检索项 检索词
  土壤学报  2022, Vol. 59 Issue (3): 642-653  DOI: 10.11766/trxb202012100679
0

引用本文  

马菲, 周健民, 杜昌文. 激光诱导击穿原子光谱在土壤分析中的应用. 土壤学报, 2022, 59(3): 642-653.
MA Fei, ZHOU Jianmin, DU Changwen. Application of Laser-Induced Breakdown Atomic Spectroscopy in Soil Analysis. Acta Pedologica Sinica, 2022, 59(3): 642-653.

基金项目

国家重点研发计划项目(2016YFD0200302)和国家自然科学基金项目(41977026,41671238)资助

通讯作者Corresponding author

杜昌文, E-mail: chwdu@issas.ac.cn

作者简介

马菲(1985—),女,博士,副研究员,主要从事土壤肥力与土壤化学研究。E-mail:fma@issas.ac.cn
激光诱导击穿原子光谱在土壤分析中的应用
马菲1, 周健民1, 杜昌文1,2    
1. 土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所),南京 210008;
2. 中国科学院大学现代农业科学学院,北京 100049
摘要:土壤分析是土壤学研究及应用的前提和基础,传统化学土壤分析方法逐渐不能适应现代土壤学海量信息数据快速获取的需求。激光诱导击穿光谱作为一种全新的、反映土壤组成元素原子信息的光谱技术,其无需对样品进行复杂前处理,可实现原位、快速、多元素连续在线检测,每条光谱记录土壤样本独一无二的特征,可以视为土壤“指纹”,成为现代土壤分析的有效技术之一。首先介绍和分析了激光诱导击穿原子光谱的原理、光谱获取的主要影响因素、光谱数据处理的化学计量学方法等;然后阐述和梳理了基于激光诱导击穿光谱技术在土壤分析方面的应用成果和进展,包括土壤鉴定、土壤养分评估、土壤重金属测定、微观/介观尺度土壤原位表征等;最后讨论和总结了激光诱导击穿光谱技术在土壤分析中所面临的挑战及其应用展望。
关键词土壤分析    激光诱导击穿光谱    化学计量学    土壤鉴定    土壤元素含量预测    
Application of Laser-Induced Breakdown Atomic Spectroscopy in Soil Analysis
MA Fei1, ZHOU Jianmin1, DU Changwen1,2    
1. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
2. College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: Soil analysis is the tool for understanding the soil. However, the conventional chemical analysis methods have been difficult to meet the requirements of mass information deprived from modern soil science. Laser-induced breakdown spectroscopy (LIBS) is one of the novel tools which reflects the elements atomic peaks in the soil with the advantages of less pre-processing, rapid, in situ, real-time and multielement monitoring. Moreover, each spectrum was recognized as a fingerprint of soil sample due to its unique characteristic. The current study aimed to provide a critical review of LIBS in soil analytical studies. Firstly, the principle of LIBS, the main factors in spectral recording and the chemometrics methods for spectra processing were introduced; then the applications in qualitative and quantitative soil analysis during the last decade were elaborated. Some of the soil analysis recorded with LIBS include soil identification, prediction of soil nutrients; soil heavy elements detection, and soil elements distribution studies at nano- and mesoscale. Lastly, the main challenges of the LIBS techniques in soil analysis were discussed and we highlighted the prospects and application of LIBS in future research.
Key words: Soil analysis    Laser induced breakdown spectroscopy (LIBS)    Chemomtrics    Soil identification    Soil elements prediction    

土壤是人类生存的载体,也是作物获取养分的重要来源,同时土壤质量也对人类发展产生重要影响。因此,开展土壤分析研究,获取土壤信息,对农业管理和环境决策具有重要意义。但是土壤结构组成复杂,异质性强,如何获取土壤信息,梳理特征和规律,是土壤分析方法亟需解决的问题。传统土壤分析方法是基于实验室的化学分析,具有稳定性好、灵敏度高等优点,这些方法为获取土壤信息提供了有力支撑,如电感耦合等离子发射光谱(inductively coupled plasma atomic emission spectrometry,ICP-AES)、电感耦合等离子质谱(inductively coupled plasma optical mass spectrometry,ICP-MS)、原子吸收光谱(atomic absorption spectrometry,AAS)等[1]。但此类方法样品前处理过程复杂、无法实现多元素同时检测(表 1);且属于破坏性分析,样品前处理过程改变了土壤的物理性质或者化学结构,无法完全反映土壤的实际情况。

表 1 常见光谱分析方法与激光诱导击穿光谱方法比较[2] Table 1 Comparison of traditional spectroscopic techniques with laser-induced breakdown spectroscopy

现代光谱学技术具有无复杂前处理、无损、快速、环境友好等特点,逐渐成为土壤信息获取的新方法[3-4]。激光诱导击穿光谱(laser-induced breakdown spectroscopy,LIBS)是一种基于原子发射光谱,以激光作为发射源,对样本进行激光烧蚀的全新元素分析的光谱学技术。该技术由Brech和Cross[5]在1962年首次提出;2012年,美国宇航局(National Aeronautics and Space Administration,NASA)采用LIBS技术作为火星车表面矿物化学相机(ChemCam)的分析手段,实现了对火星表面的远距离探测,使LIBS技术广为人知。

随着研究不断深入,LIBS技术在各领域的应用全面展开,相关文献几乎呈指数增长(图 1a),在土壤分析领域也逐年上升(图 1b),成为新型的土壤分析技术。2005年以前,欧美一些国家为技术研究大国;我国在土壤分析方面的研究和应用起步较晚,随着国家LIBS技术和计算机技术的快速发展以及学科间不同技术的交叉融合,中国学者发表的LIBS文献数量自2008年以后居于世界首位。

注:数据来源于web of science [所有数据库],搜索主题词为:a)laser-induced breakdown spectroscopy;b)laser-induced breakdown spectroscopy and soil。   Note: Data from the web of science [All database], the keywords are: a)laser-induced breakdown spectroscopy; b)laser-induced breakdown spectroscopy and soil. 图 1 2000-2020年间激光诱导击穿光谱技术(a)和土壤分析中激光诱导击穿光谱技术(b)的论文发表情况 Fig. 1 Published papers about LIBS technique(a)and LIBS in soil analysis(b)between 2000 and 2020
1 激光诱导击穿光谱技术 1.1 LIBS技术原理

LIBS技术通过激光器发出高能激光脉冲,并聚焦在待测样品表面,当脉冲激光的能量大于样本的击穿阈值时,会对样品表面进行烧蚀,产生大量等离子体,形成烧蚀坑;当激光诱导停止后,等离子体能量衰减,产生连续辐射并发出不同元素的特异性离子体信号[6];信号被收集并产生光谱响应,通过分析光谱的波长和强度信息对样本元素信息进行解译,实现待测样本的定性和定量分析(图 2)。

图 2 典型激光诱导击穿光谱(LIBS)系统的设备组成 Fig. 2 Setup of a typical LIBS system

LIBS技术的主要优点[3]有:(1)可对样本进行原位、实时、连续在线元素检测;(2)样本无需复杂前处理,所需样品量少(0.1 μg~0.1 mg),且固体、液体、气体样本均可进行分析;(3)测定时间短,从激光脉冲发射到信号收集的整个过程仅需毫秒级时间;(4)一条谱线涵盖所有可检测出的元素特征信号,可实现多元素同时检测;(5)作为LIBS技术的亮点,其激光脉冲的击穿光斑面积和烧蚀深度可控制在微米尺度,通过调节参数,进行不同尺度的击穿烧蚀,可实现介观尺度下土壤元素组成与分布特征的原位研究[7]

1.2 LIBS光谱识别

LIBS主要是由检测到的元素所发射的原子谱线、一次离子和二次离子谱线组成。图 3为华东地区典型水稻土壤样本的LIBS光谱图。土壤组成结构较为复杂,所含的元素也较丰富,LIBS主要差别为不同元素含量差异引起的基线干扰、响应敏感度、相邻谱线干扰程度等[8]。LIBS谱线识别主要参照原子光谱数据库(atomic spectra database lines form,NIST)。

图 3 华东地区水稻土的LIBS图 Fig. 3 The LIBS spectra of paddy soil in eastern China

LIBS光谱还能提供与土壤相关的分子光谱信息。如O-H、C-C、C-N等分子键的信息,这些分子键谱线不仅与样本结构相关,也与环境相关。如样本中的元素产生等离子后,其原子态或离子态与环境中其他元素的等离子重新碰撞并结合:如C + N2 → C-N + N;C + O → C-O,C2 + O → C-O + C,C2 + O2 → 2C-O等[9]。LIBS的分子键信号作为等离子发射光谱的重要信息之一,其形成途径和特征要较原子光谱更加复杂。

2 激光诱导击穿光谱分析 2.1 LIBS测定影响因素 2.1.1 系统因素

LIBS系统的激光器、能量、波长、脉冲、延迟时间等会影响信号获取。Peng等[10]比较了1 064 nm和532 nm波长下的LIBS信号,发现532 nm时测定结果灵敏性更高。激光波长越短,LIBS的信号重复性越好,更适用于微观分析[11]。而激光脉冲时间(纳秒、飞秒、皮秒)影响激光与样品的相互作用[8];脉冲宽度影响激光剥蚀样品过程中的热效应,宽度与热效应呈正比。双脉冲产生的光谱信号较单脉冲更强[12]。与单脉冲相比,双脉冲能够将土壤碳(C)的检测信号提高7倍~20倍(R2 = 0.97)[13]。在等离子体形成过程中,由于不同元素气化或蒸发所需的能量不同,导致不同原子达到最大谱线强度的时间具有差异。延迟时间短,背景信号强,信噪比低;延迟时间过长,导致噪声和谱线强度均变弱,因此需要选择适当的延迟时间获得较高的信噪比[14]

2.1.2 光谱因素

由于高能级的粒子在向外辐射过程中被外层低能态粒子吸收,导致元素的特征峰型发生不同程度的改变,称为光谱自吸收效应。当光谱自吸收严重时,引起粒子光辐射呈现“M”型轮廓,即特征吸收峰的最高点发生凹陷自蚀,导致被测元素的浓度和特征光谱的强度呈非线性关系,影响光谱信息的识别与定量测定。

2.1.3 样本因素

样本的基体效应影响LIBS信号,由土壤异质性引起的基体效应更值得关注[15]。基体效应受土壤样本的物理性质、化学结构等因素影响。不同含水量的黑土光谱强度随含水量增加而下降,但石灰质土壤光谱强度随含水量增加而增强,这是由于石灰质土壤含有大量含钙化合物引起的基体效应[16]。样本性状也会影响LIBS信号。Yan等[17]研究不同土壤样本前处理方法和不同土壤粒径的LIBS信号,结果表明,风干、研磨过筛(< 100 mm)并进行压片处理的土壤样本的LIBS信号具有高信噪比;松散、冷冻的土壤样本会产生较大的光谱噪声;通过电镜图观察,颗粒较大(> 121 mm)样本的烧蚀坑边缘断层多且杂乱,影响光谱信噪比。土壤含水量和孔隙度也会影响激光烧蚀坑体积及等离子体的温度扩散,引起LIBS信号变化[18]

2.1.4 环境因素

样本所处的气体环境会影响等离子体的性质、动力学特征以及辐射传播过程,影响LIBS信号。常见气体环境有空气、氩气、氦气、氮气以及真空等。Idris等[19]研究发现碳(C)的谱线强度在2.6 kPa氦气环境中明显高于0.5 kPa空气环境。Amal等[20]研究发现硅(Si)在250.6 nm处强度随大气压力增大而增强。当环境气体密度较高时,等离子在膨胀过程受到环境气体限制无法快速扩散,样品表面的等离子体聚集导致自身密度和温度上升,进一步加快了样本的烧蚀作用。环境气体与待测样本含有相同的元素也会对LIBS信号产生干扰。Dong等[21]在空气和氩气环境下分别测定氮(N)的特征谱线,研究结果表明,氩气能够有效降低空气中N2对测定的干扰。

2.2 化学计量学方法

组成与结构较简单的物质,元素含量测定通常采用构建标准曲线的方法。主要有内定标法、外定标法、双盲法等[3, 22-23]。但标准曲线构建过程操作繁琐,不同基质会产生基体效应。对于难以构建标准曲线的物质,Ciucci等[24]提出自由定标法(calibration free LIBS,CF-LIBS):在局部热平衡的条件下,各元素的原子和离子的能级分布均符合玻尔兹曼分布,不同元素的谱线相对强度比能够反映不同元素的浓度比。该方法无需构建标准曲线,在一定程度上降低了基体效应对定量分析的影响。Pandhija等[25]通过自由定标法测定了土壤中的镉(Cd)和锌(Zn)的含量,与内定标法相比,其检出限分别为0.2 mg·kg-1和1.0 mg·kg-1,有效降低基体效应的干扰,并提高了分析精度。

土壤的组成结构复杂,因谱线叠加、噪声干扰等不利因素,对光谱目标信息的挖掘产生影响。由于光谱与土壤性质间存在必然的内在联系,且每条LIBS光谱曲线由上千个数据点组成,包含了丰富的样本特征信息,因此,可利用化学计量学方法构建光谱与目标属性的模型,通过优化算法,提高测定结果的可靠性与稳定性[22]。常用的化学计量学方法有主成分分析、偏最小二乘回归、多元线性回归、主成分回归等方法,近年来人工神经网络与机器学习等方法也逐渐应用到土壤分析中(表 2)。

表 2 LIBS激光参数、元素特征谱线及定量模型 Table 2 Laser parameters, element line locations and models of LIBS
3 激光诱导击穿光谱在土壤分析中的应用

LIBS的发展经历了从理论研究到应用探索的渐进式过程。近十年来,LIBS技术在土壤分析的应用主要为土壤定性分析、定量分析以及定性定量融合等,具有广阔的应用空间。

3.1 定性分析

土壤光谱可看做是土壤的“指纹”[2, 38],是样本整体信息的表现。LIBS对土壤进行定性分析是以土壤整体作为研究对象,其本质是对土壤光谱特征进行筛选,这些特征不是某个元素的,而是多个元素谱线的综合体现。定性分析的核心是提取有效信息及优化模型。Pontes等[39]采用线性判别模型,实现巴西三种典型土壤类型的鉴定(准确率大于72%)。Yu等[35]通过最小二乘支持向量机模型实现了对六种中国标准土壤样本的分类(准确率100%)。通过多元线性归回和偏最小二乘模型也可实现土壤砂粒、粉砂粒和黏粒鉴定(准确性大于80%)[36, 40]。由于土壤结构较为稳定,可以作为一种有效的痕量证据,因此定性分析也拓展用于法医土壤分析中。Xu等[41]在两个刑事案件中,利用LIBS结合主成分分析方法,区分不同地点的土壤样本,确认案发地点,为查找第一犯罪现场提供技术依据。

3.2 定量分析 3.2.1 土壤碳

(C) 碳元素的主要特征谱线位于193.09 nm和247.86 nm[42]。Cremers等[43]选择247.8 nm处C的发射谱线和250~252 nm处Si的发射谱线,计算C与Si谱线的强度比,结果与干式燃烧法测定的土壤全碳含量相关性达0.96,首次实现了基于LIBS技术的土壤样本全碳的定量分析。选择光谱200~300 nm波段进行偏最小二乘法模型,可预测土壤全碳(误差3.1~3.7 g·kg-1,以C计,下同)、无机碳(误差5.3~6.2 g·kg-1)和有机碳(误差6.0~7.0 g·kg-1)含量[26];通过优化模型,能进一步降低C的预测误差(32%~55%)[44]。除了C的特征谱线,全碳和无机碳含量还与铝(Al)、铁(Fe)、钛(Ti)、钙(Ca)等元素特征谱线具有较高的相关性;有机碳含量与镁(Mg)谱线有较高的相关性,通过Mg / Ca比值(0.148和0.263),可分别推算无机碳和有机碳含量[44]。由于在C 247.86 nm谱线附近还有多条Fe的特征谱线,当光谱分辨率不高时,分析此处C谱线时会受到Fe谱线的干扰,通常导致C含量被高估。Ma等[45]通过不同C与Fe含量的土壤样本构建最小二乘模型,有效降低了干扰,将测定全碳含量的准确率提高了15%~58%。

3.2.2 土壤氮

(N) 氮元素在200~800 nm范围有多条特征谱线[27],可根据实际的测定结果进行选择(表 2)。土壤N测定的难度在于空气中的N干扰。Martin等[46]选择较低激光能量获取N元素信号以减少空气中N的干扰。也可通入保护气体来排除空气干扰,常见的保护气体有氩气和氦气。采用氩气作为保护气体,选择567.96、744.23和746.83 nm处的N特征谱线以及750.39 nm处Ar的谱线构建线性回归模型,结果显示N含量与谱线强度具有良好的相关性(R2 = 0.966)[28]。余建华等[47]通过研究发现,空气环境中744和746 nm处的N谱线较强,而氩气条件下的N光谱背景值高于空气下的背景,扣除背景后净强度微弱,难以用于定量分析;而当样本中含有C-N结构时,较易形成C-N特征谱线,分析384~389 nm以及412~422 nm处的C-N特征谱线,其强度与N含量有较好的相关性(R2 > 0.9)。选择399.500、444.703、463.054、496.398、567.480、742.364、822.314和843.874 nm处N的特征谱线可预测土壤中硝态氮(NO3-)含量(R2 = 0.925 4)[29]。Dequarie等[48]基于地球土壤研究结果研究了火星岩石的C(723 nm)和N(500.5 nm)的光谱信号,结果表明N信号较C信号响应更灵敏。

3.2.3 土壤磷

(P) 磷元素的特征谱线大多集中在紫外光谱范围,也存在Fe谱线的干扰,因此P的研究较少。Lu等[30]选择P在255.5 nm处的特征谱线,通过劳伦斯拟合构建模型,进行全磷含量预测(R2 = 0.868);Sánchez-Esteva等[31]通过竞争性自适应重加权算法筛选出213.6、214.9和215.4 nm处的特征谱线,并与红外光谱(600~700 nm)相结合,构建全磷预测模型(误差58.4 mg·kg-1)。

3.2.4 土壤钾

(K) 钾元素的主要特征谱线在404.72、518.36、766.49和769.90 nm处,其中766.49和769.90 nm处谱线较强[49]。选择合适的定量模型,土壤K含量测定检出限达9 mg·kg-1[50]

3.2.5 土壤中微量元素

钙(Ca)、镁(Mg)、铁(Fe)和锰(Mn)等元素的特征谱线较多,且存在谱线重叠等干扰,通过合适的化学计量学方法,可实现多元素同时测定(检测限Mg 51 mg·kg-1、Ca 80 mg·kg-1、Fe 70 mg·kg-1、Mn 37 mg·kg-1)[48, 51]。Gazeli等[51]利用硫(S)在180.7、182.1、182.6、921.3、922.8、923.8 nm处的特征谱线构建回归模型,预测误差2.0%~4.2%。

3.2.6 土壤重金属污染物

LIBS技术对重金属元素的定性与定量发展较早且较为成熟,广泛应用于土壤环境检测中[52]。Senesi等[53]构建了土壤中铬(Cr)(R2 = 0.984 1)、铜(Cu)(R2 = 0.978 1)、铅)(Pb)(R2 = 0.9448)的定量分析模型,实现土壤中重金属的测定。Yi等[54]从土壤中提取可溶性重金属离子,测定土壤中有效镉(Cd)和铅(Pb)含量[55](检出限分别为0.667 mg·kg-1和0.094 mg·kg-1)。LIBS技术与微波辅助技术结合可测定土壤中铜(Cu)和银(Ag)的含量(检测限30 mg·kg-1和23.3 mg·kg-1)[56];与激光诱导荧光技术结合可实现土壤中铬(Cr)、镍(Ni)、Cu的测定(检出限2.5 mg·kg-1、6.8 mg·kg-1和3.3 mg·kg-1)[57]。Bousquet等[58]开发了可移动土壤重金属在线检测系统,采集的光谱通过特征峰识别、光谱预处理过程,构建人工神经网络模型,可在线测定元素含量并进行污染等级评价。将激光器与光谱仪小型化,研发可移动LIBS设备,实现了土壤中Cu和Pb测定(误差低于12%)[59]

3.3 定性与定量分析融合

土壤样本经过预处理后,原有结构会被破坏,因此开展土壤原位分析非常困难。利用激光诱导击穿光谱激光烧蚀光束可调控的优势,通过调整参数,可获得不同位点大小和深度的烧蚀信息(图 4)。首先通过定性分析获取元素光谱特征,再利用定量分析获取元素含量信息,可实现土壤原位组成与结构表征,具有极大的优势和广阔的应用空间。

注:图 4b)中的数字1~27代表不同位点的激光烧蚀顺序。   Note: the numbers from 1 to 27 in Fig. 4b)represent the order of laser ablation spots by ablating process. 图 4 激光光束在土壤样本上不同位点和深度的烧蚀过程 Fig. 4 Laser ablation process at different spots and depths on a soil pellet

Chirinos等[60]研究了矿物中Ca和硅(Si)元素在1 mm3矿物颗粒中的含量变化和空间分布,实现矿物溯源。Senesi等[61]则通过石灰岩中主要元素如Mn、Fe、钠(Na)、锶(Sr)等的含量变化,判断成岩过程。Ma等[7]设定光斑分辨率在150 μm,首次通过LIBS光谱技术从介观尺度上研究了盐碱土壤中矿物和有机质的结合过程,发现K、Ca、Na和Mg元素随含盐量与有机质分布呈一定规律(图 5),并结合红外光谱及二维相关算法,揭示盐碱地中的K、Na、Ca和Mg并不完全来源于土壤矿物,有部分来源于有机物的分解。

注:C1:含盐量1.08 g·kg-1,有机质3.53 g·kg-1;C2:含盐量1.09 g·kg-1,有机质11.38 g·kg-1;C3:含盐量9.49 g·kg-1,有机质13.80 g·kg-1;C4:含盐量,9.55 g·kg-1,有机质5.60 g·kg-1;C5:含盐量10.17 g·kg-1,有机质13.20 g·kg-1;C6:含盐量16.10 g·kg-1,有机质7.52 g·kg-1.    Note: C1:salt 1.08 g·kg-1, SOM 3.53 g·kg-1; C2:salt 1.09 g·kg-1, SOM 11.38 g·kg-1; C3:salt 9.49 g·kg-1, SOM 13.80 g·kg-1; C4:9.55 g·kg-1, SOM 5.60 g·kg-1; C5:salt 10.17 g·kg-1, SOM 13.20 g·kg-1; C6:salt 16.10 g·kg-1, SOM 7.52 g·kg-1. 图 5 K、Na、Ca和Mg在土壤样本介观尺度的分布[7] Fig. 5 Spatial distributions of K, Na, Ca, and Mg at mesoscale[7]
4 激光诱导击穿光谱技术面临的挑战与研究展望

LIBS技术作为一种现代光谱技术,在土壤定性与定量分析中显示出应用潜力,进一步推动了人们对土壤性质的认识[62],但现阶段,LIBS技术仍然存在一些不足之处。一方面,在LIBS测定过程中,实验参数设置、光谱信号、土壤样本、环境因素等均会影响信息的获取;土壤的异质性和基体效应导致土壤光谱信息变异性很大,均会影响测定结果的准确性和稳定性。将土壤样本研磨可增加均质性,但激光烧蚀松散的粉末,会在表面产生冲击波,导致散焦以及脉冲波动[63];将样本压实后,可提供坚实和均匀的表面,但压实过程会改变土壤表面的粗糙度以及内部的紧实度,对光谱强度产生影响。另一方面,在数据分析过程中,合适的化学计量学模型对预测结果的精确性具有重要影响[64]。因此需要构建适当的方法以降低干扰,提高模型稳健性与预测准确性,也应充分考虑适合的模型思路、融合方法、数据权重、干扰信息等,否则可能会由于数据处理不恰当等原因导致分析结果精确度降低等问题[36]

虽然利用LIBS技术进行土壤分析具有一定的局限性,但其独特的优势在土壤分析中不可或缺,特别是对土壤元素结构与组成进行定性和定量分析方面,具有广阔的应用潜力。为了拓展LIBS技术在土壤分析中的应用,今后的研究工作一方面需不断改进LIBS技术在测定过程与数据处理过程中的局限性;另一方面需将其与其他现代光谱技术相结合,更加全面地获取土壤样本的“指纹”信息[38]。例如,与中红外衰减全反射光谱相结合,提升土壤有机质含量测定的准确性,揭示矿物-有机物的协同作用[7];与拉曼光谱相结合,实现不同碳酸盐矿物的分类鉴定[65],更加全面地了解土壤性质[66-67]。在硬件上采用高性能便携式设备,适用于野外原位实时测定;在软件上建立土壤光谱数据库和预测模型,进而构建土壤光谱信息系统[68],融合现代信息技术和农机装备[69],为现代数字化智慧农业提供技术支撑(图 6)。

图 6 农田土壤光谱信息系统及其应用 Fig. 6 Spectroscopic information system of farmland and its application
参考文献
[1]
Butler O T, Cairns W R L, Cook J M, et al. Atomic spectrometry update - Areview of advances in environmental analysis[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(1): 35-89. DOI:10.1039/C5JA90061A (0)
[2]
Shah S K H, Iqbal J, Ahmad P, et al. Laser induced breakdown spectroscopy methods and applications: A comprehensive review[J]. Radiation Physics and Chemistry, 2020, 170: 108666. DOI:10.1016/j.radphyschem.2019.108666 (0)
[3]
Du C W. Soil infrared photoacoustic spectroscopy: Principal and application (In Chinese). Beijing: Science Press, 2012. [杜昌文. 土壤红外光声光谱原理及应用[M]. 北京: 科学出版社, 2012.] (0)
[4]
Villas-Boas P R, Franco M A, Martin-Neto L, et al. Applications of laser-induced breakdown spectroscopy for soil analysis, part Ⅰ: Review of fundamentals and chemical and physical properties[J]. European Journal of Soil Science, 2020, 71: 789-804. (0)
[5]
Brech F, Cross L. Optical microemission stimulated by a ruby MASER[J]. Applied Spectroscopy, 1962, 16: 59-64. DOI:10.1177/000370286201600201 (0)
[6]
杨新艳. 水溶液成分表面增强激光探针检测技术研究[D]. 武汉: 华中科技大学, 2017.
Yang X Y. Study on elemental detection of aqueous solution using sruface-enhanced laser-induced breakdown spectroscopy[D]. Wuhan: Huangzhong University of Science and Technology, 2017. (0)
[7]
Ma F, Du C W, Zhang Y Q, et al. LIBS and FTIR-ATR spectroscopy studies of mineral-organic associations in saline soil[J]. Land Degradation & Development, 2020, 32(4): 1786-1795. (0)
[8]
Peng J, Liu F, Zhou F, et al. Challenging applications for multi-element analysis by laser-induced breakdown spectroscopy in agriculture: A review[J]. Trends in Analytical Chemistry, 2016, 85: 260-272. DOI:10.1016/j.trac.2016.08.015 (0)
[9]
Parigger C G, Guan G M, Hornkohl J O. Measurement and analysis of OH emission spectra following laser-induced optical breakdown in air[J]. Applied Optics, 2003, 42(30): 5986-5991. DOI:10.1364/AO.42.005986 (0)
[10]
Peng J, Liu F, Shen T, et al. Comparative Study of the Detection of Chromium Content in Rice Leaves by 532 nm and 1064 nm Laser-Induced Breakdown Spectroscopy[J]. Sensors, 2018, 18(2): 621. DOI:10.3390/s18020621 (0)
[11]
Noll R, Bette H, Brysch A, et al. Laser-induced breakdown spectrometry - applications for production control and quality assurance in the steel industry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2001, 56(6): 637-649. DOI:10.1016/S0584-8547(01)00214-2 (0)
[12]
Corsi M, Cristoforetti G, Hidalgo M, et al. Double pulse, calibration-free laser-induced breakdown spectroscopy: A new technique for in situ standard-less analysis of polluted soils[J]. Applied Geochemistry, 2006, 21(5): 748-755. DOI:10.1016/j.apgeochem.2006.02.004 (0)
[13]
Belkov M V, Burakov V S, De Giacomo A, et al. Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2009, 64(9): 899-904. DOI:10.1016/j.sab.2009.07.019 (0)
[14]
Glumac N G, Dong W K, Jarrell W M. Quantitative analysis of soil organic carbon using laser-induced breakdown spectroscopy: An improved method[J]. Soil Science Society of America Journal, 2010, 74(6): 1922-1928. DOI:10.2136/sssaj2010.0100 (0)
[15]
Bousquet B, Sirven J B, Canioni L. Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2007, 62(12): 1582-1589. DOI:10.1016/j.sab.2007.10.018 (0)
[16]
Popov A M, Zaytsev S M, Seliverstova I V, et al. Matrix effects on laser-induced plasma parameters for soils and ores[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 148: 205-210. DOI:10.1016/j.sab.2018.07.005 (0)
[17]
Yan X T, Donaldson K M, Davidson C M, et al. Effects of sample pretreatment and particle size on the determination of nitrogen in soil by portable LIBS and potential use on robotic-borne remote Martian and agricultural soil analysis systems[J]. RSC Advances, 2018, 8(64): 36886-36894. DOI:10.1039/C8RA07065B (0)
[18]
Donaldson K M, Yan X T. A first simulation of soil-laser interaction investigation for soil characteristic analysis[J]. Geoderma, 2019, 337: 701-709. DOI:10.1016/j.geoderma.2018.10.021 (0)
[19]
Idris N, Pardede M, Jobiliong E, et al. Enhancement of carbon detection sensitivity in laser induced breakdown spectroscopy with low pressure ambient helium gas[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2019, 151: 26-32. DOI:10.1016/j.sab.2018.11.001 (0)
[20]
Amal K, Elnaby S H, Palleschi V, et al. Comparison between single- and double-pulse LIBS at different air pressures on silicon target[J]. Applied Physics B, 2006, 83(4): 651-657. DOI:10.1007/s00340-006-2259-1 (0)
[21]
Dong D M, Zhao C J, Zheng W G, et al. Spectral characterization of nitrogen in farmland soil by laser-induced breakdown spectroscopy[J]. Spectroscopy Letters, 2013, 46(6): 421-426. DOI:10.1080/00387010.2012.747542 (0)
[22]
Zorov N B, Gorbatenko A A, Labutin T A, et al. A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2010, 65(8): 642-657. DOI:10.1016/j.sab.2010.04.009 (0)
[23]
Guo L B, Zhang D, Sun L X, et al. Development in the application of laser-induced breakdown spectroscopy in recent years: A review[J]. Frontiers of Physics, 2021, 16(2): 22500. DOI:10.1007/s11467-020-1007-z (0)
[24]
Ciucci A, Corsi M, Palleschi V, et al. New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy[J]. Applied Spectroscopy, 1999, 53(8): 960-964. DOI:10.1366/0003702991947612 (0)
[25]
Pandhija S, Rai N K, Rai A K, et al. Contaminant concentration in environmental samples using LIBS and CF-LIBS[J]. Applied Physics B, 2010, 98(1): 231-241. DOI:10.1007/s00340-009-3763-x (0)
[26]
Bricklemyer R S, Brown D J, Barefield J E, et al. Intact soil core total, inorganic, and organic carbon measurement using laser-induced breakdown spectroscopy[J]. Soil Science Society of America Journal, 2011, 75(3): 1006-1018. DOI:10.2136/sssaj2009.0244 (0)
[27]
Harris R D, Cremers D A, Ebinger M H, et al. Determination of nitrogen in sand using laser-induced breakdown spectroscopy[J]. Applied Spectroscopy, 2004, 58(7): 770-775. DOI:10.1366/0003702041389201 (0)
[28]
Martin M Z, Wullschleger S D, Garten C T, et al. Laser-induced breakdown spectroscopy for the environmental determination of total carbon and nitrogen in soils[J]. Applied Optics, 2003, 42(12): 2072-2077. DOI:10.1364/AO.42.002072 (0)
[29]
Angkat A R, Seminar K B, Rahmat M, et al. Estimation of soil nitrate(NO3)level using laser-induced breakdown spectroscopy(LIBS)[J]. IOP Conference Series: Earth and Environmental Science, 2018, 147: 012045. DOI:10.1088/1755-1315/147/1/012045 (0)
[30]
Lu C P, Wang L S, Hu H Y, et al. Analysis of total nitrogen and total phosphorus in soil using laser-induced breakdownspectroscopy[J]. Chinese Optics Letters, 2013, 11(5): 053004. DOI:10.3788/COL201311.053004 (0)
[31]
Sánchez-Esteva S, Knadel M, Kucheryavskiy S, et al. Combining laser-induced breakdown spectroscopy(LIBS)and visible near-infrared spectroscopy(Vis-NIRS)for Soil Phosphorus Determination[J]. Sensors, 2020, 20(18): 5419. DOI:10.3390/s20185419 (0)
[32]
Ferreira E C, Gomes Neto J A, Milori D M B P, et al. Laser-induced breakdown spectroscopy: Extending its application to soil pH measurements[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2015, 110: 96-99. DOI:10.1016/j.sab.2015.06.002 (0)
[33]
Sha W, Li J T, Lu C P, et al. Quantitative analysisof P in compound fertilizer by laser-induced breakdown spectroscopy coupled with linear multivariate calibration (In Chinese)[J]. Spectroscopy and Spectral Analysis, 2019, 39(6): 1958-1964. [沙文, 李江涛, 鲁翠萍, 等. 复混肥中磷元素的激光诱导击穿光谱多元线性定量分析[J]. 光谱学与光谱分析, 2019, 39(6): 1958-1964.] (0)
[34]
Ilhardt P D, Nuñez J R, Denis E H, et al. High-resolution elemental mapping of the root-rhizosphere-soil continuum using laser-induced breakdown spectroscopy(LIBS)[J]. Soil Biology and Biochemistry, 2019, 131: 119-132. DOI:10.1016/j.soilbio.2018.12.029 (0)
[35]
Yu K Q, Zhao Y R, Liu F, et al. Laser-induced breakdown spectroscopy coupled with multivariate chemometrics for variety discrimination of soil[J]. Scientific Reports, 2016, 6(1): 27574. DOI:10.1038/srep27574 (0)
[36]
Villas-Boas P R, Romano R A, de Menezes Franco M A, et al. Laser-induced breakdown spectroscopy to determine soil texture: A fast analytical technique[J]. Geoderma, 2016, 263: 195-202. DOI:10.1016/j.geoderma.2015.09.018 (0)
[37]
Kim K R, Kim G, Kim J Y, et al. Kriging interpolation method for laser induced breakdown spectroscopy(LIBS)analysis of Zn in various soils[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(1): 76-84. DOI:10.1039/C3JA50233C (0)
[38]
Du C W. The application of moder spectroscopy techniques on plant nutrition and quality (In Chinese)[J]. Journal of plant nutrition and fertilizer, 2017, 23(6): 1659-1669. [杜昌文. 现代光谱技术在植物营养品质分析中的应用[J]. 植物营养与肥料学报, 2017, 23(6): 1659-1669.] (0)
[39]
Pontes M J C, Cortez J, Galvão R K H, et al. Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain[J]. Analytica Chimica Acta, 2009, 642(1): 12-18. (0)
[40]
Goueguel C L, Soumare A, Nault C, et al. Direct determination of soil texture using laser-induced breakdown spectroscopy and multivariate linear regressions[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(8): 1588-1596. DOI:10.1039/C9JA00090A (0)
[41]
Xu X B, Du C W, Ma F, et al. Forensic soil analysis using laser-induced breakdown spectroscopy(LIBS)and Fourier transform infrared total attenuated reflectance spectroscopy(FTIR-ATR): Principles and case studies[J]. Forensic Science International, 2020, 310: 110222. DOI:10.1016/j.forsciint.2020.110222 (0)
[42]
Kramida A, Ralchenko R, Yu J, et al. NIST Atomic Spectra Database(ver. 5.8). National Institute of Standards and Technology, Gaithersburg, MD, USA. 2020. (0)
[43]
Cremers A, Ebinger M H, Breshears D D, et al. Measuring total soil carbon with laser-induced breakdown spectroscopy(LIBS)[J]. Journal of Environmental Quality, 2001, 30(6): 2202-2206. DOI:10.2134/jeq2001.2202 (0)
[44]
Bricklemyer R S, Brown D J, Turk P J, et al. Improved intact soil-core carbon determination applying regression shrinkage and variable selection techniques to complete spectrum laser-induced breakdown spectroscopy(LIBS)[J]. Applied Spectroscopy, 2013, 67(10): 1185-1199. DOI:10.1366/12-06983 (0)
[45]
Ma F, Mao X L, Zorba V, et al. Combination of high-resolution laser-induced breakdown spectroscopy and least square method for reducing soil carbon overestimation due to iron interference[J]. Geoderma, 2021, 385: 114881. DOI:10.1016/j.geoderma.2020.114881 (0)
[46]
Martin M Z, Mayes M A, Heal K R, et al. Investigation of laser-induced breakdown spectroscopy and multivariate analysis for differentiating inorganic and organic C in a variety of soils[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2013, 87: 100-107. DOI:10.1016/j.sab.2013.05.026 (0)
[47]
Yu J H, Dong M R, Zhang B, et al. Spectral characteristics analysis of laser induced nitrogen in organic materials (In Chinese)[J]. Acta photonica sinic, 2016, 45(10): 1030003. [余建华, 董美蓉, 张博, 等. 激光诱导有机物中氮元素的光谱特征分析[J]. 光子学报, 2016, 45(10): 1030003.] (0)
[48]
Dequaire T, Meslin P Y, Beck P, et al. Analysis of carbon and nitrogen signatures with laser-induced breakdown spectroscopy; the quest for organics under Mars-like conditions[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2017, 131: 8-17. DOI:10.1016/j.sab.2017.02.015 (0)
[49]
He Y, Liu X, Lv Y, et al. Quantitative analysis of nutrient elements in soil using single and double-pulse laser-induced breakdown spectroscopy[J]. Sensors, 2018, 18(5): 1526. DOI:10.3390/s18051526 (0)
[50]
Schröder S, Pavlov S G, Rauschenbach I, et al. Detection and identification of salts and frozen salt solutions combining laser-induced breakdown spectroscopy and multivariate analysis methods: A study for future martian exploration[J]. Icarus, 2013, 223: 61-73. DOI:10.1016/j.icarus.2012.11.011 (0)
[51]
Gazeli O, Stefas D, Couris S. Sulfur detection in soil by laser induced breakdown spectroscopy assisted by multivariate analysis[J]. Materials, 2021, 14(3): 541. DOI:10.3390/ma14030541 (0)
[52]
Gonçalves D A, Senesi G S, Nicolodelli G. Laser-induced breakdown spectroscopy applied to environmental systems and their potential contaminants. an overview of advances achieved in the last few years[J]. Trends in Environmental Analytical Chemistry, 2021, 30: e00121. DOI:10.1016/j.teac.2021.e00121 (0)
[53]
Senesi G S, Dell'Aglio M, Gaudiuso R, et al. Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy(LIBS), with special emphasis on chromium[J]. Environmental Research, 2009, 109(4): 413-420. DOI:10.1016/j.envres.2009.02.005 (0)
[54]
Yi R X, Yang X Y, Zhou R, et al. Determination of trace available heavy metals in soil using laser-induced breakdown spectroscopy assisted with phase transformation method[J]. Analytical Chemistry, 2018, 90(11): 7080-7085. DOI:10.1021/acs.analchem.8b01756 (0)
[55]
Zhao S, Song C, Gao X, et al. Quantitative analysis of Pb in soil by femtosecond-nanosecond double-pulse laser-induced breakdown spectroscopy[J]. Results in Physics, 2019, 15: 102736. DOI:10.1016/j.rinp.2019.102736 (0)
[56]
Liu Y, Bousquet B, Baudelet M, et al. Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2012, 73: 89-92. DOI:10.1016/j.sab.2012.06.041 (0)
[57]
Hilbk-Kortenbruck F, Noll R, Wintjens P, et al. Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2001, 56(6): 933-945. DOI:10.1016/S0584-8547(01)00213-0 (0)
[58]
Bousquet B, Travaillé G, Ismaël A, et al. Development of a mobile system based on laser-induced breakdown spectroscopy and dedicated to in situ analysis of polluted soils[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2008, 63(10): 1085-1090. DOI:10.1016/j.sab.2008.09.008 (0)
[59]
Meng D S, Zhao N J, Ma M J, et al. Application of a mobile laser-induced breakdown spectroscopy system to detect heavy metal elements in soil[J]. Applied Optics, 2017, 56(18): 5204-5210. DOI:10.1364/AO.56.005204 (0)
[60]
Chirinos J R, Oropeza D D, Gonzalez J J, et al. Simultaneous 3-dimensional elemental imaging with LIBS and LA-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(7): 1292-1298. DOI:10.1039/C4JA00066H (0)
[61]
Senesi G S, Nicolodelli G, Milori D M B P, et al. Depth profile investigations of surface modifications of limestone artifacts by laser-induced breakdown spectroscopy[J]. Environmental Earth Sciences, 2017, 76(16): 1-9. (0)
[62]
Miao C H, Lü Y Z. Spectral characteristics and structural differences of DOM in black soil, fluvo-aquic soil and red soil (In Chinese)[J]. Soils, 2021, 53(1): 168-172. [缪闯和, 吕贻忠. 黑土、潮土和红壤可溶性有机质的光谱特征及结构差异[J]. 土壤, 2021, 53(1): 168-172.] (0)
[63]
Gomes M D S, Santos D, Nunes L C, et al. Evaluation of grinding methods for pellets preparation aiming at the analysis of plant materials by laser induced breakdown spectrometry[J]. Talanta, 2011, 85(4): 1744-1750. DOI:10.1016/j.talanta.2011.06.069 (0)
[64]
Wa ng, T, He M, Shen T, et al. Multi-element analysis of heavy metal content in soils using laser-induced breakdown spectroscopy: A case study in eastern China[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 149: 300-312. DOI:10.1016/j.sab.2018.09.008 (0)
[65]
郭广盟. 紧凑型激光诱导击穿光谱(LIBS)仪器研制与溶液、土壤分析方法研究[D]. 长春: 吉林大学, 2019.
Guo G M. Development of compact laser-induced breakdown spectroscopy(LIBS)instrument and analysis methods of solutions and soils[D]. Changchun: Jilin University, 2019. (0)
[66]
Wu K N, Yang Q J, Zhao R. A discussion on soil health assessment of arable land in China (In Chinese)[J]. Acta Pedologica Sinica, 2021, 58(3): 537-544. [吴克宁, 杨淇钧, 赵瑞. 耕地土壤健康及其评价探讨[J]. 土壤学报, 2021, 58(3): 537-544.] (0)
[67]
Zhang T L. Protecting Soil health of cultivated land to promote high-quality development of agriculture in China (In Chinese)[J]. Soils, 2021, 53(1): 1-4. [张桃林. 守护耕地土壤健康支撑农业高质量发展[J]. 土壤, 2021, 53(1): 1-4.] (0)
[68]
杜昌文, 马菲. 土壤光谱信息系统[简称: 土壤谱][DB/OL]V1.0. 中国, 软著登字第4991424. 2020.1.21.
Du C W, Ma F. Soil spectroscopy database system[Soil spectroscopy database][DB/OL]V1.0. China, Software copyright No. 4991424. 2020.1.21. (0)
[69]
Liang L Z, Chen X, Hu W Y, et al. Analysis of patents on soil environmental monitoring equipment in China (In Chinese)[J]. Acta Pedologica Sinica, 2021, 58(2): 433-444. [梁林洲, 陈香, 胡文友, 等. 中国土壤环境监测装备领域专利情报分析[J]. 土壤学报, 2021, 58(2): 433-444.] (0)