig. 1 Map of the upper reaches of the Hanjiang River valley, China
1.2 样品采集与方法

以10 cm间隔分别对黄坪村剖面和高客站剖面采集粉末样品和古地磁样品,用于沉积学、磁学特征和磁性地层学研究。在实验室中,将样品自然风干后,用Bartington MS2型双频(470 Hz和4 700 Hz)磁化率仪分别测量样品的低频和高频磁化率,然后转换为低频质量磁化率(即磁化率,χlf)和高频质量磁化率(χhf)。频率磁化率(χfd)根据公式:χfd=χlf-χhf计算获得。根据磁化率和野外地层沉积特征,两个剖面各选取6个代表性样品,进行热磁曲线、磁滞回线(LOOP)、等温剩磁(IRM)获得曲线的测量。热磁曲线采用AGICO公司生产的MFK1 FA型卡帕桥及CS-3温度控制系统测量,为了防止发生氧化反应,整个测量过程在氩气环境中进行,从室温逐步加热至700℃。磁滞回线、等温剩磁获得曲线及矫顽力曲线用MicroMag 3 900振动磁力仪测试,外加最大场为1.0T,仪器灵敏度为5×10-10Am2,在去除了顺磁性矿物的影响后,得到饱和磁化强度(Ms)、饱和剩磁(Mrs)和矫顽力值(Bc),剩磁矫顽力(Bcr)通过矫顽力曲线得到,以上试验在中国科学院地球环境研究所环境磁学实验室完成。地球化学元素采用荷兰Panalytical公司生产的X-Ray荧光光谱仪PW2403测定,整个实验过程在陕西师范大学完成。

2 结果 2.1 磁化率(χlf)和频率磁化率(χfd

磁化率与样品中磁性矿物的含量、种类和粒径有关,可以反映样品中铁磁性矿物的总体含量,土壤形成期间的气候和降水量、成壤作用持续时间以及沉积物源区的性质,均会影响磁化率值的大小[14,33-35]图 2显示了HPC剖面和GKZ剖面磁化率值随深度变化的特征,总体上来看,两剖面存在一定的相似性,即不同于典型黄土地区,磁化率高值对应于古土壤层,低值对应于黄土层的特征,两剖面均存在磁化率值与地层不对应的情况,具体表现在有的层位黄土磁化率值高于古土壤。就单个剖面而言,HPC磁化率(图 2a)变化范围为8.00×10-8~202.50×10-8 m3·kg-1,平均值为30.30×10-8 m3·kg-1,古土壤平均值为32.81×10-8 m3·kg-1,黄土平均值为25.10×10-8 m3·kg-1;GKZ(图 2c)最高值为67.70× 10-8m3·kg-1,最低值为7.60×10-8 m3·kg-1,平均值为19.13×10-8 m3·kg-1,古土壤平均值为18.60× 10-8 m3·kg-1,黄土平均值为19.45×10-8 m3·kg-1。HPC剖面古土壤磁化率值高于黄土,而GKZ剖面古土壤与黄土磁化率相差不大,且黄土略大于古土壤。此外,HPC剖面无论是总体磁化率平均值还是黄土、古土壤磁化率平均值,均大于GKZ,表明HPC剖面样品中铁磁性矿物总体含量高于GKZ剖面,该地区黄土物源区的磁性较强,或者沉积后经受的风化和成土作用更为强烈。

注:HPC磁化率数据引自文献[32]。   Note: The magnetic susceptibility data of HPC are cited from Ref. [32]. 图 2 HPC、GKZ剖面磁化率和频率磁化率随深度变化 Fig. 2 Plot showing variation of susceptibility(χlf)and frequency-dependent susceptibility(χfd)with depth in Profiles HPC and GKZ

频率磁化率(χfd)可以看作反映超顺磁性(SP)颗粒含量的指标[13,36]。HPC剖面频率磁化率(图 2b)变化范围为0.2×10-8~21.0×10-8 m3·kg-1,平均值为2.27×10-8 m3·kg-1,GKZ剖面(图 2d)变化范围为0.03×10-8~8.20×10-8 m3·kg-1,平均值为0.92×10-8 m3·kg-1,远低于HPC剖面,表明GKZ剖面相对于HPC剖面样品中SP颗粒含量低,对磁化率的贡献相对较小。此外,在GKZ剖面中,古土壤的频率磁化率要略高于黄土,说明在该地区频率磁化率似乎较磁化率能更好地区分黄土与古土壤层。从两剖面磁化率与频率磁化率的相关关系图看(图 3),HPC剖面相关系数为0.83,GKZ剖面为0.87,两剖面高度的相关性表明SP颗粒对磁化率的贡献显著。

图 3 HPC、GKZ剖面磁化率和频率磁化率相关关系图 Fig. 3 Correlation between susceptibility(χlf)and frequency-dependent susceptibility(χfd)in Profiles HPC and GKZ
2.2 热磁曲线

不同磁性矿物因其居里温度不同,因而在加热过程中表现出不同特征。利用热磁曲线可有效识别磁性矿物的类型及其在加热过程中的转化规律[37-41]。从图 4可以看出,两个剖面的代表性样品均在加热至磁铁矿的居里点附近,即580℃左右时,磁化率值突然降低,表明磁铁矿是主要的载磁矿物,580℃之后部分样品的磁化率值仍然未变为零,说明样品中也普遍存在一定量的赤铁矿,这些赤铁矿可能是在加热过程中生成的。而所有样品的冷却曲线均位于加热曲线之上,指示在加热过程中有新的磁性矿物生成。在冷却过程中,磁化率值在580℃左右急剧增加,表明新生成的磁性矿物仍以磁铁矿为主。磁化率低的样品(磁化率值:图 4a>图 4b>图 4c图 4d>图 4e>图 4f)冷却曲线更加高于加热曲线,磁化率增加量更多,表明样品中含有更多可以转化为强磁性矿物的成分。

注:HPC热磁曲线数据引自文献[32]。S:古土壤;L:黄土。下同   Note: The thermomagnetic curves data of HPC are cited from Ref.[32].
S: paleosol; L: loess.The same as below.
图 4 HPC、GKZ剖面代表性样品的热磁曲线 Fig. 4 Thermomagnetic curves of the representative samples from Profiles HPC and GKZ

HPC剖面中,磁化率高值样品(HPC-1.1m)(图 4a)从室温加热至260℃的过程中,加热曲线缓慢升高,可能是由于样品中含有针铁矿或纤铁矿,在加热过程中脱水转化为了磁赤铁矿[42];加热至300~450℃,磁化率快速下降,可能是由于强磁性、亚稳定的磁赤铁矿转化为了弱磁性、热稳定的赤铁矿[3841-43];继续加热至580℃左右时,样品的磁化率下降至最低,表明磁铁矿是主要的载磁矿物。磁化率中值样品(HPC-16.3m)(图 4b)加热曲线在100℃附近出现一个凹坑,指示样品中存在针铁矿[44];同时,加热曲线和冷却曲线在500~700℃之间基本重合,冷却曲线在500℃以上逐渐升高,表明在加热过程中生成了新的磁性矿物。磁化率低值样品(HPC-8.8m)(图 4c)在350℃之前随温度的升高加热曲线缓慢下降,350℃之后磁化率逐渐升高,并在约410℃时达到一个峰值,之后又逐渐下降,可能是因为样品中有机质因加热而分解的原因[45]

GKZ剖面样品的加热曲线比较相似(图 4d图 4e图 4f),均是在400℃之前,由于磁赤铁矿受热向赤铁矿转化,使得磁化率下降,400℃之后磁化率迅速上升,在510℃左右达到峰值,可能是因为一些非磁性物质(如黏土矿物、含铁硅酸盐矿物、含铁水合物)在加热过程中分解成了新的磁性较强的矿物[3841]。磁化率最高的样品(GKZ-3.0m)(图 4d)在400℃之前磁化率下降最快,但400~510℃之间峰值不明显,说明该样品中含有更多的磁赤铁矿以及较少的能够生成强磁性矿物的物质。同样这些样品的冷却曲线在580℃迅速上升,在室温下显示较加热前高几倍的磁化率,也可证实加热过程中形成了强磁性矿物。

2.3 等温剩磁获得曲线及反向退磁曲线

软磁性矿物(如磁铁矿、磁赤铁矿等)和硬磁性矿物(如赤铁矿、褐铁矿等)在常温下达到饱和时所需要的磁场强度不同,软磁性矿物易在较低磁场范围内(0.3T)饱和,硬磁性矿物则在1T甚至更高磁场下也很难饱和。根据磁性矿物在常温下达到饱和时所需磁场强度的不同,可区分样品中的软磁性组分和硬磁性组分[46-47]。在最大场强为1.0T的连续可变外磁场中对代表性样品做等温剩磁获得曲线(图 5a图 5c),结果表明:在0.3T以下,随着磁场的增加,所有样品的等温剩磁获得曲线快速增长,0.3T以后,曲线增长幅度减弱,但直至0.5T仍未饱和,说明样品中含有一定量的高矫顽力磁性矿物。如表 2所示,两个剖面黄土样品在0.3T时的等温剩磁所占比例均高于古土壤样品,说明黄土较古土壤中富集了更多的软磁性矿物。

图 5 HPC、GKZ剖面代表性样品等温剩磁获得曲线和反向退磁曲线 Fig. 5 IRM acquisition curves(a, c)and their reverse field demagnetization curves(b, d)of the representative samples from Profiles HPC and GKZ

表 2 HPC和GKZ剖面代表性样品磁性参数比较 Table 2 Comparison between the representative samples from Profiles HPC and GKZ in magnetic parameter

对样品施加反向磁场,将饱和等温剩磁降低至零,得到反向退磁曲线(即矫顽力曲线),从而获得剩磁矫顽力(Bcr)。由图 5b图 5d表 2可以看出,GKZ剖面黄土的剩磁矫顽力均小于古土壤,且与磁化率及0.3T时等温剩磁所占比例大致呈负相关,与等温剩磁所反映的黄土中含有更多软磁性矿物一致;而HPC剖面则无此变化,剩磁矫顽力最高值与最低值均出现于古土壤(HPC-17.9m和HPC-16.3m),与磁化率也无明显相关关系,不能很好地反映黄土-古土壤中的软硬磁组分。但总体而言,两个剖面样品的剩磁主要由低矫顽力的软磁性矿物所贡献,但同时也不能忽略高矫顽力的硬磁性矿物对剩磁的贡献。

2.4 磁滞回线和磁滞参数

磁性矿物的种类不同,所呈现出的磁滞回线的形状也有差异[47]。为便于对比,将0.5T之前的磁滞回线部分放大,0.5T之后的省略,来分析两个剖面的磁滞回线特征。从图 6可以看出,两个剖面所有样品的磁滞回线均呈S型,线形瘦长,HPC剖面样品的磁滞回线(图 6a图 6b图 6c)均在0.5T以内闭合,GKZ剖面磁滞回线(图 6d图 6e图 6f)相较于HPC表现出宽而缓的特征,到0.5T以后才开始趋向闭合,说明HPC剖面样品中的磁性矿物主要为低矫顽力的磁铁矿、磁赤铁矿,但仍然含有部分高矫顽力矿物,而GKZ剖面样品以高低矫顽力矿物的混合为主要特征,且个别样品以高矫顽力矿物占主导地位。HPC剖面中弱发育古土壤(HPC-1.1m)(图 6a)线形最细,黄土(HPC-18.5m)(图 6c)次之,强发育古土壤(HPC-17.9m)(图 6b)线形相对平缓;GKZ剖面则黄土(GKZ-3.0m)(图 6f)线形最细,强发育古土壤(GKZ-4.4m)(图 6d)次之,弱发育古土壤(GKZ-6.2m)(图 6e)最为平缓(此处强发育古土壤和弱发育古土壤依据表 1表 3区分),说明黄土中含有更多的低矫顽力磁性矿物,与等温剩磁曲线和剩磁矫顽力曲线得出的结论一致。

注:HPC磁滞回线数据引自文献[32]。   Note: The hysteresis loops data of HPC are cited from Ref. [32]. 图 6 HPC、GKZ剖面代表性样品的磁滞回线图 Fig. 6 Hysteresis loops of the representative samples from Profiles HPC and GKZ

表 3 HPC和GKZ剖面地球化学参数比较 Table 3 Comparison between Profiles HPC and GKZ in geochemical parameters

以样品的Bcr/Bc和Mrs/Ms分别为坐标横轴和纵轴做Day图,以此来反映样品中磁性矿物的粒径特征。根据Thompson和Oldfield[47]的定义:Mrs/Ms>0.5且Bcr/Bc<1.5为单畴(SD)颗粒;Mrs/Ms<0.1且Bcr/Bc>4为多畴(MD)颗粒;介于这两者之间的为准单畴(PSD)颗粒。从图 7可以看出GKZ剖面的所有样品均落在准单畴(PSD)区域内,HPC剖面除HPC-1.1m落在超顺磁(SP)区域内,HPC-25.2m落在多畴区域内外,其余样品均落在准单畴区域内。

图 7 HPC、GKZ剖面代表性样品的Day氏图 Fig. 7 Day diagrams of the representative samples from Profiles HPC and GKZ
2.5 地球化学参数

Rb/Sr比值,化学蚀变指数CIA[48](Al2O3/(Al2O3+MgO+CaO+Na2O)×100),硅铝率SA(SiO2/Al2O3),硅铝铁率SAF(SiO2/(Al2O3+Fe2O3),风化淋溶指数(ba指数=(K2O+Na2O+CaO+MgO)/Al2O3)以及残积系数((Al2O3+Fe2O3)/(CaO+MgO+Na2O))可以从不同角度反映黄土化学风化成壤强度,其中Rb/Sr比值、CIA值和残积系数与风化成壤强度呈正相关,硅铝率(SA)、硅铝铁率(SAF)与风化淋溶(ba)指数则与风化成壤强度呈负相关。由表 3可以看出,GKZ剖面Rb/Sr比值、CIA值、残积系数平均值均大于HPC剖面,硅铝率、硅铝铁率、ba指数平均值则均小于HPC剖面,说明GKZ剖面经历了更为强烈的风化成壤作用。HPC剖面各指标均显示古土壤成壤作用强于黄土,GKZ剖面除硅铝率和硅铝铁率外,其余指标也显示古土壤成壤作用更强。HPC和GKZ剖面四个代表性古土壤样品(HPC-1.1 m,HPC-17.9 m,GKZ-4.4 m,GKZ-6.2 m)所在层位的地球化学参数表明,HPC剖面15.3~18.3 m处古土壤发育程度强于0.5~3.6 m处古土壤,GKZ剖面4.1~4.9 m处古土壤发育程度强于5.9~8.7 m处古土壤,与野外观察到的地层沉积特征显示结果一致。

3 讨论 3.1 汉江上游黄土的磁学特征

已有的研究表明,在黄土高原地区,黄土-古土壤中的磁性矿物主要是磁铁矿、磁赤铁矿、赤铁矿和针铁矿,且主要载磁矿物为磁铁矿、磁赤铁矿[49-50]。对汉江上游两个剖面样品进行磁学特征分析,结果表明黄土沉积物中既含有亚铁磁性矿物(如磁铁矿和磁赤铁矿),也含有反铁磁性矿物(如赤铁矿),但以亚铁磁性矿物为主,与黄土高原研究结果一致。两个剖面的χ-T曲线均出现580℃的居里温度,表明黄土中的载磁矿物以磁铁矿为主,但580℃之后部分样品仍存在一定的值,说明样品中含有一定量的反铁磁性矿物。从两个剖面样品冷却曲线高于加热曲线的程度来看,均表现为磁化率低的样品含有更多可以转化为强磁性矿物的成分。但等温剩磁曲线和磁滞回线均清楚地表明,HPC剖面黄土和古土壤层载磁矿物差别不大,而GKZ剖面黄土层中含有更多的亚铁磁性矿物,这也可以从磁化率值、剩磁矫顽力中得到验证。此外,从磁滞回线中也可以看出,GKZ剖面较HPC剖面含有更多的高矫顽力矿物。黄土高原地区大量的稳定单畴(SD)和超顺磁性矿物颗粒(SP)被认为是古土壤磁化率增强的主要原因,从图 7可以看出,汉江上游黄土样品大部分落在准单畴(PSD)区域内,但磁化率和频率磁化率的强相关性同时也表明SP颗粒是样品磁化率增强的主要贡献者。这一方面表明汉江上游亚铁磁性矿物的粒度较黄土高原粗,可能是由于汉江上游处于秦巴山区,河谷宽广,部分风成物质来源于枯水期暴露的汉江河谷和河漫滩沉积物,以及山地基岩风化产物和周边地区的其他早期堆积物,另一方面也说明该流域经历了更为强烈的成土作用,使得土壤粒度变细。

3.2 汉江上游黄土的磁化率与成壤作用和降水的关系

汉江上游地区GKZ和HPC剖面Rb/Sr比值平均值分别为1.24和1.23,磁化率平均值分别为和19.13×10-8 m3·kg-1和30.30×10-8 m3·kg-1;洛川剖面[51]Rb/Sr比值平均值为0.63,磁化率平均值为94.00×10-8 m3·kg-1。汉江上游较高的Rb/Sr比值反映出该地区经历了更为强烈的风化成壤作用,然而其磁化率平均值却远远低于洛川。以往的研究表明,在黄土高原地区,磁化率与成壤强度存在显著的正相关关系,即湿润的气候环境有利于成壤作用,在成壤过程中会形成大量新的细粒亚铁磁性矿物,而这些矿物的存在是磁化率增强的主要原因,并且磁化率越高,代表成壤作用越强[1252-53]。但是,如果按照上述理论,显然无法解释汉江上游磁化率远低于黄土高原的现象。根据已有的研究结果,磁化率与成壤强度的相关关系取决于有效降水量,当有效降水量过高时,成壤条件处于还原环境,强磁性铁氧化物被溶解,转化为弱磁性矿物,使得土壤磁化率降低[22-23]。在黄土高原地区,年均蒸发量为年均降水量的3倍,而在汉江上游,由于地处亚热带季风气候区,季节性降水极为丰沛,年均蒸发量不足年均降水量的2倍,这就使得汉江上游地区有效降水量远远高于黄土高原地区。季节性丰沛降水使土壤有效湿度增加,地表水分过饱和,土壤在成壤过程中容易处于还原环境,发生潜育化作用,高价的铁锰氧化物被溶解,释放出大量Fe、Mn、Fe3+被还原成Fe2+、Fe2+、Mn2+随水分迁移,在土壤表面或土壤裂隙中形成铁锰胶膜,造成强磁性矿物向弱磁性矿物的转化,使得土壤磁化率降低[54]。强磁性铁氧化物转化为弱磁性矿物,是成壤强的汉江上游地区磁化率低于成壤弱的黄土高原地区的原因。HPC和GKZ剖面多数地层土壤表面和裂隙发育不同程度的铁锰胶膜,这正是土壤排水不畅,发生潜育化的典型特征。

在中国亚热带地区,由于降水引起地下水波动,使均质红土在网纹化过程中,强磁性矿物被溶解还原,转化为弱磁性矿物,造成成壤强的网纹红土磁化率降低[55-56]。在宝鸡地区,由于S5古土壤形成时期,气候暖湿,较大的土壤有效湿度(使土壤处于还原环境中)和较强的成土作用,使土壤中部分细粒强磁性铁氧化物被溶解还原,转化为弱磁性矿物,使成壤强的S5古土壤磁化率低于成壤弱的S3古土壤磁化率[57]。在秦岭南侧洛南盆地,刘湾剖面和上白川剖面,同样也因较高的有效降水量,使该区黄土在成壤过程中处于还原环境,发生潜育化作用,强磁性矿物被溶解,转化为弱磁性矿物,造成土壤磁化率降低[58]

刘秀铭等[22]认为,当成壤条件处于还原环境时,有效降水量越高,还原程度越强,强磁性铁氧化物被溶解的越多,磁化率也越低。亚热带地区网纹红土层中,上部网纹红土成壤作用弱,但地下水波动使强磁性矿物向弱磁性矿物转化的少,磁化率较高,而下部网纹红土成壤作用强,但强磁性矿物向弱磁性矿物转化的多,磁化率明显降低[56]。各项地球化学参数表明GKZ剖面经历了更为强烈的风化成壤作用,然而其磁化率却远低于HPC。参考网纹红土层上下部分磁化率出现差异的原因,认为GKZ剖面磁化率低是因为有更多的强磁性矿物转化为了弱磁性矿物。进一步分析发现,GKZ剖面所在地区年均降水量1 050 mm,年均蒸发量1 287 mm,年均蒸发量为年均降水量的1.23倍;HPC剖面所在地区年均降水量和蒸发量分别为824 mm和1 520 mm,年均蒸发量为年均降水量的1.84倍,GKZ剖面有效降水量更多,由此,认为两剖面磁性差异是由有效降水量引起的。当成壤条件处于还原环境中时,GKZ剖面具有更高的有效降水量,使得土壤在还原环境中强磁性铁氧化物被溶解的更多,更多的Fe3+被还原成Fe2+,形成新的弱磁性矿物。降雨量的差异造成在成壤过程中还原程度不同,进而使得两剖面存在磁性差异。

两剖面整体表现为古土壤成壤强度大于黄土,但均存在部分古土壤层磁化率低于其下伏黄土层的现象,这一方面与成壤时所处的湿润的还原环境有关,另一方面可能存在Fe3+的垂直迁移。在局部湿润环境中,由强磁性矿物溶解形成的Fe3+,部分被还原为Fe2+,形成新的弱磁性矿物,部分则顺着土壤裂隙垂直迁移至下层黄土中,使黄土磁化率增强。GKZ剖面仅最底层古土壤磁化率低于其下伏黄土,在野外采样中发现,该层古土壤发育程度较强,厚度最厚,因此在长时间的成壤过程中,Fe3+被还原和垂直溶滤的更多,造成下层黄土磁化率高于古土壤。HPC剖面磁化率异常层位无明显规律,但均为古土壤层磁化率低于其下伏黄土层,原因之一可能也是Fe3+的垂直淋溶,此外,也可能与当时的风化成壤环境和物源有关,这需要之后进一步的研究。

4 结论

汉江上游黄土沉积物中的载磁矿物为磁铁矿、磁赤铁矿、赤铁矿和针铁矿,但以亚铁磁性的磁铁矿和磁赤铁矿为主。超顺磁(SP)和准单畴(PSD)颗粒的磁铁矿、磁赤铁矿为磁化率增强的主要贡献者。GKZ剖面中低矫顽力亚铁磁性矿物含量低于HPC剖面,且黄土中含有更多的亚铁磁性矿物,则HPC剖面中黄土和古土壤中载磁矿物差别不大。两剖面土壤表面和裂隙中大量铁锰胶膜及灰绿色条带的存在证明成壤过程处于局部滞水的还原环境,在还原环境中,大量强磁性铁氧化物被溶解转化为弱磁性矿物,磁性矿物种类的变化是该区域成壤作用较黄土高原强,但磁化率却低于黄土高原的原因。GKZ剖面成壤作用更强,但磁化率平均值却低于HPC剖面,这是因为GKZ剖面所在地区有效降水量较HPC剖面所在地区的高,当成壤条件处于还原环境中时,土壤有效湿度越大,还原程度越高,强磁性矿物被溶解的更多,磁化率也越低。两剖面均存在磁化率与地层不对应的现象,一方面与成壤时所处的湿润的还原环境有关,另一方面可能存在Fe3+的垂直迁移。

致谢 感谢强小科研究员在论文写作中的指导与帮助,感谢符超峰教授和师姐王蕾彬在野外采样中的帮助。

参考文献
[1]
Liu D S. Loess and the environment (In Chinese). Beijing: Science Press, 1985. [刘东生. 黄土与环境[M]. 北京: 科学出版社, 1985.] (0)
[2]
Heller F, Liu T S. Magnetism of Chinese loess deposits[J]. Geophysical Journal International, 1984, 77(1): 125-141. DOI:10.1111/j.1365-246X.1984.tb01928.x (0)
[3]
Liu X M, Liu D S, Heller F, et al. Frequency dependent susceptibility of loess and Quaternary paleoclimate (In Chinese)[J]. Quaternary Sciences, 1990, 10(1): 42-50. DOI:10.3321/j.issn:1001-7410.1990.01.005 [刘秀铭, 刘东生, Heller F, 等. 黄土频率磁化率与古气候冷暖变换[J]. 第四纪研究, 1990, 10(1): 42-50.] (0)
[4]
An Z S, Kukla G J, Porter S C, et al. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130, 000 years[J]. Quaternary Research, 1991, 36(1): 29-36. DOI:10.1016/0033-5894(91)90015-W (0)
[5]
Fang X M, Xu X H, Song C H, et al. High resolution rock magnetic records of Cenozoic sediments in the Linxia Basin and their implications on drying of Asian inland (In Chinese)[J]. Quaternary Sciences, 2007, 27(6): 989-1000. DOI:10.3321/j.issn:1001-7410.2007.06.014 [方小敏, 徐先海, 宋春晖, 等. 临夏盆地新生代沉积物高分辨率岩石磁学记录与亚洲内陆干旱化过程及原因[J]. 第四纪研究, 2007, 27(6): 989-1000.] (0)
[6]
Maher B A. Palaeoclimatic records of the loess/palaeosol sequences of the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2016, 154: 23-84. DOI:10.1016/j.quascirev.2016.08.004 (0)
[7]
Thomas E K, Clemens S C, Sun Y B, et al. Heterodynes dominate precipitation isotopes in the East Asian monsoon region, reflecting interaction of multiple climate factors[J]. Earth and Planetary Science Letters, 2016, 455: 196-206. DOI:10.1016/j.epsl.2016.09.044 (0)
[8]
Peng W B, Nie J S, Wang Z, et al. A major change in precipitation gradient on the Chinese Loess Plateau at the Pliocene-Quaternary boundary[J]. Journal of Asian Earth Sciences, 2018, 155: 134-138. DOI:10.1016/j.jseaes.2017.10.031 (0)
[9]
Kukla G, Heller F, Liu X M, et al. Pleistocene climates in China dated by magnetic susceptibility[J]. Geology, 1988, 16(9): 811-814. DOI:10.1130/0091-7613(1988)016<0811:PCICDB>2.3.CO;2 (0)
[10]
Meng X M, Derbyshire E, Kemp R A. Origin of the magnetic susceptibility signal in Chinese loess[J]. Quaternary Science Reviews, 1997, 16(8): 833-839. DOI:10.1016/S0277-3791(97)00053-X (0)
[11]
Kletetschka G, Banerjee S K. Magnetic stratigraphy of Chinese Loess as a record of natural fires[J]. Geophysical Research Letters, 1995, 22(11): 1341-1343. DOI:10.1029/95GL01324 (0)
[12]
Zhou L P, Oldfield F, Wintle A G, et al. Partly pedogenic origin of magnetic variations in Chinese loess[J]. Nature, 1990, 346(6286): 737-739. DOI:10.1038/346737a0 (0)
[13]
Maher B A, Taylor R M. Formation of ultrafine-grained magnetite in soils[J]. Nature, 1988, 336(6197): 368-370. DOI:10.1038/336368a0 (0)
[14]
Hus J J, Han J. The contribution of loess magnetism in China to the retrieval of past global changes-some problems[J]. Physics of the Earth and Planetary Interiors, 1992, 70(3/4): 154-168. (0)
[15]
Sun J M, Liu T. Multiple origins and interpretations of the magnetic susceptibility signal in Chinese wind-blown sediments[J]. Earth and Planetary Science Letters, 2000, 180(3/4): 287-296. (0)
[16]
Wang Y, Pan B T, Guan Q Y, et al. Magnetic susceptibility variation in semi-arid region of northwestern China (In Chinese)[J]. Marine Geology & Quaternary Geology, 2008, 28(1): 111-114. [王勇, 潘保田, 管清玉, 等. 西北干旱区黄土-古土壤磁化率变化特征[J]. 海洋地质与第四纪地质, 2008, 28(1): 111-114.] (0)
[17]
Zan J B, Yang S L, Fang X M, et al. Rock-magnetic characteristics and the enhancing mechanism of magnetic susceptibility for west Kunlun mountains loess (In Chinese)[J]. Quaternary Sciences, 2010, 30(1): 46-53. DOI:10.3969/j.issn.1001-7410.2010.01.04 [昝金波, 杨胜利, 方小敏, 等. 西昆仑山黄土的岩石磁学特征及其磁化率增强机制[J]. 第四纪研究, 2010, 30(1): 46-53.] (0)
[18]
Teng X H, Zhang Z G, Peng W B, et al. Rock-magnetic characteristics of the Tianshan loess and the mechanism for enhancing magnetic susceptibility (In Chinese)[J]. Marine Geology & Quaternary Geology, 2013, 33(5): 147-154. [滕晓华, 张志高, 彭文彬, 等. 天山黄土岩石磁学特征及其磁化率增强机制[J]. 海洋地质与第四纪地质, 2013, 33(5): 147-154.] (0)
[19]
Begét J E, Hawkins D B. Influence of orbital parameters on Pleistocene loess deposition in central Alaska[J]. Nature, 1989, 337(6203): 151-153. DOI:10.1038/337151a0 (0)
[20]
Begét J E, Stone D B, Hawkins D B. Paleoclimatic forcing of magnetic susceptibility variations in Alaskan loess during the late Quaternary[J]. Geology, 1990, 18(1): 40-43. DOI:10.1130/0091-7613(1990)018<0040:PFOMSV>2.3.CO;2 (0)
[21]
Liu X M, Hesse P, Rolph T, et al. Properties of magnetic mineralogy of Alaskan loess: Evidence for pedogenesis[J]. Quaternary International, 1999, 62(1): 93-102. DOI:10.1016/S1040-6182(99)00027-0 (0)
[22]
Liu X M, Liu D S, Xia D S, et al. Two pedogenic models for paleoclimatic records of magnetic susceptibility from Chinese and Siberian loess (In Chinese)[J]. Science in China Series D: Earth Sciences, 2007, 37(10): 1382-1391. [刘秀铭, 刘东生, 夏敦胜, 等. 中国与西伯利亚黄土磁化率古气候记录-氧化和还原条件下的两种成土模式分析[J]. 中国科学D辑: 地球科学, 2007, 37(10): 1382-1391.] (0)
[23]
Liu X M, Xia D S, Liu T S, et al. Discussion on two models of paleoclimatic records of magnetic susceptibility of Alaskan and Chinese loess (In Chinese)[J]. Quaternary Sciences, 2007, 27(2): 210-220. DOI:10.3321/j.issn:1001-7410.2007.02.006 [刘秀铭, 夏敦胜, 刘东生, 等. 中国黄土和阿拉斯加黄土磁化率气候记录的两种模式探讨[J]. 第四纪研究, 2007, 27(2): 210-220.] (0)
[24]
Chen J S, Liu X M, Kravchinsky V A, et al. Post-depositional forcing of magnetic susceptibility variations at Kurtak section, Siberia[J]. Quaternary International, 2016, 418: 2-9. DOI:10.1016/j.quaint.2015.09.092 (0)
[25]
Lü S, Han W X, Zhang T, et al. Rock magnetic characteristics and magnetic susceptibility change mechanism of the loess since 8.5 ka in the southern margin of Tarim Basin (In Chinese)[J]. Chinese Journal of Geophysics, 2019, 62(8): 3053-3066. [吕爽, 韩文霞, 张涛, 等. 塔里木盆地南缘8.5 ka以来的黄土岩石磁学特征及其磁化率变化机制[J]. 地球物理学报, 2019, 62(8): 3053-3066.] (0)
[26]
Pang J L, Huang C C, Zhou Y L, et al. Holocene aeolian loess and its pedogenic modification in the upper Hanjiang river valley, China (In Chinese)[J]. Acta Geographica Sinica, 2011, 66(11): 1562-1573. DOI:10.11821/xb201111012 [庞奖励, 黄春长, 周亚利, 等. 汉江上游谷地全新世风成黄土及其成壤改造特征[J]. 地理学报, 2011, 66(11): 1562-1573.] (0)
[27]
Pang J L, Huang C C, Zhou Y L, et al. Formation of the first river terraces of Hanjiang river and its response to the east Asian monsoon change (In Chinese)[J]. Geological Review, 2014, 60(5): 1076-1084. [庞奖励, 黄春长, 周亚利, 等. 汉江上游Ⅰ级河流阶地形成及对东亚季风变化的响应[J]. 地质论评, 2014, 60(5): 1076-1084.] (0)
[28]
Pang J L, Huang C C, Zhou Y L, et al. Eolian loess-palaeosol sequence and OSL age of the first terraces within the Yunxian Basin along the upper Hanjiang River (In Chinese)[J]. Acta Geographica Sinica, 2015, 70(1): 63-72. DOI:10.3969/j.issn.2095-3836.2015.01.004 [庞奖励, 黄春长, 周亚利, 等. 郧县盆地风成黄土-古土壤与汉江I级阶地形成年龄研究[J]. 地理学报, 2015, 70(1): 63-72.] (0)
[29]
Gu H L, Huang C C, Zhou Y L, et al. OSL dating of the Holocene eolian loess and palaeosol on the low terrace land in the upper Hanjiang River Valley (In Chinese)[J]. Quaternary Sciences, 2012, 32(3): 516-526. DOI:10.3969/j.issn.1001-7410.2012.03.18 [顾洪亮, 黄春长, 周亚利, 等. 汉江上游湖北段低阶地风成黄土一古土壤释光测年研究[J]. 第四纪研究, 2012, 32(3): 516-526.] (0)
[30]
Yin S Y. Study on extreme climate and hydrological events and their social impact in the upper Hanjiang River since the historical period (In Chinese). Beijing: Science Press, 2015: 1-372. [殷淑燕. 历史时期以来汉江上游极端性气候水文事件及其社会影响研究[M]. 北京: 科学出版社, 2015: 1-372.] (0)
[31]
Institute of Soil Science, Chinese Academy of Sciences and Xi'an Institute of Optics and Precision Mechanic. Chinese standard soil color charts (In Chinese). Nanjing: Nanjing Press, 1989. [中国科学院南京土壤研究所/中国科学院西安光学精密机械研究所. 中国标准土壤色卡[M]. 南京: 南京出版社, 1989.] (0)
[32]
刘丽方. 汉江三级阶地磁性地层年代及其古环境研究[D]. 西安: 陕西师范大学, 2018.
Liu L F. Study on the age and paleoenvironment of the magnetic strata of the third terrace of the Hanjiang River[D]. Xi'an: Shannxi Normal University, 2018. (0)
[33]
Maher B A, Thompson R. Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols[J]. Quaternary Research, 1995, 44(3): 383-391. DOI:10.1006/qres.1995.1083 (0)
[34]
Vidic N J, Singer M J, Verosub K L. Duration dependence of magnetic susceptibility enhancement in the Chinese loess-palaeosols of the past 620 ky[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 211(3/4): 271-288. (0)
[35]
Deng C L, Zhu R X, Verosub K L, et al. Mineral magnetic properties of loess/paleosol couplets of the central loess plateau of China over the last 1.2 Myr[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B1): B01103. (0)
[36]
Bloemendal J, Barton C E, Radhakrishnamurthy C. Correlation between Rayleigh loops and frequency-dependent and quadrature susceptibility: Application to magnetic granulometry of rocks[J]. Journal of Geophysical Research: Solid Earth, 1985, 90(B10): 8789-8792. DOI:10.1029/JB090iB10p08789 (0)
[37]
Hunt C P, Banerjee S K, Han J M, et al. Rock-magnetic proxies of climate change in the loess-palaeosol sequences of the western Loess Plateau of China[J]. Geophysical Journal International, 1995, 123(1): 232-244. DOI:10.1111/j.1365-246X.1995.tb06672.x (0)
[38]
Deng C L, Zhu R X, Verosub K L, et al. Paleoclimatic significance of the temperature-dependent susceptibility of Holocene Loess along a NW-SE transect in the Chinese Loess Plateau[J]. Geophysical Research Letters, 2000, 27(22): 3715-3718. DOI:10.1029/2000GL008462 (0)
[39]
Deng C, Zhu R, Jackson M J, et al. Variability of the temperature-dependent susceptibility of the Holocene eolian deposits in the Chinese loess plateau: A pedogenesis indicator[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(11/12): 873-878. (0)
[40]
Zhu R X, Lin M, Pan Y X. History of the temperature-dependence of susceptibility and its implications: preliminary results along an E-W transect of the Chinese Loess Plateau[J]. Chinese Science Bulletin, 1999, 44(S1): 81-86. (0)
[41]
Liu Q S, Deng C L, Yu Y, et al. Temperature dependence of magnetic susceptibility in an Argon environment: Implications for pedogenesis of Chinese loess/palaeosols[J]. Geophysical Journal International, 2005, 161(1): 102-112. DOI:10.1111/j.1365-246X.2005.02564.x (0)
[42]
Oches E A, Banerjee S K. Rock-magnetic proxies of climate change from loess -paleosol sediments of the Czech Republic[J]. Studia Geophysica et Geodætica, 1996, 40(3): 287-300. DOI:10.1007/BF02300744 (0)
[43]
Florindo F, Zhu R X, Guo B, et al. Magnetic proxy climate results from the Duanjiapo loess section, southernmost extremity of the Chinese loess plateau[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B1): 645-659. DOI:10.1029/1998JB900001 (0)
[44]
Evans M E, Heller F. Magnetic enhancement and palaeoclimate: Study of A loess/palaeosol couplet across the loess plateau of China[J]. Geophysical Journal International, 1994, 117(1): 257-264. DOI:10.1111/j.1365-246X.1994.tb03316.x (0)
[45]
Hanesch M, Stanjek H, Petersen N. Thermomagnetic measurements of soil iron minerals: The role of organic carbon[J]. Geophysical Journal International, 2006, 165(1): 53-61. DOI:10.1111/j.1365-246X.2006.02933.x (0)
[46]
Dunlop D J. Magnetite: behavior near the single-domain threshold[J]. Science, 1972, 176(4030): 41-43. DOI:10.1126/science.176.4030.41 (0)
[47]
Thompson R, Oldfield F. Environmental Magnetism . London: Allen & Unwin, 1986: 1-227. (0)
[48]
Li X S, Han Z Y, Yang S Y, et al. Chemical weathering intensity and element migration features of the Xiashu loess profile in Zhenjiang (In Chinese)[J]. Acta Geographica Sinica, 2007, 62(11): 1174-1184. [李徐生, 韩志勇, 杨守业, 等. 镇江下蜀土剖面的化学风化强度与元素迁移特征[J]. 地理学报, 2007, 62(11): 1174-1184.] (0)
[49]
Maher B A, Thompson R. Paleoclimatic significance of the mineral magnetic record of the Chinese loess and paleosols[J]. Quaternary Research, 1992, 37(2): 155-170. DOI:10.1016/0033-5894(92)90079-X (0)
[50]
Verosub K L, Fine P, Singer M J, et al. Pedogenesis and paleoclimate: Interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences[J]. Geology, 1993, 21(11): 1011-1014. DOI:10.1130/0091-7613(1993)021<1011:PAPIOT>2.3.CO;2 (0)
[51]
Chen J, An Z S, Wang Y J, et al. Distribution of Rb and Sr in the Luochuan loess-paleosol sequence of China during the last 800ka-implications for paleomonsoon variations (In Chinese)[J]. Science in China(Series D), 1998, 28(6): 498-504. [陈骏, 安芷生, 汪永进, 等. 最近800 ka洛川黄土剖面中Rb/Sr分布和古季风变迁[J]. 中国科学(D辑), 1998, 28(6): 498-504.] (0)
[52]
Maher B A. Magnetic properties of some synthetic sub-micron magnetites[J]. Geophysical Journal International, 1988, 94(1): 83-96. DOI:10.1111/j.1365-246X.1988.tb03429.x (0)
[53]
Liu Q S, Deng C L, Torrent J, et al. Review of recent developments in mineral magnetism of the Chinese loess[J]. Quaternary Science Reviews, 2007, 26(3/4): 368-385. (0)
[54]
黄丽. 亚热带典型土壤铁锰胶膜的微形态与化学特性[D]. 武汉: 华中农业大学, 2004.
Huang L. The micromorphology and chemical characteristic of iron-manganese cutans in typical subtropical soils in China[D]. Wuhan: Huazhong Agricultural University, 2004. (0)
[55]
Hu X F, Gong Z T. Limitation of soil magnetic susceptibility-As a kind of climate index (In Chinese)[J]. Soil, 1999, 33(1): 39-42. [胡雪峰, 龚子同. 土壤磁化率-作为一种气候指标的局限性[J]. 土壤, 1999, 33(1): 39-42.] (0)
[56]
Hu X F, Wei J, Xu L F, et al. Magnetic susceptibility of the Quaternary Red Clay in subtropical China and its paleoenvironmental implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 279(3/4): 216-232. (0)
[57]
Guo X L, Liu X M, Guo H, et al. The magnetic mechanism of S5 paleosol in Baoji section (In Chinese)[J]. Quaternary Sciences, 2012, 32(4): 785-794. DOI:10.3969/j.issn.1001-7410.2012.04.24 [郭雪莲, 刘秀铭, 郭晖, 等. 宝鸡剖面S5古土壤磁化率变化机制[J]. 第四纪研究, 2012, 32(4): 785-794.] (0)
[58]
Zhao J, Lu H Y, Wang X Y, et al. Magnetic properties of loess deposit in eastern Qinling Mountains and an investigation on the magnetic susceptibility enhancement (In Chinese)[J]. Acta Sedimentologica Sinica, 2008, 26(6): 1052-1062. [赵军, 鹿化煜, 王晓勇, 等. 东秦岭地区黄土堆积的岩石磁学特征及磁化率增强机制探索[J]. 沉积学报, 2008, 26(6): 1052-1062.] (0)