磷(P)是生物体的必需营养元素,在植物和能源生产中发挥着重要作用[1–2]。磷作为一种有限且不可再生的资源,目前我国剩余的优质磷矿储量在继续开采30年左右后将耗尽[3]。然而为保障作物产量而施用大量磷肥已导致农田土壤磷素累积加剧,磷素流失成为我国湖泊水体富营养化的主要因子,该现象成为制约我国农业生产可持续发展和生态环境保护的主要限制性因素之一[4]。水旱轮作是长江流域最具代表性和分布最广泛的耕作制度,过量施肥和田间管理不当导致化肥磷利用率低,以及大量磷流失到周边水环境[5]。因此摸清长江流域土壤磷状况,进行精确的磷肥管理对于维持作物产量及减少磷素流失至关重要。
长江流域自1970年至今,粮食产量由0.97亿吨增长到2.51亿吨,磷肥的大量施用对粮食产量作出了重要贡献[6]。然而在1970—2010年间长江流域磷肥投入量增加了10.7倍,土壤磷年积累量增加了81倍[7]。大量的磷累积在土壤中,如果处理不当,不但不能被充分利用,反而会引发巨大的环境风险。曹宁等[8]研究了我国土壤磷23年的历史变化,主要农田土壤磷素累积盈余量约为392 kg·hm–2,且存在继续增加的趋势。我国于2005年在全国开展的测土配方施肥行动,经过10年的工作(2005—2014),确定长江流域有效磷水平为18.3 mg·kg–1,土壤磷供应已达到适宜水平[9]。土壤有效磷含量上升,有效磷的增加无法带来作物产量的增加,超出土壤自身的承载能力后出现磷的流失。研究表明,影响磷流失风险的因素包括土壤全磷、Olsen-P、有机质等,其中Olsen-P含量是磷径流损失的主要影响因素[10]。钟晓英等[11]用突变点法确定我国土壤整体磷淋溶损失风险临界值在30~156 mg·kg–1之间,英国洛桑试验站长期施磷土壤的磷淋溶损失风险临界值仅为17 mg·kg–1,这与不同土壤的自身特点有很大关系[12-13]。
长江流域是我国水稻和冬油菜的主要产区,水稻-油菜轮作种植区域土壤累积了大量的磷,磷素在土壤中表现为不同的存在形态,连续耕作或磷肥投入都会影响土壤中磷的形态转化[7,14]。Hedley磷分级方法被应用于磷素生物小循环,根据施磷量或磷耗竭的严重程度,以及土地利用的持续时间和管理反映土壤中磷流失状态[15]。这种分类是一种有效的方法,以调查磷在农业生态系统中的循环转化。目前对区域土壤磷形态现状的研究仍存在不足,利用Hedley磷分级方法评估长江流域土壤磷现状,并评价土壤磷素的淋失风险,为区域磷肥投入和土壤磷素的科学管理提供理论依据。本研究通过在长江流域水稻-油菜轮作种植区域采集油菜收获后的耕层土壤样品,明确当前生产条件下水稻-油菜轮作种植土壤的磷库现状。确定长江流域稻-油轮作区域的土壤磷淋失风险阈值,提出该区域内水稻-油菜轮作种植模式下的磷肥施用管理办法。
1 材料与方法 1.1 样品采集选择各区域水稻-油菜轮作常年种植面积超过5万亩的县(市/区)作为典型的采样单元,在每个县(市/区)的水稻-油菜轮作核心种植乡镇采集1个土壤样本,共采集土壤样品247个,涵盖了长江流域的14个省(市/区)。各省(市/区)样本数如下:长江上游64个,分别为云南6个、贵州18个、四川21个、重庆12个和广西7个;长江中游138个,分别为湖北41个、湖南61个、江西26个、河南(信阳)4个、陕西(汉中)6个;长江下游45个,分别为安徽21个、江苏11个、浙江11个和上海2个。于2018年4月至5月油菜收获后一周内采用“S”型取样的方式随机采集12~15点土壤样品,采样深度为0~20 cm,混合后组成一个土壤样品。充分混匀后风干、研磨、过筛(分别过1 mm和0.149 mm筛)、贮存、备用,用以测定土壤磷含量。
1.2 样品测试土壤样品的测定指标包括全磷、有效磷(Olsen-P)、可溶性磷(CaCl2-P),采用常规方法测试[16]。具体方法如下:(1)全磷:HClO4-H2SO4消化-钼锑抗比色法测定;(2)Olsen-P:0.5 mol·L–1碳酸氢钠浸提-钼锑抗比色法测定;(3)CaCl2-P:0.01 mol·L–1氯化钙浸提-钼锑抗比色法测定。
根据土壤Olsen-P分级,在不同区域选取72个土壤样品进行了土壤磷库Hedley分级测试。采用Hedley[17]和Sui[18]等改进的方法,进行土壤磷分级的测定,连续提取了0.5 g过100目筛的土壤(0.149 mm),由酸化的过硫酸钾氧化消化土壤P组分。磷分级按以下顺序提取:(1)H2O-Pi;(2)NaHCO3-Pi和NaHCO3-Po,0.5 mol·L–1 NaHCO3;(3)NaOH-Pi和NaOH-Po,0.1 mol·L–1 NaOH;(4)HCl-Pi,1 mol·L–1 HCl;(5)Residual-P,在360 ℃下进行H2SO4-H2O2消化测定残留磷。每次提取过程中,提取液体积为30 mL,样品在旋转摇床上震动16 h,然后在10 000×g、0 ℃下离心10 min,分离土壤和上清液,将NaHCO3和NaOH提取液分为两组,测定全磷和无机磷(钼蓝比色法测定)。根据各提取液中全磷与无机磷的差值,计算各提取液中有机磷的含量。
1.3 参数计算与统计分析土壤全磷分级指标参考第二次全国土壤普查制定[19],具体划分依据为:极缺乏(<0.2 g·kg–1)、缺乏(0.2~0.4 g·kg–1)、潜在缺乏(0.4~0.6 g·kg–1)、中等(0.6~0.8 g·kg–1)、丰富(0.8~1.0 g·kg–1)和很丰富(>1.0 g·kg–1)6个等级。旱季作物种植土壤磷素丰缺指标是确定水旱轮作周年磷肥施用的重要依据[20]。水稻-油菜轮作种植土壤Olsen-P分级标准参考邹娟[21]的研究结果,具体划分依据为:极缺乏(<6 mg·kg–1)、缺乏(6~12 mg·kg–1)、潜在缺乏(12~25 mg·kg–1)、中等(25~30 mg·kg–1)和丰富(>30 mg·kg–1)5个等级。
所有数据采用SPSS 20.0进行方差分析,多重比较采用Duncan法。采用Origin 8.0进行图表绘制。土壤Olsen-P与CaCl2-P的定量关系计算采用“R”语言软件运行分段线性(Split-line)模型,双直线模型被定义为:
y=a1+b1xx<T |
y=a2+b2xx⩾T |
式中,y是土壤CaCl2-P含量(mg·kg–1);x是土壤Olsen-P含量(mg·kg–1);a1和a2是拟合直线的截距;b1和b2是斜率;T是突变点的Olsen-P含量(mg·kg–1)[22]。
2 结果 2.1 长江流域水稻-油菜轮作种植区域土壤磷现状及分级表 1显示,长江流域水稻-油菜轮作种植区域耕层土壤全磷的平均含量为0.62 g·kg–1,变幅为0.08~2.00 g·kg–1,变异系数为49.4%。不同区域土壤全磷含量无明显差异,长江上、中、下游土壤全磷的平均含量分别为0.65、0.61和0.63 g·kg–1。长江流域水稻-油菜轮作种植区域耕层土壤Olsen-P的平均含量为23.2 mg·kg–1,其中长江下游土壤Olsen-P含量最高,平均为28.9 mg·kg–1,明显高于上游和中游区域。CaCl2-P与Olsen-P变化趋于一致,下游区域高于上游和中游区域,但差异不显著。区域整体平均值为0.49 mg·kg–1,CaCl2-P变异系数明显高于土壤全磷和Olsen-P。
![]() |
表 1 长江流域水稻-油菜轮作种植区域土壤磷分布特征 Table 1 Distribution of soil P in rice-oilseed rape rotation regions in the Yangtze River Basin |
长江流域耕层土壤全磷超过0.6 g·kg–1的占比为48.6%,近半数的区域土壤全磷处于丰富状态(表 2)。但仍有19.2%土壤全磷含量偏低,主要集中在长江下游区域。从土壤Olsen-P分级来看,缺乏和过量现象并存。以12~25 mg·kg–1为水稻-油菜种植土壤适宜Olsen-P分级指标,该水平下的分布频率达到45.7%,土壤Olsen-P缺乏和丰富的占比分别为23.1%和31.1%。长江中游区域土壤Olsen-P缺乏的分布频率略高于长江上、下游区域,而土壤Olsen-P含量丰富的区域主要集中在长江下游区域。
![]() |
表 2 长江流域水稻-油菜轮作种植区域土壤磷丰缺状况 Table 2 Soil P deficiency status in rice-oilseed rape rotation regions in the Yangtze River Basin |
根据Olsen-P分级,在不同区域选取72个土壤样品进行了土壤磷库Hedley分级测试(表 3)。长江流域水稻-油菜轮作种植区域土壤磷库以无机磷为主,平均占比达到82.2%,有机磷为17.8%。H2O-Pi、NaHCO3-Pi、NaOH-Pi、HCl-Pi、NaHCO3-Po、NaOH-Po和Residual-P磷库平均含量分别为10.8、46.8、115.6、218.6、22.3、104.9和193.8 mg·kg–1。H2O-Pi和NaHCO3-Pi的生物有效性较高,在土壤中只占到很少的一部分,分别为1.5%和6.6%。土壤磷库以稳定态磷库为主(HCl-Pi和Residual-P),可以占到土壤全磷的57.9%。长江下游NaHCO3-Pi含量明显高于上、中游,与Olsen-P规律一致,除此之外各磷库在不同区域间无明显差异。
![]() |
表 3 长江流域水稻-油菜轮作种植区域土壤Hedley磷库现状 Table 3 Status of soil Hedley P pool in rice-oilseed rape rotation regions in the Yangtze River Basin |
不同Olsen-P分级下的土壤磷库分布(图 1)结果显示,H2O-Pi含量在Olsen-P低于25 mg·kg–1时均处于较低水平,NaHCO3-Po和NaOH-Po含量在Olsen-P水平小于6 mg·kg–1时处于较低状态,当Olsen-P水平达到30 mg·kg–1时表现为显著提高。NaHCO3-Pi和NaOH-Pi含量对Olsen-P变化的响应较显著,随着土壤Olsen-P水平的提高,NaHCO3-Pi和NaOH-Pi含量明显增加。不同Olsen-P水平下HCl-Pi和Residual-P含量无显著差异,平均含量分别为135.1~299.4 mg·kg–1和170.5~224.5 mg·kg–1。相关性分析(表 4)表明,Olsen-P与各无机磷组分及NaOH-Po间存在显著的正相关关系,土壤全磷与除NaHCO3-Po外的各磷组分存在显著的相关性,CaCl2-P与H2O-Pi、NaHCO3-Pi和HCl-Pi组分存在显著正相关。
![]() |
注:不同字母表示差异显著(P<0.05)。Note:Different letters mean significant differences at 0.05 level. 图 1 土壤Olsen-P分级与Hedley磷库的关系 Fig. 1 Relationship between soil Olsen-P grading and Hedley P pools |
![]() |
表 4 土壤全磷、Olsen-P、CaCl2-P与Hedley磷库的相关关系 Table 4 Pearson correlation between soil total P, Olsen-P, CaCl2-P and Hedley P pools |
长江流域水稻-油菜轮作种植区域土壤CaCl2-P与Olsen-P含量的关系符合双直线模型(图 2),两直线交点即为土壤磷素淋失临界值。该区域耕层土壤磷素淋失临界值为39.9 mg·kg–1,对应的CaCl2-P浓度为0.6 mg·kg–1。在土壤Olsen-P较低的情况下,CaCl2-P随Olsen-P的增加相对缓慢,当Olsen-P含量达到临界值后CaCl2-P迅速变化,其增加的幅度是此前的3倍(详见双直线的斜率)。在长江流域水稻-油菜轮作种植区域土壤中约13.0%的区域高于土壤磷素淋失临界值,主要集中在长江中下游区域。CaCl2-P/Olsen-P与Olsen-P的关系符合一元二次方程(R2 = 0.121,P < 0.01)。CaCl2-P与Olsen-P的比值在0.1%~20.9%之间,在Olsen-P含量为46.5 mg·kg–1时CaCl2-P/Olsen-P值最小,最小值为1.2%。
![]() |
图 2 土壤CaCl2-P与Olsen-P含量的定量关系 Fig. 2 Quantitative relationship between CaCl2-P and Olsen-P contents |
明确区域内土壤磷现状,对于合理施肥提高作物产量、降低资源浪费和控制环境损失风险具有重要作用[23]。本研究中,2018年长江流域水稻-油菜轮作种植区域的耕层土壤全磷平均含量为0.62 g·kg–1,Olsen-P平均含量为23.2 mg·kg–1,该区域整体土壤磷处于中等水平。近年来,长江流域的磷肥投入量不断增加,在1970年至2010年间磷肥投入量增加了近10倍,全球超过1/10的磷肥投入量施用在该区域,大量磷累积在土壤中,磷肥利用率大幅下降[24-25]。长江流域水稻-油菜轮作种植区土壤磷库主要以无机磷为主,占全磷的82.2%,化学磷肥的投入主要提高了土壤无机磷的储存。H2O-Pi、NaHCO3-Pi和NaOH-Pi含量对Olsen-P变化的响应较显著(表 4),而生物有效性高的磷库(H2O-Pi、NaHCO3-Pi)占比较小。磷肥施入土壤中,活性磷会优先积累[26],这部分磷库同时影响着作物吸收和环境风险。土壤磷主要以稳定态(HCl-Pi和Residual- P)形态储存,如果可以有效利用土壤中的稳定态磷,可适当降低磷肥投入。区域内土壤磷缺乏和过量的现象并存,针对不同土壤有效磷含量条件,磷肥的施用策略也应作出相应调整。
3.2 长江流域水稻-油菜轮作种植区域土壤磷素环境临界值土壤磷素过量累积时,磷会随地表径流、土壤侵蚀、以及渗漏淋溶等途径流失,进而导致河流系统富营养化[27-28]。长江流域水稻-油菜轮作种植区土壤CaCl2-P与Olsen-P含量的关系符合双直线模型,本研究确定该区域耕层土壤Olsen-P淋失临界值为39.9 mg·kg–1。土壤有效磷增加造成磷的淋失潜力增加,其原因可能是土壤磷饱和度升高[29]。随着Olsen-P含量的提高,CaCl2-P的增加与Olsen-P并不同步。在Olsen-P初始积累阶段,CaCl2-P增长趋势较小,导致CaCl2-P/Olsen-P呈现降低趋势。当Olsen-P含量超过临界值后,Olsen-P向CaCl2-P的转化增加,CaCl2-P的增长速度超过了Olsen-P的增长速度,在利于作物吸收的同时,环境风险提高[30]。CaCl2-P/Olsen-P与Olsen-P拟合的一元二次函数出现最小值时Olsen-P含量为46.5 mg·kg–1,与土壤Olsen-P淋失临界值基本一致。Hua等[29]研究了长江流域五个地点的水稻土Olsen-P淋失临界值为30~172 mg·kg–1,章明奎和王丽平[31]研究结果表明水稻土Olsen-P淋失临界值为53~84 mg·kg–1,与本研究的结果基本相符。土壤Olsen-P淋失临界值只是说明淋失风险的高低,实际的淋溶量还需要综合考虑所在区域的土壤性质、气候和水文条件等[32]。不同土壤间淋失临界值差异较大,很难判断某一具体土壤的磷淋失风险[11,29]。因此,长江流域不同土壤间磷素淋失临界值的差异还有待进一步深入探究。
3.3 长江流域水稻-油菜轮作种植区域磷肥管理策略磷素管理是在区域尺度上协调粮食安全、资源限制和污染问题的关键[23]。施磷策略的目的是从土壤磷高环境风险水平或磷缺乏水平向确保作物稳定生产的水平发展。Li等[23]提出了基于养分平衡法建立的作物磷肥管理策略,土壤最适Olsen-P水平应高于维持作物高产所需的土壤Olsen-P临界浓度并低于磷淋溶水平[8,33]。长江流域水稻-油菜轮作种植体系有23.1%的区域土壤Olsen-P含量低于12 mg·kg–1,在严重磷缺乏条件下,应增加施磷量(作物磷吸收量的130%~200%)从而培肥地力。在土壤Olsen-P含量处于适宜水平(12~25 mg·kg–1)时,采取施磷量与作物带走量相等的“零盈余”策略,以维持土壤磷水平。约13.0%的区域土壤磷处于高淋失风险状态,控制化学磷肥的大量投入是降低磷素淋失风险的有效方式,应不施磷肥或施用作物磷带走量的50%~70%,以减少土壤过量的磷储备。除控制磷肥用量外,还应考虑作物需磷特性、磷肥种类和施肥时期等。油菜对缺磷的适应能力较弱[34],需要投入磷肥以提高土壤磷生物有效性。淹水后,土壤稳定态磷向活性态磷的转化速率提高,土壤磷生物有效性增加。水稻种植系统通常建立在具有弱透水犁耕层的土壤上,并且建造田间护堤以保存田面水。在水稻生长季节,当降雨量超过田间护堤的蓄水能力时,就会产生径流,水稻系统可能是磷养分流失到水中的重要来源[35]。通常认为,水稻-油菜轮作体系应采用“重旱轻水”的磷肥管理策略[36-37]。此外,土壤磷主要累积在稳定态磷库中,可适当挖掘土壤中累积磷的效应,施用少量水溶性磷肥作为“启动磷”以促进作物苗期根系生长[38-39],秸秆还田措施可以明显提高土壤微生物量和磷酸酶活性,促进土壤稳态和中稳态磷库的活化[40]。为了最大限度地减少磷的损失,施磷量应基于作物需求,并根据土壤中已经存在的磷含量进行调整。
4 结论长江流域水稻-油菜轮作种植区域土壤全磷和Olsen-P含量平均分别为0.62 g·kg–1和23.2 mg·kg–1,土壤Olsen-P平均含量达到适宜养分供应水平。该区域土壤磷素淋失临界值为39.9 mg·kg–1,对应的CaCl2-P浓度为0.6 mg·kg–1,目前13.0%的区域仍处于磷素高淋失风险状态,土壤磷素主要积累在稳定态磷库中。长江流域水稻-油菜轮作种植区域应重视磷肥的合理施用,基于作物需求并根据土壤中已存在的磷含量进行施肥调整。适当降低磷肥投入,通过“重旱轻水”、“启动磷”、秸秆还田等措施挖掘土壤中稳定态磷库潜力,从而降低土壤磷素淋失风险,提高磷肥利用效率。
致谢 土壤样品采集得到了十四个省(市/区)综合试验站、部分科学家岗位及其他协作单位的帮助。在此感谢国家油菜产业技术体系综合试验站的专家杨立勇、张永泰、朱建方、汤顺章、刘道敏、叶川、谢国强、吴平、程辉、常海滨、白桂萍、王友海、陈洪洲、范连益、杨鸿、黄益国、张宗急、徐洪志、邓武明、汤天泽、饶勇、杜才富、李根泽、贾战通和岗位科学家张洁夫、侯树敏、华水金,以及国家重点研发计划“油菜化肥农药减施技术集成研究与示范”项目骨干专家宋海星、刘定辉、鲁艳红和李楠楠等给予的帮助和支持!
[1] |
MacIntosh K A, Mayer B K, McDowell R W, et al. Managing diffuse phosphorus at the source versus at the sink[J]. Environmental Science & Technology, 2018, 52(21): 11995-12009.
( ![]() |
[2] |
Liu X C, Beusen A H W, van Beek L P H, et al. Exploring spatiotemporal changes of the Yangtze River(Changjiang)nitrogen and phosphorus sources, retention and export to the East China Sea and Yellow Sea[J]. Water Research, 2018, 142: 246-255. DOI:10.1016/j.watres.2018.06.006
( ![]() |
[3] |
Zhang S J, Xia H D, Tang W L, et al. Current status and sustainable development of phosphorite resources in China (In Chinese)[J]. China Mining Magazine, 2014, 23(S2): 8-13. [张苏江, 夏浩东, 唐文龙, 等. 中国磷矿资源现状分析及可持续发展建议[J]. 中国矿业, 2014, 23(S2): 8-13.]
( ![]() |
[4] |
Sharpley A N, Bergström L, Aronsson H, et al. Future agriculture with minimized phosphorus losses to waters: Research needs and direction[J]. AMBIO, 2015, 44(2): 163-179. DOI:10.1007/s13280-015-0632-1
( ![]() |
[5] |
Wang Y, Ren T, Zhang Y, et al. Limitation standard of phosphorus management under paddy-upland rotation cropping system in Yangtze River Basin (In Chinese)[J]. Phosphate & Compound Fertilizer, 2021, 36(2): 19-21. DOI:10.3969/j.issn.1007-6220.2021.02.008 [汪玉, 任涛, 张勇, 等. 长江流域水旱轮作体系磷素管理限量标准(草案)[J]. 磷肥与复肥, 2021, 36(2): 19-21.]
( ![]() |
[6] |
National Bureau of Statistics of the People's Republic of China. China statistical yearbook (In Chinese). Beijing: China Statistics Press, 2020. [中华人民共和国统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020.]
( ![]() |
[7] |
吕阳. 水旱轮作体系的磷平衡与土壤磷有效化过程研究[D]. 北京: 中国农业大学, 2016. ] Lü Y. Phosphorus balance in paddy-upland rotation system and processes of increasing soil phosphorus availability[D]. Beijing: China Agricultural University, 2016. [ ( ![]() |
[8] |
Cao N, Chen X P, Zhang F S, et al. Prediction of phosphate fertilizer demand in China based on change in soil phosphate fertility (In Chinese)[J]. Acta Pedologica Sinica, 2007, 44(3): 536-543. DOI:10.3321/j.issn:0564-3929.2007.03.022 [曹宁, 陈新平, 张福锁, 等. 从土壤肥力变化预测中国未来磷肥需求[J]. 土壤学报, 2007, 44(3): 536-543.]
( ![]() |
[9] |
National Agricultural Technical Extension and Service Center. Soil basic nutrient date of soil testing and fertilizer recommendation(2005-2014) (In Chinese). Beijing: China Agriculture Press, 2015. [全国农业技术推广服务中心. 测土配方施肥土壤基础养分数据集(2005-2014)[M]. 北京: 中国农业出版社, 2015.]
( ![]() |
[10] |
Wang W L, Liang T, Wang L Q, et al. The effects of fertilizer applications on runoff loss of phosphorus[J]. Environmental Earth Sciences, 2013, 68(5): 1313-1319. DOI:10.1007/s12665-012-1829-2
( ![]() |
[11] |
Zhong X Y, Zhao X R, Bao H J, et al. The evaluation of phosphorus leaching risk of 23 Chinese soils Ⅰ. Leaching criterion (In Chinese)[J]. Acta Ecologica Sinica, 2004, 24(10): 2275-2280. DOI:10.3321/j.issn:1000-0933.2004.10.028 [钟晓英, 赵小蓉, 鲍华军, 等. 我国23个土壤磷素淋失风险评估Ⅰ.淋失临界值[J]. 生态学报, 2004, 24(10): 2275-2280.]
( ![]() |
[12] |
Schoumans O F, Groenendijk P. Modeling soil phosphorus levels and phosphorus leaching from agricultural land in the Netherlands[J]. Journal of Environmental Quality, 2000, 29(1): 111-116.
( ![]() |
[13] |
Ye X F, Bai J H, Lu Q Q, et al. Spatial distribution of phosphorus in surface soils of wetlands with different plant communities in the Yellow River Delta, China[J]. Advanced Materials Research, 2013, 726/727/728/729/730/731: 1383-1386.
( ![]() |
[14] |
Li X L, Hou X Y, Mu H B, et al. P fertilization effects on the accumulation, transformation and availability of soil phosphorus (In Chinese)[J]. Acta Prataculturae Sinica, 2015, 24(8): 218-224. [李新乐, 侯向阳, 穆怀彬, 等. 连续6年施磷肥对土壤磷素积累、形态转化及有效性的影响[J]. 草业学报, 2015, 24(8): 218-224.]
( ![]() |
[15] |
Strokal M, Ma L, Bai Z H, et al. Alarming nutrient pollution of Chinese rivers as a result of agricultural transitions[J]. Environmental Research Letters, 2016, 11(2): 024014. DOI:10.1088/1748-9326/11/2/024014
( ![]() |
[16] |
Bao S D. Soil and agricultural chemistry analysis (In Chinese). 3rd ed[M]. Beijing: China Agriculture Press, 2000. [鲍士旦. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社, 2000.]
( ![]() |
[17] |
Hedley M J, Stewart J W B, Chauhan B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Soil Science Society of America Journal, 1982, 46(5): 970-976. DOI:10.2136/sssaj1982.03615995004600050017x
( ![]() |
[18] |
Sui Y B, Thompson M L, Shang C. Fractionation of phosphorus in a mollisol amended with biosolids[J]. Soil Science Society of America Journal, 1999, 63(5): 1174-1180. DOI:10.2136/sssaj1999.6351174x
( ![]() |
[19] |
National Soil Survey Office. Chinese soil (In Chinese). Beijing: China Agriculture Press, 1998. [全国土壤普查办公室. 中国土壤[M]. 北京: 中国农业出版社, 1998.]
( ![]() |
[20] |
Yan J Y, Wang K K, Liao S P, et al. Technical regulations for high-efficiency application of phosphate fertilizer in rice-rapeseed rotation system in the middle reaches of Yangtze River (In Chinese)[J]. Phosphate & Compound Fertilizer, 2021, 36(2): 37-39. DOI:10.3969/j.issn.1007-6220.2021.02.014 [闫金垚, 王昆昆, 廖世鹏, 等. 长江中游地区水稻-油菜轮作体系磷肥高效施用技术规程[J]. 磷肥与复肥, 2021, 36(2): 37-39.]
( ![]() |
[21] |
邹娟. 冬油菜施肥效果及土壤养分丰缺指标研究[D]. 武汉: 华中农业大学, 2010. Zou J. Study on response of winter rapeseed to NPKB fertilization and abundance & deficiency indices of soil nutrients[D]. Wuhan: Huazhong Agricultural University, 2010. ( ![]() |
[22] |
Zhao X R, Zhong X Y, Bao H J, et al. Relating soil P concentrations at which P movement occurs to soil properties in Chinese agricultural soils[J]. Geoderma, 2007, 142(3/4): 237-244.
( ![]() |
[23] |
Li H, Huang G, Meng Q, et al. Integrated soil and plant phosphorus management for crop and environment in China. A review[J]. Plant and Soil,, 2011, 349(1/2): 157-167.
( ![]() |
[24] |
Zhang W F, Ma W Q, Ji Y X, et al. Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China[J]. Nutrient Cycling in Agroecosystems, 2008, 80(2): 131-144. DOI:10.1007/s10705-007-9126-2
( ![]() |
[25] |
Li H G, Liu J, Li G H, et al. Past, present, and future use of phosphorus in Chinese agriculture and its influence on phosphorus losses[J]. AMBIO, 2015, 44(2): 274-285.
( ![]() |
[26] |
Rowe H, Withers P J A, Baas P, et al. Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food, bioenergy and water security[J]. Nutrient Cycling in Agroecosystems, 2016, 104(3): 393-412. DOI:10.1007/s10705-015-9726-1
( ![]() |
[27] |
Gao C, Zhang T L, Wu W D. Risk evaluation of agricultural soil phosphorus release to the water bodies (In Chinese)[J]. Acta Scientiae Circumstantiae, 2001, 21(3): 344-348. DOI:10.3321/j.issn:0253-2468.2001.03.018 [高超, 张桃林, 吴蔚东. 农田土壤中的磷向水体释放的风险评价[J]. 环境科学学报, 2001, 21(3): 344-348.]
( ![]() |
[28] |
Boeykens S P, Piol M N, Samudio Legal L, et al. Eutrophication decrease: Phosphate adsorption processes in presence of nitrates[J]. Journal of Environmental Management, 2017, 203: 888-895. DOI:10.1016/j.jenvman.2017.05.026
( ![]() |
[29] |
Hua L L, Liu J, Zhai L M, et al. Risks of phosphorus runoff losses from five Chinese paddy soils under conventional management practices[J]. Agriculture, Ecosystems & Environment, 2017, 245: 112-123.
( ![]() |
[30] |
Shen Y, Duan Y H, Huang S M, et al. Response of CaCl2-P to phosphorus fertilization and leaching risk in fluvo-aquic soils (In Chinese)[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1689-1696. [申艳, 段英华, 黄绍敏, 等. 潮土CaCl2-P含量对磷肥施用的响应及其淋失风险分析[J]. 植物营养与肥料学报, 2018, 24(6): 1689-1696.]
( ![]() |
[31] |
Zhang M K, Wang L P. Study on mechanisms of phosphorus downward transfer in arable soils (In Chinese)[J]. Journal of Agro-Environment Science, 2007, 26(1): 282-285. DOI:10.3321/j.issn:1672-2043.2007.01.056 [章明奎, 王丽平. 旱耕地土壤磷垂直迁移机理的研究[J]. 农业环境科学学报, 2007, 26(1): 282-285.]
( ![]() |
[32] |
Xiang D L, Yang X Y, Sun B H, et al. Impacts of irrigation regimes on phosphorus leaching in manural loessial soil (In Chinese)[J]. Plant Nutrition and Fertilizer Science, 2010, 16(1): 112-117. [项大力, 杨学云, 孙本华, 等. 灌溉水平对塿土磷素淋失的影响[J]. 植物营养与肥料学报, 2010, 16(1): 112-117.]
( ![]() |
[33] |
Sharpley A. Managing agricultural phosphorus to minimize water quality impacts[J]. Scientia Agricola, 2016, 73(1): 1-8. DOI:10.1590/0103-9016-2015-0107
( ![]() |
[34] |
Hu Y F, Ye X S, Shi L, et al. Genotypic differences in root morphology and phosphorus uptake kinetics in Brassica napus under low phosphorus supply[J]. Journal of Plant Nutrition, 2010, 33(6): 889-901. DOI:10.1080/01904161003658239
( ![]() |
[35] |
Yaqubi M, Shahraki J, Sabouhi Sabouni M. On dealing with the pollution costs in agriculture: A case study of paddy fields[J]. Science of the Total Environment, 2016, 556: 310-318. DOI:10.1016/j.scitotenv.2016.02.193
( ![]() |
[36] |
Fan M S, Jiang R F, Zhang F S, et al. Nutrient management strategy of paddy rice-upland crop rotation system (In Chinese)[J]. Chinese Journal of Applied Ecology, 2008, 19(2): 424-432. [范明生, 江荣风, 张福锁, 等. 水旱轮作系统作物养分管理策略[J]. 应用生态学报, 2008, 19(2): 424-432.]
( ![]() |
[37] |
Timsina J, Connor D J. Productivity and management of rice-wheat cropping systems: Issues and challenges[J]. Field Crops Research, 2001, 69(2): 93-132. DOI:10.1016/S0378-4290(00)00143-X
( ![]() |
[38] |
Cahill S, Johnson A, Osmond D, et al. Response of corn and cotton to starter phosphorus on soils testing very high in phosphorus[J]. Agronomy Journal, 2008, 100(3): 537-542. DOI:10.2134/agronj2007.0202
( ![]() |
[39] |
Zhu J, Li M, Whelan M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review[J]. Science of the Total Environment, 2018, 612: 522-537.
( ![]() |
[40] |
Wang K K, Liao S P, Ren T, et al. Effect of continuous straw returning on soil phosphorus availability and crop phosphorus utilization efficiency of oilseed rape-rice rotation (In Chinese)[J]. Scientia Agricultura Sinica, 2020, 53(1): 94-104. [王昆昆, 廖世鹏, 任涛, 等. 连续秸秆还田对油菜水稻轮作土壤磷素有效性及作物磷素利用效率的影响[J]. 中国农业科学, 2020, 53(1): 94-104.]
( ![]() |