2. 江苏省地理环境演化国家重点实验室培育建设点, 南京 210023;
3. 江苏省地理信息资源开发与利用协同创新中心, 南京 210023;
4. 虚拟地理环境教育部重点实验室(南京师范大学), 南京 210023;
5. 土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所), 南京 210008
2. State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing Normal University, Nanjing 210023, China;
3. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China;
4. Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China;
5. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
土壤氮转化过程是生物地球化学循环的重要环节。土壤中的氮可分为有机态氮和无机态氮,不同形态的氮在生物和化学作用下可相互转化。在无机态氮中
反硝化细菌法采用缺乏N2O还原酶活性的兼性反硝化细菌,将
本研究在Böhlke等[19]的基础上,从缩短反硝化细菌的培养时间、提升菌体培养稳定性等入手,在培养方式、反应条件、保存方式上优化反硝化细菌法,结合土壤浸提液的特点旨在建立一套快速、准确、稳定测定土壤浸提液中
本文所用菌种为Stenotrophomonas nitritireducens(ATCC No. BAA-12),具体实验流程如下:2管种子液解冻15~30 min,无菌环境下接种至含100 mL培养基的250 mL三角瓶中,培养基成分为TSB(tryptic soy broth)(15.0 g·L–1),(NH4)2SO4(0.25 g·L–1)和KH2PO4(2.45 g·L–1),放入摇床(常州普天仪器制造有限公司,HZQ X160,HZQ F160)26 ℃、180 r·min–1好氧培养12~15 h。摇培好的菌液经9 800 r·min–1离心5 min,使用新鲜培养基重悬洗涤3遍,分装4 mL至22.5 mL的顶空样品瓶中,用丁基塞和旋口塑料盖密封后,使用高纯N2(99.999%)吹扫30 min。设置空白对照,分为仅菌液空白对照、菌液+1 mL超纯水/KCl溶液空白,其余含菌液瓶中加入1 mL 20 μmol·L–1的样品(20 nmol
本实验使用的S. nitritireducens(ATCC No.BAA-12)购自美国菌种保藏中心(American type culture collection,USA)。将装有冻干粉的安瓿清洁后(75%乙醇),无菌环境下吸取0.2 mL无菌水溶解至悬浮状,接种环接至1~2个TSA(tryptic soy agar)平板培养基,适宜温度培养1~2 d,挑取单菌落转接培养第2代用作工作菌种保藏。
为保证不同批次菌体的稳定性、减少染菌风险、节约菌体前期生长培养时间,采用Weigand等[27]方法制备大量种子液冻存,以备多次实验需要。具体过程:工作菌种挑单菌落转接到含100 mL TSB培养基(tryptic soy broth)的500 mL三角瓶内,26 ℃、120 r·min–1好氧摇培21~22 h,此时菌种处于对数生长末期和稳定期,2 mL无菌离心管内加入500 μL无菌30%甘油和500 μL菌液,摇匀后–80 ℃冰箱冻存。
(1)接种方式的优化。对反硝化细菌S.nitritireducens的接种方式进行优化。在同批次内设置单菌落和种子液两种接种方式,各设置3个重复。单菌落接种需先在TSA(tryptic soy agar)平板上培养2~3 d,待成熟后挑单菌落至含100 mL培养基的250 mL三角瓶内,26 ℃、180 r·min–1好氧摇培12~15 h。种子液接种指从–80 ℃冰箱取出2管1 mL种子液,4 ℃解冻后转接至含100 mL培养基的250 mL三角瓶内,26 ℃、180 r·min–1好氧摇培12~15 h。使用实验室标样Lab-1作为样品,比较两种接种方式对其δ15N值的影响。
(2)培养方式的优化。在不同批次间设置微氧摇培和好氧摇培两种情况。微氧摇培参考Böhlke等[19]的实验,即取2管种子液加入含100 mL培养基的120 mL密封血清瓶中,留部分顶空,每天注入1 mL O2,26 ℃、120 r·min–1微氧摇培4~5 d,继而开展后续步骤。好氧摇培即取2管1 mL种子液接种至含100 mL培养基的250 mL三角瓶内,瓶口覆盖8层纱布,26 ℃、180 r·min–1好氧摇培12~15 h。使用实验室标样Lab-1作为样品,比较两种培养方式对其δ15N值的影响。
(3)反硝化细菌浓度优化。为考察反硝化细菌浓度对
(1)气体吹扫优化。反硝化细菌法需使用惰性气体吹扫创造厌氧环境,去除残留空白(
(2)气体保存优化。设置转移气体和不转移气体两种气体保存方式,各设置3个重复。转移气体处理需使用带锁帽的注射器从22.5 mL培养瓶顶空抽取约12~14 mL气体,转移至预先抽真空的含1~2片NaOH固体的22.5 mL顶空瓶中,补入14 mL高纯He保持正压状态。不转移气体处理是直接在含有样品和菌液的培养瓶中,使用带双套针的进样装置连接培养瓶,需当天在质谱仪上完成测样。
1.4 土壤浸提液(1)不同浓度KCl对
(2)不同土地利用类型土壤中
实验中所使用的同位素标样(表 1)有国际标准样品RSIL-N7373、RSIL-N10219、RSIL-N23(The Reston Stable Isotope Laboratory),也有实验室日常工作标样(国药分析纯)Lab-1、KNO2-A、KNO2-B、KNO2-C,在元素分析仪-同位素质谱联用仪测定后,用国际标准样品校准。反硝化法实验中,根据实验需要,所有标样均使用超纯水或0.1、0.5、1、2 mol·L–1 KCl配制为20 μmol·L–1的溶液。
![]() |
表 1 本文使用的同位素标准样品 Table 1 Bulk isotopic data for materials used in this study |
本文中测定得到的δ15N值均为相对于大气N2的δ15NAir,其中δ15N校正值为经国际标准品校正的值。文中数据处理采用Origin 9、SPSS 19.0统计分析,并采用t检验和方差分析法来检验差异显著性。
2 结果与讨论 2.1 培养条件的优化 2.1.1 接种方式的影响分别使用单菌落、种子液两种接种方式培养S. nitritireducens,发现转化
![]() |
注:图中相同字母表示无显著差异(P > 0.05)。 Note:The same letter in the graph indicates no significant difference(P > 0.05). 图 1 培养条件的优化对测定样品的峰面积对比(a)及好氧摇培S. nitritireducens的生长曲线(b) Fig. 1 Optimization of culture conditions on the comparison of peak areas of measured samples(a)and growth curves of aerobic shake culture of S. nitritireducens(b) |
微氧摇培和好氧摇培两种方式对Lab-1标样的δ15N值测定结果无显著差异(P > 0.05),分别为–12.34‰±0.29‰和–13.93‰±0.14‰,好氧摇培下的δ15N值更接近理论丰度且SD值更小。S. nitritireducens是兼性菌,好氧或厌氧条件均能生长,在厌氧条件下能保证菌体的反硝化能力,但菌体生长非常缓慢,好氧条件下菌体长势更好,在4~16 h能迅速到达对数生长期(图 1b)。Böhlke等[19]采用50 mL密封瓶添加35 mL培养基或160 mL密封瓶添加130 mL培养基,微氧培养菌体2~5 d(需每天补入O2)才能用于样品制备;好氧培养无需使用密封瓶,在250 mL三角瓶加入100 mL培养基,以八层纱布和报纸封口,摇培过夜(12~15 h),次日即可使用,耗时更短,操作更便捷。过去经常使用厌氧/微氧培养[16-17]的方法,是因为好氧培养难以激发菌体的反硝化能力,在使用P. aureofaciens测定
反硝化细菌法测定
反硝化菌法测定
反硝化反应时菌体浓度的高低可能影响测定结果。分别对不同OD600值菌体进行两批次的实验结果显示(表 2),在第一批次中,OD600值变化范围为0.4~1.2,对三个标记标准样品的测定并没有显著差异(P > 0.05),因标样15N丰度较高,测定值和理论值存在5‰~15‰的差异,但差异比例均不超过5%,与理论值基本吻合,测定的精密度良好,标样KNO2-A(112.38‰)的SD值为0.1‰~0.6‰;标样KNO2-C(422.17‰)的SD值为2.3‰~2.7‰。在第二批次中,OD600值变化范围为0.2~2.0,对三个国际标准品的测定结果中除OD600= 2.10外,其余无明显差异(P > 0.05),尽管测定值与实际值仍有差异,但校正值与实际值基本一致,测定精密度好,RSIL-N7373的SD为0.09‰~0.56‰,RSIL-N10219的SD仅为0.04‰~0.13‰,RSIL-N23的SD为0.04‰~0.31‰。因此,OD600≤1.2的菌体浓度,可准确测定标记样品和自然丰度样品的
![]() |
表 2 菌体OD600值对 |
已有研究表明,反硝化细菌法测定
土壤浸提液中含有大量K+、Cl–,可能影响反硝化菌体活力,分别测定了0.1 mol·L–1、0.5 mol·L–1、1 mol·L–1、2 mol·L–1 KCl配制的Lab-1标样的δ15N值,发现除2 mol·L–1 KCl明显低于理论丰度(P < 0.05),其余均与理论值相近,测定的精密度良好。有研究表明KCl中含有杂质氮会干扰
![]() |
注:图中相同字母表示无显著差异(P > 0.05),不同字母表示差异显著(P < 0.05)。 Note:The same letter in the graph indicates no significant difference(P > 0.05),different letters indicate significant difference(P < 0.05).
图 2 不同浓度KCl(0.1,0.5,1,2 mol·L–1)对样品 |
使用上述优化后的反硝化细菌法反应体系,测定不同pH的农田、水稻、森林土壤中
![]() |
表 3 不同土地利用类型土壤 |
本文针对S.nitritireducens能专一还原
[1] |
Müller C, Clough T J. Advances in understanding nitrogen flows and transformations: Gaps and research pathways[J]. The Journal of Agricultural Science, 2014, 152(S1): 34-44. DOI:10.1017/S0021859613000610
( ![]() |
[2] |
Russow R, Stange C F, Neue H U. Role of nitrite and nitric oxide in the processes of nitrification and denitrification in soil: Results from 15N tracer experiments[J]. Soil Biology & Biochemistry, 2009, 41(4): 785-795.
( ![]() |
[3] |
Rütting T, Müller C. Process-specific analysis of nitrite dynamics in a permanent grassland soil by using a Monte Carlo sampling technique[J]. European Journal of Soil Science, 2008, 59(2): 208-215. DOI:10.1111/j.1365-2389.2007.00976.x
( ![]() |
[4] |
Maharjan B, Venterea R T. Nitrite intensity explains N management effects on N2O emissions in maize[J]. Soil Biology & Biochemistry, 2013, 66: 229-238.
( ![]() |
[5] |
Su H, Cheng Y F, Oswald R, et al. Soil nitrite as a source of atmospheric HONO and OH radicals[J]. Science, 2011, 333(6049): 1616-1618. DOI:10.1126/science.1207687
( ![]() |
[6] |
Butterbach-Bahl K, Baggs E M, Dannenmann M, et al. Nitrous oxide emissions from soils: How well do we understand the processes and their controls?[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2013, 368(1621): 20130122. DOI:10.1098/rstb.2013.0122
( ![]() |
[7] |
Yang F, Dai S Y, Zhang J B, et al. Nitrite transformations under acidic conditions in temperate and subtropical forest ecosystems[J]. Geoderma, 2018, 317: 47-55. DOI:10.1016/j.geoderma.2017.12.021
( ![]() |
[8] |
Dai S Y, Wen T, Cai Z C, et al. Dynamics of nitrite in acidic soil during extraction with potassium chloride studied using 15N tracing[J]. Rapid Communications in Mass Spectrometry, 2020, 34(9): e8746.
( ![]() |
[9] |
Cao Y C, Zhong M, Gong H, et al. Determining 15N abundance in ammonium, nitrate and nitrite in soil by measuring nitrous oxide produced (In Chinese)[J]. Acta Pedologica Sinica, 2013, 50(1): 113-119. [曹亚澄, 钟明, 龚华, 等. N2O产生法测定土壤无机态氮15N丰度[J]. 土壤学报, 2013, 50(1): 113-119.]
( ![]() |
[10] |
Stevens R J, Laughlin R J. Determining nitrogen-15 in nitrite or nitrate by producing nitrous oxide[J]. Soil Science Society of America Journal, 1994, 58(4): 1108-1116. DOI:10.2136/sssaj1994.03615995005800040015x
( ![]() |
[11] |
Silva S R, Kendall C, Wilkison D H, et al. A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios[J]. Journal of Hydrology, 2000, 228(1/2): 22-36.
( ![]() |
[12] |
McIlvin M R, Altabet M A. Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater[J]. Analytical Chemistry, 2005, 77(17): 5589-5595. DOI:10.1021/ac050528s
( ![]() |
[13] |
Isobe K, Koba K, Suwa Y, et al. Nitrite transformations in an N-saturated forest soil[J]. Soil Biology & Biochemistry, 2012, 52: 61-63.
( ![]() |
[14] |
Lachouani P, Frank A H, Wanek W. A suite of sensitive chemical methods to determine the δ15N of ammonium, nitrate and total dissolved N in soil extracts[J]. Rapid Communications in Mass Spectrometry, 2010, 24(24): 3615-3623. DOI:10.1002/rcm.4798
( ![]() |
[15] |
Tu Y, Fang Y T, Liu D W, et al. Modifications to the azide method for nitrate isotope analysis[J]. Rapid Communications in Mass Spectrometry, 2016, 30(10): 1213-1222. DOI:10.1002/rcm.7551
( ![]() |
[16] |
Sigman D M, Casciotti K L, Andreani M, et al. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater[J]. Analytical Chemistry, 2001, 73(17): 4145-4153. DOI:10.1021/ac010088e
( ![]() |
[17] |
Casciotti K L, Böhlke J K, McIlvin M R, et al. Oxygen isotopes in nitrite: Analysis, calibration, and equilibration[J]. Analytical Chemistry, 2007, 79(6): 2427-2436. DOI:10.1021/ac061598h
( ![]() |
[18] |
Granger J, Sigman D M, Prokopenko M G, et al. A method for nitrite removal in nitrate N and O isotope analyses[J]. Limnology and Oceanography: Methods, 2006, 4(7): 205-212. DOI:10.4319/lom.2006.4.205
( ![]() |
[19] |
Böhlke J K, Smith R L, Hannon J E. Isotopic analysis of N and O in nitrite and nitrate by sequential selective bacterial reduction to N2O[J]. Analytical Chemistry, 2007, 79(15): 5888-5895. DOI:10.1021/ac070176k
( ![]() |
[20] |
Finkmann W, Altendorf K, Stackebrandt E, et al. Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2000, 50(1): 273-282. DOI:10.1099/00207713-50-1-273
( ![]() |
[21] |
Nielsen M, Larsen L H, Jetten M S M, et al. Bacterium-based NO2- biosensor for environmental applications[J]. Applied and Environmental Microbiology, 2004, 70(11): 6551-6558. DOI:10.1128/AEM.70.11.6551-6558.2004
( ![]() |
[22] |
Dai S Y, Wen T, Zhang J B, et al. Improving extraction method in determining NO2--N in acidic soil (In Chinese)[J]. Soils, 2018, 50(2): 341-346. DOI:10.13758/j.cnki.tr.2018.02.017 [戴沈艳, 温腾, 张金波, 等. 酸性土壤中亚硝态氮提取方法的改进[J]. 土壤, 2018, 50(2): 341-346.]
( ![]() |
[23] |
Rock L, Ellert B H. Nitrogen-15 and oxygen-18 natural abundance of potassium chloride extractable soil nitrate using the denitrifier method[J]. Soil Science Society of America Journal, 2007, 71(2): 355-361. DOI:10.2136/sssaj2006.0266
( ![]() |
[24] |
Bell M D, Sickman J O. Correcting for background nitrate contamination in KCl-extracted samples during isotopic analysis of oxygen and nitrogen by the denitrifier method[J]. Rapid Communications in Mass Spectrometry, 2014, 28(5): 520-526. DOI:10.1002/rcm.6824
( ![]() |
[25] |
Mørkved P T, Dörsch P, Søvik A K, et al. Simplified preparation for the δ15N-analysis in soil NO3- by the denitrifier method[J]. Soil Biology & Biochemistry, 2007, 39(8): 1907-1915.
( ![]() |
[26] |
Zhu J, Yu L, Bakken L R, et al. Controlled induction of denitrification in Pseudomonas aureofaciens: A simplified denitrifier method for dual isotope analysis in NO3-[J]. Science of the Total Environment, 2018, 633: 1370-1378. DOI:10.1016/j.scitotenv.2018.03.236
( ![]() |
[27] |
Weigand M A, Foriel J, Barnett B, et al. Updates to instrumentation and protocols for isotopic analysis of nitrate by the denitrifier method[J]. Rapid Communications in Mass Spectrometry, 2016, 30(12): 1365-1383. DOI:10.1002/rcm.7570
( ![]() |
[28] |
McIlvin M R, Casciotti K L. Technical updates to the bacterial method for nitrate isotopic analyses[J]. Analytical Chemistry, 2011, 83(5): 1850-1856. DOI:10.1021/ac1028984
( ![]() |
[29] |
Stock P, Roder S, Burghardt D. Further optimisation of the denitrifier method for the rapid 15N and 18O analysis of nitrate in natural water samples[J]. Rapid Communications in Mass Spectrometry, 2021, 35(1): e8931.
( ![]() |
[30] |
Casciotti K L, Sigman D M, Hastings M G, et al. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method[J]. Analytical Chemistry, 2002, 74(19): 4905-4912. DOI:10.1021/ac020113w
( ![]() |
[31] |
Well R, Flessa H, Lu X, et al. Isotopologue ratios of N2O emitted from microcosms with NH4+ fertilized arable soils under conditions favoring nitrification[J]. Soil Biology & Biochemistry, 2008, 40(9): 2416-2426.
( ![]() |