检索项 检索词
  土壤学报  2023, Vol. 60 Issue (1): 106-116  DOI: 10.11766/trxb202104140195
0

引用本文  

许哲, 杨金玲, 张甘霖, 等. 离子型稀土闭矿区土壤铵态氮富集特征. 土壤学报, 2023, 60(1): 106-116.
XU Zhe, YANG Jinling, ZHANG Ganlin, et al. Enrichment Characteristics of Soil Ammonium Nitrogen in Ionic Rare Earth Mining Area. Acta Pedologica Sinica, 2023, 60(1): 106-116.

基金项目

国家重点研发计划项目(2018YFC1801801)资助

通讯作者Corresponding author

杨金玲, E-mail:jlyang@issas.ac.cn

作者简介

许哲,女,安徽巢湖人,博士研究生,主要从事土壤地理和土壤地球化学研究。E-mail:xuzhe@issas.ac.cn
离子型稀土闭矿区土壤铵态氮富集特征
许哲1,2, 杨金玲1,2, 张甘霖1,2,3, 赵越1,2, 周俊4    
1. 土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所), 南京 210008;
2. 中国科学院大学, 北京 100049;
3. 中国科学院南京地理与湖泊研究所, 南京 210008;
4. 生态环境部环境工程评估中心, 北京 100012
摘要:离子型稀土开采使用的浸矿剂(硫酸铵)造成土壤铵态氮(NH4+-N)残留,带来严重的氮污染,危及生态环境和人体健康,导致稀土矿开采受限。为明确已开采矿区土壤中NH4+-N的富集特征及其影响因素,选择江西省赣州市龙南县一个已闭矿4年的原地浸矿离子型稀土矿山,在山体不同坡位布点,自土表至矿体底板(土体与基岩交界处,深度为5.5~9.7 m)分层采样,并测定了土体中的NH4+-N及其相关的土壤性质。结果表明,矿区土壤NH4+-N含量范围为2.32~1056.44 mg·kg–1(263.12±301.59 mg·kg–1),是自然和农田土壤的数倍甚至上百倍。从土体分布来看,矿体部分土壤NH4+-N含量高于其上部土壤,不同土层间差异显著。从不同地形部位来看,NH4+-N的平均含量坡顶 > 坡底 > 坡中。由于土体中铵过饱和,不同于自然土壤,NH4+-N的分布不受常规土壤理化性质的直接影响,主要受控于浸矿液直接输入的深度、输入量和土体结构带来的渗透性能变化。在降雨的淋洗作用下,开采矿区土体中大量的NH4+-N会不断向周边土壤和水体迁移,对生态环境带来长期的危害。本研究结果对完善离子型稀土矿区土壤氮化物的迁移过程、指导氨氮污染的治理具有重要意义。
关键词离子型稀土矿区    残留浸矿剂    土壤铵    铵态氮富集    铵态氮迁移    
Enrichment Characteristics of Soil Ammonium Nitrogen in Ionic Rare Earth Mining Area
XU Zhe1,2, YANG Jinling1,2, ZHANG Ganlin1,2,3, ZHAO Yue1,2, ZHOU Jun4    
1. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;
4. Appraisal Center for Environment and Engineering, Ministry of Ecology and Environment, Beijing 100012, China
Abstract: 【Objective】The leaching agent (ammonium sulfate) causes residues of ammonium nitrogen in the soil of ionic rare earth mining area.This results in serious nitrogen pollution in the soil and water bodies and destroys the ecological environment in the mining area. It also endangers the health of the surrounding residents and restricts the mining of ionic rare earth ore. However, the ammonium nitrogen pollution situation in ionic rare earth tailings and its impact mechanism are still unclear.【Method】In order to understand the enrichment characteristics of soil ammonium nitrogenin in the mining area and its influencing factors, we chose an in-situ leaching ionic rare earth mining area that has been closed for 4 years in Longnan County, Ganzhou City, Jiangxi Province. We sampled sites located on the different slopes of the hill. Soil samples were chosen from the soil surface to the bottom of the ore body, with a depth of 5.5 to 9.7 m. Ammonium nitrogenin and other soil properties in the soil were determined.【Result】The results show that soil ammonium nitrogenin content in the mining area ranged from 2.32 to 1056.44 mg·kg–1, and was several times or even hundreds of times higher than in the natural and farmland soils. Ammonium nitrogenin in the mining layers with rare earth was higher than in the upper soil, and with wide the variations among different soil layers in the vertical direction. Also, soil ammonium nitrogenin content in the hill slope followed the sequence of top > bottom > middle slope. The correlation between soil ammonium nitrogen and the physicochemical properties of ionic rare earth tailings was observed to be different from the research conclusions of natural or farmland soil. Due to the supersaturation of ammonium in the soil, the distribution of ammonium nitrogenin is not directly controlled by soil basic physicochemical properties which have an important influence on the ammonium nitrogen adsorption, such as soil clay, cation exchange capacity, etc.【Conclusion】The major factors observed to influence ammonium nitrogen are the depth and amount of leaching solution inputting, and the permeability changes caused by the soil structure. Mining facilities such as leaching liquid pools, liquid collecting ditch, etc, affect the surrounding soil ammonium nitrogenin content. Due to gravity, ammonium nitrogen will gradually migrates from the top to the middle and the bottom of the slope. This causes ammonium nitrogen to accumulate at the bottom of the slope over time. Under the leaching action of rainfall, a large amount of ammonium nitrogenin in mining area soil will continuously migrate to the surrounding soil and water, which will harm the ecological environment in the long run. The results of this study are of great significance for improving the migration process of soil nitrogen in ionic rare earth mining areas and guiding the treatment of ammonia nitrogen pollution.
Key words: Ionic rare earth ore    Residual leaching agent    Soil ammonium    Ammonium nitrogen enrichment    Ammonium nitrogen migration    

稀土具有其他元素不可替代的光、电、磁等理化特性,被广泛应用于传统工业、高新技术产业、军事及新型农业等领域,是影响经济发展、技术进步、国家安全的重要战略资源[1-3]。中国是全球范围内稀土资源最丰富、种类最齐全的国家[4-5],其中南方离子型稀土矿富含稀缺的中、重稀土,因此受到高度关注[6-7]

离子型稀土矿的开采工艺经历了池浸、堆浸及原地浸矿三个阶段[8-9],池浸和堆浸对山体破坏大且资源利用率低,已被列为淘汰工艺[10-11]。而原地浸矿是先将浸矿剂硫酸铵直接注入矿体内,利用铵根离子($ {\text{NH}}_4^ + $)将稀土离子置换出来,在浸矿剂充分作用后进行顶水作业,从矿体中挤出稀土母液[12]。该工艺可在不破坏矿山植被,且不开挖表土及矿石的情况下进行稀土开采[13]。但是原地浸矿依然有非常大的环境危害,由于生产1吨稀土需要加入5吨左右的硫酸铵[14],大量的$ {\text{NH}}_4^ + $被注入到矿体后,吸附和驻留于山体中,不断随着降雨的淋洗及入渗作用在土体中迁移转化,并迁移进入周边的土壤及地表地下水体,过量氨氮会造成已开采稀土矿区土壤污染[15-17]、植物发育不良、水体富营养化等一系列严重的生态环境问题[18],甚至会威胁人体健康[19-20]。为保护矿山周边生态环境和人民健康,实现绿色开采及可持续发展,自然资源部于2018年年底下发《自然资源部关于进一步规范稀土矿钨矿矿业权审批管理的通知》[21],这是自2014年国家规定暂停受理新设稀土矿勘查开采登记申请后[22],自然资源部下发的第三份暂停通知。稀土开采带来的环境污染不解决好,稀土开采将持续受限。

目前,我国南方存在大量的稀土尾矿[23]。虽然采用了防渗透及各种物理化学方法降低氮化物的排放量,但矿山废弃多年后,仍然可以在周围土壤及水体中检测到高含量铵态氮($ {\text{NH}}_4^ + $-N)[24],郑先坤[25]发现定南县闭矿五年的稀土矿土壤残留$ {\text{NH}}_4^ + $含量最高值仍能达到119.2 mg·kg–1,氨氮污染将长期危害稀土闭矿区生态环境,因此急需提出切实可行的治理措施。然而迄今为止,对于已经开采的离子型稀土矿区土壤中含氮化合物的迁移及分布还未形成完整的理论体系及相关的治理措施。本研究选择具有代表性的江西赣州离子型稀土矿作为研究区,探究残留浸矿剂在土壤中的分布和富集特征及其影响因素,为矿区土壤$ {\text{NH}}_4^ + $-N治理提供理论支撑。

1 材料与方法 1.1 研究区概况

研究区位于江西省最南端的赣州市龙南县,该县占地面积1 641km2,地处亚热带丘陵地区,年均气温为19.5℃,年均降水量达1 507mm,降雨多集中在4到6月[26-27]。在地质构造上,研究区属于加里东隆起区,是由震旦系、寒武系和粤陶系组成的前泥盆纪地层,侵入岩极为发育,以酸性岩为主 [28]。该县主要土壤类型为红壤。龙南县矿产资源丰富,已探明稀土、钨、煤等40多种矿产,其中离子型重稀土储量占世界已探明储量的70%[29],且主要采取原地浸矿工艺开采[15],具有代表性。本次实验于2019年11月选取龙南县县城东南约10km一个采用原地浸矿工艺开采的离子型稀土矿山进行土壤采样,该矿山于2015年完成开采,此后一直未受人为干扰,局部有滑坡现象。矿山地处中低山区,所在区域多年平均径流系数为0.53[30],大气降水易通过地表径流沿陡坡汇入下游水系中,减少入渗水流。此矿山海拔352 m,整个矿区植被覆盖较好,坡度37°左右,以木本科植物为优势物种,主要的植物类型有马尾松、杉木、五节芒草等[31]。矿山顶部修筑有浸矿液池,山坡上均匀布设注液井(深度有差异,由含矿层埋深决定),山脚设有收液沟(深度以挖到基岩为准),其中GP1、GP2、GP3为采样剖面,表层为腐殖质层(图 1)。

图 1 矿山结构、采矿设施布设及采样点位置图 Fig. 1 Mine structure, location of sampling points and layout of mining facilities
1.2 样品采集

自浸矿场地坡顶沿直线,于坡顶(GP1)、坡中(GP2)及坡底(GP3)各选择一个采样点(图 2)(坡顶至坡底的高程差为27 m)。每个样点均由表土采集至矿体底板(土体与基岩交界处)。矿体底板为新鲜的花岗岩岩体,透水性低。由于该地位于亚热带地区,花岗岩的半风化体深厚,因此稀土矿体较深。为使土壤样品尽量保持原始状态,使用洛阳铲来采集原状土柱。采样过程中,表层至1m土体的土壤按照发生层采样,1 m以下每50 cm混合均匀后采集一次样品。若在某一深度的50 cm厚度范围内土壤结构、颜色、紧实程度等形态和物理性质发生明显变化时则分为两段采样。GP1采样深度为9.7 m;GP2采样深度为8.0 m;GP3采样深度为5.5 m。

图 2 采样点位及土壤样品 Fig. 2 Sampling locations and the sampled soils

采集完成的土壤样品在现场分成两份:一部分放入保温箱中低温保存,用于$ {\text{NH}}_4^ + $-N与硝态氮($ {\text{NO}}_3^ - $-N)的测定,另一部分常温保存,自然风干后剔除其中的大石块及植物根系,采用四分法均匀取样,经研磨、过筛(10目、60目及100目)后测定土壤pH、电导率、阳离子交换量、全氮等土壤理化指标。

1.3 样品测定

$ {\text{NH}}_4^ + $-N及$ {\text{NO}}_3^ - $-N含量测定:称取10.0 g新鲜土壤样品,加入50.0 mL 2 mol·L–1的氯化钾溶液,振荡30 min后过滤获得浸提液,采用流动分析仪测定浸提液$ {\text{NH}}_4^ + $-N及$ {\text{NO}}_3^ - $-N含量,根据土壤含水量计算土壤$ {\text{NH}}_4^ + $-N含量。

土壤含水量的测定采用烘干法。全氮的测定采用硒粉、硫酸铜、硫酸钾消化-蒸馏法。有机质采用重铬酸钾-硫酸消化法测定。阳离子交换量选用乙酸铵-EDTA(pH7.0)交换法测定。颗粒组成采用激光粒度仪测定。pH采用pH计测定,电导率采用电导仪测定[32]

2 结果与讨论 2.1 土壤铵态氮含量特征

研究区土壤$ {\text{NH}}_4^ + $-N含量范围为2.32~1056.44 mg·kg–1,平均值为263.12 mg·kg–1表 1),数据离散程度高。相比较而言,江西红壤区林地、农田和荒地土壤$ {\text{NH}}_4^ + $-N含量一般小于5 mg·kg–1[33],而稀土矿区56份土壤样品中$ {\text{NH}}_4^ + $-N含量大于5 mg·kg–1的有46份,占总数的82.2%(图 3)。稀土开采使得已开采矿区土壤$ {\text{NH}}_4^ + $-N的含量显著升高,明显高于一般土壤。有研究显示农作物适宜生长的$ {\text{NH}}_4^ + $-N含量上限为25 mg·L–1[34],全国农耕区土壤平均容重为1.3 g·cm–3[35],根据含水率均值(表 2)计算出研究区土壤农作物适宜生长的$ {\text{NH}}_4^ + $-N含量上限为22.6 mg·kg–1,而该区域近70%的土壤$ {\text{NH}}_4^ + $-N含量均大于该值(图 3),会危害农作物生长。除此之外,雨水的入渗以及地表径流会带走土壤中的$ {\text{NH}}_4^ + $-N进入水体。矿区水体氨氮浓度达到75.8~475 mg·L–1 [36],大大超过我国《地下水质量标准》(GB/T 14848-2017)氨氮Ⅲ类水浓度限值规定的0.5 mg·L–1。土体中如此高浓度的$ {\text{NH}}_4^ + $-N富集,随着降雨及地表和地下径流的产生将持续对周边水体产生影响。

表 1 样点土壤铵态氮含量描述性统计 Table 1 Descriptive statistics of soil ammonium nitrogen content

图 3 土壤铵态氮含量频率分布图 Fig. 3 Frequency distribution of soil ammonium nitrogen content

表 2 矿山总体土壤理化性质描述性统计 Table 2 Descriptive statistics of soil physicochemical properties in mine
2.2 土体铵态氮分布特征

研究区内土体中$ {\text{NH}}_4^ + $-N含量在垂直方向上波动较大。总体而言,深层矿体部分$ {\text{NH}}_4^ + $-N含量远高于其上部土壤,但不同坡位土体中$ {\text{NH}}_4^ + $-N含量高值出现的深度和具体分布特征存在一定差异。

坡顶表层(腐殖质层,0~10 cm)$ {\text{NH}}_4^ + $-N含量为7.50 mg·kg–1,为本土体的最低值,向下逐渐升高,在100 cm处含量迅速升高(图 4 a)。在200~300 cm深度范围内$ {\text{NH}}_4^ + $-N含量有所下降,但在300 cm深处陡然上升,达到整个土体中最高值,为表层的140倍。300 cm更深处$ {\text{NH}}_4^ + $-N含量经过2次小的波动,在靠近矿体底板处含量有所下降。

图 4 土壤铵态氮与硝态氮含量垂直分布 Fig. 4 Vertical distribution of soil ammonium nitrogen and nitrate content

坡中表层(0~8 cm)$ {\text{NH}}_4^ + $-N含量稍高,可达到18.7 mg·kg–1,是一般林地土壤$ {\text{NH}}_4^ + $-N含量的3倍[30]。表层向下$ {\text{NH}}_4^ + $-N含量逐渐降低后趋于稳定,基本保持在5 mg·kg–1图 4 b)。400至700 cm层土壤$ {\text{NH}}_4^ + $-N含量整体快速升高,于700 cm深处达到此土体$ {\text{NH}}_4^ + $-N的最高含量。靠近矿体底板,$ {\text{NH}}_4^ + $ -N含量快速下降。

坡底土体中除靠近矿体底板外,土体中NH4+-N含量变化趋势与坡中相似(图 4 c)。表层0~10 cm的$ {\text{NH}}_4^ + $-N含量为18.34 mg·kg–1,明显高于自然林地和农田[30],10~200 cm土壤$ {\text{NH}}_4^ + $-N含量均在5 mg·kg–1左右,200~450 cm土壤$ {\text{NH}}_4^ + $-N含量随深度增加整体呈现递增趋势,在450 cm处达到最高值。坡底与坡中不同的是,450 cm以下接近矿体底板时土壤$ {\text{NH}}_4^ + $-N仍保持高含量。可见,坡下底层有铵的迁移富集。本研究是硫酸铵注入停止4a后的结果,从长远来看,由于淋溶作用,不同坡位上$ {\text{NH}}_4^ + $的分布特征还将发生相应变化,这种变化规律也有待于较长时间的动态监测。

2.3 土壤特性对铵态氮分布的影响

从土壤物理化学性质来看,土壤pH与含水率是控制土壤硝化过程的关键因素[37],进而影响土壤$ {\text{NH}}_4^ + $-N含量,而阳离子交换量与颗粒组成是土壤吸附性重要指标,一定程度上反映土壤吸附与固定$ {\text{NH}}_4^ + $-N的能力,然而$ {\text{NH}}_4^ + $-N含量与土壤pH、阳离子交换量、含水率及颗粒组成均不具有显著相关性(表 3),说明这些特性并不能主导开采矿区土壤$ {\text{NH}}_4^ + $-N含量的分布。这是由于稀土开采过程中为提高稀土浸出率,生产1吨稀土加入5吨左右的硫酸铵[14],外源输入土壤中的$ {\text{NH}}_4^ + $-N含量远超自然状态。土壤自身吸附及固定$ {\text{NH}}_4^ + $-N的能力有限,开采区域土壤中铵更多的处于自由状态,因此与土壤吸附性能有关的理化性质对$ {\text{NH}}_4^ + $-N在土体中分布的直接影响小。有研究发现低浓度有机质的自然土壤中有机质含量越高,其对$ {\text{NH}}_4^ + $-N的吸附就越强,两者具有正相关关系[38],但矿区土壤$ {\text{NH}}_4^ + $-N与有机质含量具有显著的负相关,与前人研究结论不同。原因是浸矿剂直接注入矿体,矿体部分土壤$ {\text{NH}}_4^ + $-N含量普遍高于其上部土壤,但矿体中的土壤有机质含量均明显低于其上部土壤。可见,这是一种人为干扰状态下呈现出的假象关系,与土壤特性无关,不能真实指示土壤有机质与$ {\text{NH}}_4^ + $-N的关系。

表 3 土壤理化特征之间的相关性 Table 3 Correlation coefficient between soil physicochemical characteristics

研究中发现,矿区土壤$ {\text{NH}}_4^ + $-N含量与电导率、全氮极显著正相关(表 3),这归因于矿区土壤中$ {\text{NH}}_4^ + $-N的含量极高,土壤交换性盐基离子(K+、Ca2+、Na+、Mg2+)总量为0.18~1.67 cmol·kg–1,平均值为0.73±0.16 cmol·kg–1表 2),$ {\text{NH}}_4^ + $离子在土壤阳离子总量及全氮中占比极高。因此,稀土矿区土壤$ {\text{NH}}_4^ + $-N含量高低对电导率与全氮含量影响远大于其他因素。可见,大量外源$ {\text{NH}}_4^ + $加入破坏了土壤中的离子平衡,主导了土壤中的阳离子含量和氮含量。

土壤中发生的自养硝化作用与异化还原作用共同影响着土壤$ {\text{NH}}_4^ + $-N的动态与有效性[39]。研究发现矿区土壤$ {\text{NH}}_4^ + $-N与$ {\text{NO}}_3^ - $-N含量极显著正相关(表 3),土体垂直方向上两者含量的增减趋势大体一致(图 4),土壤$ {\text{NO}}_3^ - $-N含量基本随土层加深而增加,但相比于土壤$ {\text{NH}}_4^ + $-N含量,深层$ {\text{NO}}_3^ - $-N含量占比下降。首先$ {\text{NO}}_3^ - $-N带负电荷,极易随水淋失,土壤中$ {\text{NO}}_3^ - $-N向下迁移,深层土壤高含量$ {\text{NO}}_3^ - $-N部分来源于其上部土壤。其次,条件一定时$ {\text{NH}}_4^ + $-N含量越高,土壤硝化作用越强[40]$ {\text{NO}}_3^ - $-N含量越高,但受氧气量与微生物活性限制,深层土壤的硝化作用有限。因此,无论是硝化过程减少$ {\text{NH}}_4^ + $-N或是$ {\text{NO}}_3^ - $-N的异化还原作用增加$ {\text{NH}}_4^ + $-N,两个过程目前对研究区$ {\text{NH}}_4^ + $-N含量增减幅度的影响较小。

坡顶、坡中和坡底分别于200 cm、320 cm及150 cm深处明显出现稀土矿,而土壤$ {\text{NH}}_4^ + $-N分别于280 cm、425 cm及200 cm左右开始升高,$ {\text{NH}}_4^ + $-N含量的突增伴随着矿体的增多,这是由于浸矿剂直接注入矿体中交换解析出稀土元素,注液井直达含矿层1 m左右,因此矿体部分土壤的$ {\text{NH}}_4^ + $-N含量高。整体来看,矿区土壤$ {\text{NH}}_4^ + $-N含量在垂直方向上波动明显,同时大的波动伴随着矿体风化程度及影响土体渗透性能的紧实程度等性质的变化。坡顶280~310 cm深处的土壤变紧实,钻孔原始样品由较为松散的小块状与粒状混合体转变为完整大块状,土块坚实,无裂隙,两手指不能压碎,此层渗透性差,$ {\text{NH}}_4^ + $-N含量升高,412 cm深土体变松散,土壤呈现分散的大粒状,土粒间大孔隙较多,渗透性增强(图 2),$ {\text{NH}}_4^ + $-N含量大幅降低。坡中靠近基岩处土壤风化减弱,大孔隙增多,渗透性增强,$ {\text{NH}}_4^ + $-N含量下降。可见,渗透性差的土层内浸矿剂残留量大,土壤的$ {\text{NH}}_4^ + $-N含量高。

2.4 地形部位对铵态氮分布的影响

坡顶、坡中及坡底处土壤$ {\text{NH}}_4^ + $-N含量范围分别为7.50~1 056.44 mg·kg–1、2.32~177.69 mg·kg–1、2.71~177.36 mg·kg–1,平均值分别为263.12± 301.59 mg·kg–1,47.96±63.20 mg·kg–1,76.36± 71.47 mg·kg–1表 1)。从平均值来看,$ {\text{NH}}_4^ + $-N含量坡顶 > 坡底 > 坡中。

根据采集的土壤样品的颜色、结构、风化程度等特征及开采过程对各层土壤铵态氮含量的影响将土壤剖面分为表层(腐殖质层)、中层(腐殖质层与半风化层中间的土体)、底层(半风化层,浸矿剂注入层)(表 4)。分层比较坡顶、坡中及坡底的$ {\text{NH}}_4^ + $-N含量(图 5),坡顶处表层土壤$ {\text{NH}}_4^ + $-N含量略低于坡中及坡底,而坡顶中层及底层土壤$ {\text{NH}}_4^ + $-N含量则远高于坡中及坡底。已有研究发现原地浸矿工艺开采的稀土矿山山脚处土壤$ {\text{NH}}_4^ + $-N含量会高于其他部位[24],然而本研究区坡顶矿体部分中土壤$ {\text{NH}}_4^ + $-N含量远高于坡中及坡底。首先,坡顶矿层远较坡中及坡底深厚,浸矿剂总输入量大,其次可能与坡顶采样点位附近的浸矿液池有关。浸矿液池虽进行过一定的防渗处理,但仍不可避免地存在局部渗漏现象[12]。浸矿液池渗漏增加坡顶浸矿液输入量,尽管已经闭矿4年,闭矿期间浸矿液池未存放浸矿液,但周边土壤$ {\text{NH}}_4^ + $-N含量依然明显高于矿山其他部位。采矿设施对其周边小范围土壤$ {\text{NH}}_4^ + $-N含量分布的影响将长期存在。

表 4 土层厚度 Table 4 Soil thickness

图 5 不同地形部位土壤铵态氮含量 Fig. 5 Soil ammonium nitrogen content in different terrain

相较坡顶,坡中和坡底各土层$ {\text{NH}}_4^ + $-N含量变化趋势大体相近。但坡底的底层土壤$ {\text{NH}}_4^ + $-N含量高于坡中。这可能是由于坡底布设有收液沟、收液巷道等设施,残留浸矿剂在重力作用下沿基岩向山坡底部移动并在坡底积聚[41],造成坡底$ {\text{NH}}_4^ + $-N含量偏高。长期来看,坡顶高含量的$ {\text{NH}}_4^ + $-N随着降雨的持续和时间的推移会逐渐向坡中和坡底迁移。

3 结论

利用原地浸矿工艺开采稀土的闭矿区土壤$ {\text{NH}}_4^ + $-N含量远超一般农田及林地等自然土壤,土壤$ {\text{NH}}_4^ + $-N含量的分布特征及其影响因素也与自然土壤不同。矿区土壤垂直方向上各土层$ {\text{NH}}_4^ + $-N含量差异大,矿体部分$ {\text{NH}}_4^ + $-N含量远高于其上部土壤。整体来看,土壤颗粒组成和阳离子交换量等影响吸附性的土壤性质及pH等其他土壤基本特性与矿区土壤$ {\text{NH}}_4^ + $-N含量不具有相关性。矿体的风化程度、土壤渗透性、地形部位、注液量及采矿设施均会影响$ {\text{NH}}_4^ + $-N的富集和分布。坡顶$ {\text{NH}}_4^ + $-N含量非常高,随着降雨的淋洗作用逐渐向坡底迁移,但这种过程是缓慢的,会对周围生态环境带来长期的危害。

参考文献
[1]
Zhu M Y, Cui Z N. Analysis of global rare earth market, and its future development, and demands (In Chinese)[J]. Journal of Shanghai Normal University(Natural Sciences), 2019, 48(6): 686-694. [朱铭岳, 崔中倪. 全球稀土市场分析及未来的发展和需求[J]. 上海师范大学学报(自然科学版), 2019, 48(6): 686-694.] (0)
[2]
Peng Y, He J G, Zhang Z M, et al. Eco-environmental dynamic monitoring and assessment of rare earth mining area in Southern Ganzhou Using Remote Sensing (In Chinese)[J]. Acta Ecologica Sinica, 2016, 36(6): 1676-1685. [彭燕, 何国金, 张兆明, 等. 赣南稀土矿开发区生态环境遥感动态监测与评估[J]. 生态学报, 2016, 36(6): 1676-1685.] (0)
[3]
Liu J H, Chen L K, Liu C Y, et al. Pb speciation in rare earth minerals and use of entropy and fuzzy clustering methods to assess the migration capacity of Pb during mining activities[J]. Ecotoxicology and Environmental Safety, 2018, 165: 334-342. DOI:10.1016/j.ecoenv.2018.09.007 (0)
[4]
Zhang S J, Zhang L W, Zhang Y W, et al. Summarize on rare earth mineral resources and their distribution at home and abroad (In Chinese)[J]. Inorganic Chemicals Industry, 2020, 52(1): 9-16. [张苏江, 张立伟, 张彦文, 等. 国内外稀土矿产资源及其分布概述[J]. 无机盐工业, 2020, 52(1): 9-16.] (0)
[5]
Chen J B, Huo W M, Li X F, et al. Comparative analysis of rare earth resources situation between China, the US and the EU (In Chinese)[J]. Natural Resource Economics of China, 2020, 33(7): 8-12. [陈甲斌, 霍文敏, 李秀芬, 等. 中国与美国和欧盟稀土资源形势对比分析[J]. 中国国土资源经济, 2020, 33(7): 8-12.] (0)
[6]
Yan H S, Liang T M, Liu Q S, et al. Compound leaching behavior and regularity of ionic rare earth ore[J]. Powder Technology, 2018, 333: 106-114. DOI:10.1016/j.powtec.2018.04.010 (0)
[7]
Xiao Y F, Gao G H, Huang L, et al. A discussion on the leaching process of the ion-adsorption type rare earth ore with the electrical double layer model[J]. Minerals Engineering, 2018, 120: 35-43. DOI:10.1016/j.mineng.2018.02.015 (0)
[8]
Wang J P, Huang J, Wang H J. Problems and Countermeasures in Mining Technology of Ionic Rare Earth Ore (In Chinese)[J]. China Metal Bulletin, 2019(11): 231-232. DOI:10.3969/j.issn.1672-1667.2019.11.143 [汪江萍, 黄金, 王慧娟. 离子型稀土矿开采工艺存在的问题与对策[J]. 中国金属通报, 2019(11): 231-232.] (0)
[9]
Yin S H, Pei J N, Jiang F, et al. Ultrasound-assisted leaching of rare earths from the weathered crust elution-deposited ore using magnesium sulfate without ammonia-nitrogen pollution[J]. Ultrasonics Sonochemistry, 2018, 41: 156-162. DOI:10.1016/j.ultsonch.2017.09.028 (0)
[10]
Zhao Y H, Zhang T, Cheng X X. Advance of ammonia nitrogen pollution and control techniques for soil and water environment in ion-adsorption rare earth mines (In Chinese)[J]. Chinese Rare Earths, 2020, 41(1): 124-132. [赵永红, 张涛, 成先雄. 离子吸附型稀土矿区土壤与水环境氨氮污染及防治技术研究进展[J]. 稀土, 2020, 41(1): 124-132.] (0)
[11]
Guo Z Q, Zhao K, Jin J F, et al. Reviews on environmental assessment and pollution prevention of ion adsorption type rare earth ores (In Chinese)[J]. Chinese Rare Earths, 2019, 40(3): 115-126. [郭钟群, 赵奎, 金解放, 等. 离子型稀土矿环境风险评估及污染治理研究进展[J]. 稀土, 2019, 40(3): 115-126.] (0)
[12]
Li C. The generalization and application of new technology on lixiviating mineral at the original place for ionic rare earths (In Chinese)[J]. Nonferrous Metals Science and Engineering, 2011, 2(1): 63-67. [李春. 原地浸矿新工艺在离子型稀土矿的推广应用[J]. 有色金属科学与工程, 2011, 2(1): 63-67.] (0)
[13]
Zheng W Q, He Y, Sun P. Study on the in situ leaching mining method in application of main parameter setting problems of weathering crust ion adsorption type rare earth deposit (In Chinese)[J]. Southern Metals, 2015(5): 40-43. [郑伟强, 贺义, 孙鹏. 原地浸矿采矿法在风化壳离子吸附型稀土矿床应用中主要参数设定问题的研究[J]. 南方金属, 2015(5): 40-43.] (0)
[14]
Li G, Zhu Z C, Liang J, et al. Industrial experimental study on in situ leaching of a rare earth ore (In Chinese)[J]. World Nonferrous Metals, 2019(21): 268, 270. [李刚, 朱志成, 梁健, 等. 某稀土矿原地浸矿工业试验研究[J]. 世界有色金属, 2019(21): 268, 270.] (0)
[15]
Liu F, Wu L L. Study on the characteristics of plant community in the unmined area of rare earth mine in Longnan (In Chinese)[J]. China Mining Magazine, 2017, 26(S2): 138-140. [刘芳, 吴亮亮. 赣州龙南稀土矿场未开采区植被群落特征研究[J]. 中国矿业, 2017, 26(S2): 138-140.] (0)
[16]
Ma G X, Zhu W Q, Wang X J, et al. Evaluation of ecological and environmental cost of rare earth resource exploitation in China from 2001 to 2013 (In Chinese)[J]. Journal of Natural Resources, 2017, 32(7): 1087-1099. [马国霞, 朱文泉, 王晓君, 等. 2001-2013年我国稀土资源开发生态环境成本评估[J]. 自然资源学报, 2017, 32(7): 1087-1099.] (0)
[17]
Liu W S, Liu C, Wang Z W, et al. Limiting factors for restoration of dumping sites of ionic rare earth mine tailings (In Chinese)[J]. Acta Pedologica Sinica, 2015, 52(4): 879-887. [刘文深, 刘畅, 王志威, 等. 离子型稀土矿尾砂地植被恢复障碍因子研究[J]. 土壤学报, 2015, 52(4): 879-887.] (0)
[18]
Ren F T, Zhang Q Y, Yang G, et al. Characteristics of ammonium nitrogen pollution in deep soil profile of ionic rare earth ore tailings and influencing factors (In Chinese)[J]. Acta Pedologica Sinica, 2021. DOI:10.11766/trxb20200619031 [任富天, 张秋英, 杨广, 等. 离子型稀土尾矿深层土壤剖面铵态氮污染特征及影响因素[J]. 土壤学报, 2021.] (0)
[19]
Tu T, Wang Y, An D, et al. Present situation, hazard and treatment technology of groundwater pollution in rare earth mining area of southern Jiangxi (In Chinese)[J]. Journal of Environmental Engineering Technology, 2017, 7(6): 691-699. [涂婷, 王月, 安达, 等. 赣南稀土矿区地下水污染现状、危害及处理技术与展望[J]. 环境工程技术学报, 2017, 7(6): 691-699.] (0)
[20]
Liu J, Li Z. The treatment technology of ammonia- nitrogen wastewater and its development (In Chinese)[J]. Mining and Metallurgical Engineering, 2007, 27(4): 54-60. [刘健, 李哲. 氨氮废水的处理技术及发展[J]. 矿冶工程, 2007, 27(4): 54-60.] (0)
[21]
自然资源部. 自然资源部关于进一步规范稀土矿钨矿矿业权审批管理的通知[M]. 2018.
Ministry of Natural Resources of the People's Republic of China. Notice of the Ministry of Natural Resources on further regulating the approval and administration of the mining rights of rare earth tungsten mines[M]. 2018. (0)
[22]
国土资源部. 国土资源部关于下达2014年度稀土矿钨矿开采总量控制指标的通知[M]. 2014.
Ministry of Land and Resources. Notice of the Ministry of Land and Resources on issuing the total control index for rare earth mines and tungsten mines in 2014[M]. 2014. (0)
[23]
Fan X, Xue Q, Liu S W, et al. The influence of soil particle size distribution and clay minerals on ammonium nitrogen in weathered crust elution-deposited rare earth tailing[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111663. (0)
[24]
Yang S, Xue Q, Chen H H. Enhanced recovery of water due to ammonia nitrogen contamination caused by mining processes[J]. Environmental Earth Sciences, 2016, 75(14): 1-9. (0)
[25]
郑先坤. 离子型稀土原地浸矿废弃地中残存浸取剂与稀土的垂直分布规律研究[D]. 江西赣州: 江西理工大学, 2019.
Zheng X K. Vertical distribution of residual leaching agent and rare earth in in situ leaching wasteland of ionic rare earth[D]. Ganzhou, China: Jiangxi University of Science and Technology, 2019. (0)
[26]
Lu H Z, Cao L X, Liang Y, et al. Mineral-leaching chemical transport with runoff and sediment from severely eroded rare-earth tailings in Southern China[J]. Solid Earth, 2017, 8(4): 845-855. (0)
[27]
Qie H M, Wen B Y, Wang J Q, et al. Safety evaluation of heavy metal contents in selenium-rich soil in the Zishan area, Ganzhou, Jiangxi Province (In Chinese)[J]. East China Geology, 2017, 38(3): 234-240. [郄海满, 文帮勇, 王继强, 等. 江西赣州梓山地区富硒土壤重金属元素安全性评价[J]. 华东地质, 2017, 38(3): 234-240.] (0)
[28]
吴澄宇. 赣南粤北地区风化壳离子吸附型稀土矿床研究[D]. 北京: 中国地质科学院, 1988.
Wu C Y. The study of ion-adsorbed type of rare earth deposits in weathering crust from south Jiangxi and north Guangdong provinces[D]. Beijing: Chinese Academy of Geological Sciences, 1988. (0)
[29]
Xiong T W, Jiang F, Qi S H. Remote sensing dynamic monitoring on rare earth mining area and its vegetation restoration of 6 counties in southern Jiangxi (In Chinese)[J]. Soil and Water Conservation in China, 2018(1): 40-44. [熊恬苇, 江丰, 齐述华. 赣南6县稀土矿区分布及其植被恢复的遥感动态监测[J]. 中国水土保持, 2018(1): 40-44.] (0)
[30]
郭强. 土地利用变化对赣江流域水文过程的影响分析[D]. 重庆: 西南大学, 2020.
Guo Q. Impact of land use change on hydrological processes in Ganjiang River basin[D]. Chongqing: Southwest University, 2020. (0)
[31]
温春云. 稀土尾矿化学污染物空间分布及治理效果研究[D]. 南昌: 江西农业大学, 2013.
Wen C Y. The research on the spatial distirbution and treatment effect of chemical contaminants in rare earth tailings[D]. Nanchang: Jiangxi Agricultural University, 2013. (0)
[32]
Zhang G L, Gong Z T. Soil survey laboratory methods (In Chinese). Beijing: Science Press, 2012. [张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2012.] (0)
[33]
Wu H Y, Song X D, Zhao X R, et al. Accumulation of nitrate and dissolved organic nitrogen at depth in a red soil Critical Zone[J]. Geoderma, 2019, 337: 1175-1185. (0)
[34]
Gao Z Q, Zhou Q X. Contamination from rare earth ore strip mining and its impacts on resources and eco-environment (In Chinese)[J]. Chinese Journal of Ecology, 2011, 30(12): 2915-2922. [高志强, 周启星. 稀土矿露天开采过程的污染及对资源和生态环境的影响[J]. 生态学杂志, 2011, 30(12): 2915-2922.] (0)
[35]
Li D C, Huang J, Ma C B, et al. Soil organic matter content and its relationship with pH and bulk density in agricultural areas of China (In Chinese)[J]. Journal of Soil and Water Conservation, 2020, 34(6): 252-258. [李冬初, 黄晶, 马常宝, 等. 中国农耕区土壤有机质含量及其与酸碱度和容重关系[J]. 水土保持学报, 2020, 34(6): 252-258.] (0)
[36]
李宇, 梁音, 曹龙熹, 等. 离子型稀土矿区小流域氨氮污染物地表迁移特征研究[J]. 土壤, 待刊
Li Y, Liang Y, Cao L X, et al. The transport of ammonia nitrogen pollutant in an ionic rare earth mining small watershed[J]. Soils, Accepted. (0)
[37]
Zhang J, Cai Z, Müller C. Terrestrial N cycling associated with climate and plant-specific N preferences: A review[J]. European Journal of Soil Science, 2018, 69(3): 488-501. (0)
[38]
李慧. 氨氮在黄土包气带中吸附解吸特征和影响因素探讨[D]. 西安: 长安大学, 2014.
Li H. The characteristic and influence factors of ammonia-nitrogen adsorption desorption in the loess[D]. Xi'an: Changan University, 2014. (0)
[39]
Di H J, Cameron K C, McLaren R G. Isotopic dilution methods to determine the gross transformation rates of nitrogen, phosphorus, and sulfur in soil: A review of the theory, methodologies, and limitations[J]. Soil Research, 2000, 38(1): 213. (0)
[40]
Taylor A A, De-Felice J, Havill D C. Seasonal variation in nitrogen availability and utilisation in an acidic and calcareous soil[J]. New Phytologist, 1982, 92: 141-152. (0)
[41]
Li Q, Zhou L B, Zhu Y B, et al. Prediction method for ammonia nitrogen pollution in the soil of ionic rare earth mine (In Chinese)[J]. Environmental Impact Assessment, 2017, 39(6): 56-59. [李青, 周连碧, 祝怡斌, 等. 离子型稀土矿山土壤氨氮污染预测[J]. 环境影响评价, 2017, 39(6): 56-59.] (0)