2. 南京工业大学生物与制药工程学院/国家生化工程技术研究中心, 南京 211816
2. School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University / National Engineering Research Center for Biotechnology, Nanjing 211816, China
氧化亚氮(N2O)在大气中存留时间长且破坏臭氧层,是仅次于二氧化碳(CO2)和甲烷(CH4)的第三大温室气体。尽管大气中N2O的浓度较CO2低约1 000倍,但是相同浓度的N2O的增温潜势约为CO2的298倍,对全球总辐射强度的贡献约占6%[1]。N2O在大气存留的时间为116 ± 9 a[2],且能消耗大气层中的臭氧,对高空平流层的臭氧层造成损害[3]。2018年大气中N2O浓度与1750年的N2O浓度相比增长超过20%,且在过去五年里大气中N2O排放量增长率最高[4]。2000年以来,全球N2O的实际排放量超过了联合国政府间气候变化专门委员会(IPCC)的第五次评估报告中最高的典型浓度路径[5],也高于第六阶段耦合模式比较计划(CMIP6)中的所有共享社会经济路径[6],超出预期的N2O排放对于实现《巴黎气候协定》的目标带来了更大的挑战[7]。2007—2016年间全球N2O总排放速率为17.0 Tg·a–1(以N计,下同),N2O大气化学汇为13.5 Tg·a–1,源与汇间的不平衡造成大气N2O浓度不断增加。N2O的来源分为自然来源与人为源。自然源N2O排放主要来自土壤和海洋[7],土壤N2O排放占全球N2O总排放的56%~70%[8]。人为源的N2O主要来自农田施肥、畜牧业生产、化石燃料和工业排放。其中农业排放的N2O约占全球人为排放N2O的52%,是大气中N2O浓度升高的主要驱动力[7]。随着全球人口不断增长和土地利用集约化,氮肥用量不断增加。大量施入氮肥的农业土壤N2O排放量占全球陆地排放的30%[8]。因此,农业土壤源N2O是其重要来源,减少农业土壤N2O排放的需求十分迫切。
目前,已经有一些农业土壤N2O减排的措施和技术的相关研究,主要集中在氮肥类型、氮肥用量、添加农业化学品以及改进农业管理措施等[9-12]。这些减排措施和技术的成功取决于对N2O产生和还原微生物特别是参与硝化和反硝化过程的微生物的深入了解,以及在此基础上对关键微生物过程的调控。最新研究表明,直接应用N2O还原微生物可减少农业土壤N2O的排放[13-16]。本综述主要总结农业土壤N2O的生物源与汇、应用微生物减少农业土壤N2O排放的方法、机制及调控等。
1 农业土壤N2O的生物源与汇土壤N2O的产生和消耗涉及复杂的微生物过程[17]。产生N2O的主要微生物过程包括氨氧化和硝化细菌反硝化、亚硝酸氧化、异养反硝化、厌氧氨氧化和硝酸盐异化还原成铵等途径[18-19]。不同过程对N2O净排放的相对贡献变化受微生物群落和环境条件的影响。土壤微生物参与的硝化过程和反硝化过程产生副产物N2O,是农业土壤N2O排放最为重要的来源[18-20]。硝化过程包括两个阶段:(1)氨氧化细菌(AOB)和氨氧化古菌(AOA)将氨(NH3)氧化为亚硝酸盐(
具有nosZ基因的反硝化细菌(即N2O还原细菌)将N2O还原为N2,是目前已知唯一的汇[18-19]。N2O还原细菌具有编码N2OR的nosZ基因,产生的N2OR将N2O还原为N2。不同的反硝化细菌还原N2O的速率不同[32]。因此,反硝化细菌群落的组成会影响N2O的净排放速率。N2O还原细菌有两种不同的类群,分别为典型的反硝化细菌(Clade Ⅰ)和非典型的反硝化细菌(Clade Ⅱ)。典型的反硝化细菌主要分布于α-、β-和γ-变形菌门(Proteobacteria)。非典型的反硝化细菌种类更为丰富多样,其中大多仅含有nosZ基因,不含其他反硝化基因;无产生N2O的能力,仅消耗N2O,为N2O重要的汇[33-34]。在多数环境下非典型的反硝化细菌nosZ Ⅱ基因丰度大于典型的反硝化细菌nosZ I基因丰度[35-36]。随着已测序的微生物基因组种类和数目的增加,Jones等[35]研究发现这两类N2O还原微生物的多样性较先前预期的要大。每个类群的丰度或多样性不同,可能会对土壤N2O排放产生重要影响[37]。土壤N2O汇的能力主要由含有nosZ Ⅱ基因的微生物决定,这些非典型的反硝化细菌nosZ Ⅱ基因多样性或丰度增加,可能会强化N2O消耗或降低N2O净排放量[30]。Clade Ⅰ和Clade Ⅱ型N2O还原细菌分布受土壤生物因子和非生物因子影响[37]。含有nosZ I基因的细菌在植物根部占主导地位,而含有nosZ Ⅱ基因的细菌在土壤中占主导地位[38]。分离、筛选和获得N2O还原细菌对实现微生物介导的农业土壤N2O减排具有重要意义。
2 N2O减排微生物的筛选及应用策略N2O减排微生物是指具有减少土壤N2O排放功能的一类微生物:可以是微生物本身具有合成活性N2OR的nosZ基因的N2O还原细菌,也可以是具有土壤N2O减排效应但不含nosZ基因的植物根际促生菌,或可以是其他具有土壤N2O减排效应的微生物;可以是细菌,也可以是真菌。现有的N2O还原细菌一般为反硝化细菌。最近,Ashida等[39]已通过功能性单细胞分离方法从水稻田中分离出数千株典型的反硝化菌株,其中许多是N2O还原细菌[40]。Ishii等[40]从日本水稻土中分离获得含有nirS和nosZ基因的N2O还原细菌Burkholderia sp. TSO47-3,其还原
直接应用微生物减排土壤N2O的策略分为三种。第一种策略是将制备的微生物菌剂直接施用到土壤。Domeignoz-Horta等[46]在土壤微宇宙条件下将D. fermentans NS114T扩繁后接种至11种不同类型的土壤中,超过1/3的土壤反硝化终产物比值rN2O/r(N2O+N2)显著降低;接种较高浓度的D. fermentans NS114T在有些土壤上具有更强的N2O减排效果。Itakura等[15]在盆栽试验条件下将含有nosZ基因的B. japonicum USDA110接种至种植大豆幼苗的土壤中,接种30 d后移除大豆幼苗地上部,测定大豆根际系统的N2O排放,发现USDA110菌株显著减少了大豆根际系统中N2O的排放;在接种具有更高N2OR活性的B. japonicum 5M09自然突变菌株时具有更好的N2O减排效果。将B. japonicum 5M09和含有nosZ基因的B. japonicum Tsu125接种至种植有大豆种子的育苗土壤中,再移栽至田间土壤,发现菌株5M09和Tsu125极大减少了N2O累积排放量[15]。Gao等[14]在温室盆栽试验条件下向种植红花苜宿和梯牧草的土壤分别接种7株具有植物促生效应的N2O还原细菌,大部分菌株可促进牧草植物氮磷养分的吸收,同时具有减排牧草土壤N2O和促进牧草植物生长的双重效应。除了接种N2O还原细菌,极个别具有植物促生效应的非N2O还原微生物也可减少农业土壤N2O的排放[48-49]。Calvo等[50]在温室盆栽试验中将四种植物根际促生菌Bacillus spp.混合培养后接种至施肥后的土壤中,减少了土壤N2O排放以及促进玉米的生长和氮素吸收。Wu等[48]在温室盆栽试验条件下将植物根际促生菌解淀粉芽孢杆菌Bacillus amyloliquefaciens EBL11接种至施肥后的酸性土壤,在明显促进了油菜生长的同时,减少了酸性茶园土壤N2O排放。Xu等[49]在温室盆栽试验中将植物促生真菌Trichoderma viride EBL13接种至施肥后的茶园土壤,使得茶园土壤N2O的排放减少了67.6%。
第二种策略是将制备的微生物菌剂与肥料或其他载体等结合后施入土壤。Nishizawa等[16]在微宇宙条件下,将Azoarcus sp. KS11B、Niastella sp. KS31B和Burkholderia sp. TSO47-3等三株N2O还原细菌与颗粒有机肥混合后施入土壤中,与施加颗粒有机肥但未接种处理相比,均显著减少了土壤N2O累积排放量,分别降低了63.0%、61.3%和43.8%。Gao等[13]在田间原位条件下,向火山灰土和冲积土中施入分别接种N2O还原细菌Azospirillum sp. TSH100和Novoherbaspirillum sp. UKPF54的颗粒有机肥,均有效减少了这两种农田土壤的N2O累积排放量。Xu等[51]利用甘薯淀粉废水将绿色木霉菌Trichoderma viride EBL13大量扩繁后,以秸秆为载体经固态发酵生产生物肥料,施入田间原位的茶园土壤,与施用等氮量的化学肥料相比,生物肥料处理增加了茶园茶叶产量,同时茶园土壤N2O排放量显著减少了33.3%~71.8%;与施用含氮量高一倍的化学肥料处理相比,生物肥料处理未减少茶叶产量且N2O排放量显著降低了71.6%;表明该生物肥料不仅可保持作物产量,还可提高氮肥的利用率以及减少氮肥用量。
第三种策略是构建具有N2O减排效应的微生物菌群,然后制备成菌剂直接施入土壤或与肥料等载体结合后再施入土壤。为了增强在田间原位条件下接种微生物的减排效应及与土著微生物的竞争力,Akiyama等[52]筛选了63种含有nosZ基因的土著B. diazoefficiens菌株,将它们混合培养后接种至田间大豆根际土壤。结果表明,与未接种处理相比,接种B. diazoefficiens菌群在未影响根瘤数量的情况下显著增加了含有nosZ基因的根瘤比例,而且根瘤分解时期的N2O排放量显著降低。
除直接应用微生物减排土壤N2O之外,还可通过改变农业管理措施(耕作制度、灌溉方式和作物轮作系统等)和添加农业化学品(生石灰、生物质炭和硝化抑制剂等),也可以刺激N2O还原菌生长。Grave等[53]发现在施入氮肥的情况下,与常规耕作相比免耕会增加农田土壤N2O的排放。Vázquez等[54]使用实时荧光定量PCR方法研究耕作制度对地中海土壤微生物群落的影响,发现常规耕作与免耕相比增加了nosZ基因丰度。Harter等[55]证明生物质炭可通过增加nosZ基因的丰度和转录水平来增强N2O的还原,从而减少土壤N2O的排放。
由此可见,应用微生物减排农业土壤N2O的技术切实可行。应用具有N2O减排效应的植物根际促生菌不仅能够减少农业土壤N2O排放,还能够减肥增效、促进作物生长(表 1)。明确应用微生物减少农业土壤N2O排放的微生物生态学机制,将有助于定向调控农业土壤N2O排放,构建基于微生物的新型N2O减排技术。
![]() |
表 1 N2O减排微生物对农业土壤N2O排放和作物产量的影响 Table 1 Generalized overview of the effects of microorganisms on N2O emission reduction and crop yield |
应用微生物减排N2O的直接机制是指人为向土壤中接种的微生物本身具有还原N2O的功能,能合成有活性的N2OR,并将N2O还原为N2,从而促使农业土壤N2O的减排(图 1a)。具有直接减排N2O功能的微生物通常是指具有nosZ基因的N2O还原细菌。N2O还原细菌减少N2O排放的作用机制有两种:一种是接种的N2O还原细菌在与土著反硝化微生物竞争电子供体(有机化合物)和电子受体(
![]() |
图 1 微生物介导的农业土壤N2O减排的微生物生态机制(a. 直接机制;b. 间接机制) Fig. 1 Two microbial ecological mechanisms of using microorganisms mediated N2O mitigation from agricultural soils(a. direct mechanism; b. indirect mechanism) |
接种微生物减排N2O的间接机制是指人为向土壤接种非N2O还原细菌,通过改变土著N2O还原细菌群落的组成和丰度以及代谢活性,促使农业土壤N2O的减排(图 1b)。非N2O还原细菌虽然无编码N2OR的nosZ基因,但仍具有减排N2O的能力[48-49, 56],其可能的减排机制是非N2O还原细菌改变了土壤微生物的群落组成。例如,Bacillus spp.是广泛使用的植物根际促生菌,可产生多种抗病毒、抗细菌和抗真菌化合物来抑制病原微生物,但也对土壤中其他微生物产生影响[57]。Wu等[48]将典型的植物根际促生菌Bacillus amyloliquefaciens EBL11接种至施肥后的酸性土壤,通过qPCR技术对功能基因amoA(AOA和AOB)、nirK、nirS和nosZ进行定量分析,结果表明接种B. amyloliquefaciens EBL11后AOB丰度降低,同时显著增加了nosZ基因丰度。基于16S rDNA测序结果预测土壤中微生物功能基因组成和丰度的变化,发现接种B. amyloliquefaciens EBL11后氨氧化过程中的功能基因丰度减少,而N2O还原过程中的功能基因丰度增加。上述研究结果表明B. amyloliquefaciens EBL11减少土壤N2O排放的机制可能有两种:一种是通过减少土壤中AOB的数量来减少硝化作用下N2O的产生;另一种是通过增加N2O还原细菌数量或活性来增强N2O还原过程;也可能二种机制同时存在。即B. amyloliquefaciens EBL11改变了土壤中氨氧化微生物和N2O还原细菌群落的组成和丰度以及代谢活性。另一研究[58]在温室条件下向施肥后的茶园土壤接种T. viride EBL13,与未接种处理相比N2O排放减少了67.6%,然后通过qPCR定量和功能基因nosZ高通量测序研究T. viride EBL13与N2O还原之间的潜在机制:T. viride EBL13可以提高植物的抗病性及抗胁迫能力,且定殖根部后可改变植物的基因表达;接种T. viride EBL13处理与未接种处理相比nosZ基因丰度和α多样性增加,表明T. viride EBL13增加了土著的N2O还原细菌群落的丰度和多样性。这种差异可能是接种T. viride EBL13显著减少土壤N2O排放的原因。
4 应用微生物减排农业土壤N2O的环境调控因子N2O还原为N2的生物过程受诸多环境因子的影响,主要包括
碳源通过增强土壤异养微生物的呼吸(营造厌氧条件)和为反硝化细菌提供电子而促进反硝化过程,是反硝化过程的主要限制因素。反硝化过程中N2O的积累可能是不同的N-还原酶之间的电子竞争引起的。有研究[64]表明在废水处理中,浓度低的可利用碳源导致N2O与上游N-还原酶之间的电子竞争,从而导致N2O的瞬时积累。添加碳源通常可降低反硝化过程中N2O/(N2O+N2)的比值,但是会受到
在纯培养和土壤微宇宙条件下,nosZ基因的表达受到O2的抑制,与其他反硝化基因的表达(如nirS、nirK、cnorB和narG)相比,nosZ基因的表达对O2更敏感[66]。Morley等[67]的研究证明N2OR突然暴露于O2时会暂时被抑制,但反硝化过程中其他的还原酶仍可发挥作用,结果导致N2O的积累。
4.4 水分含量土壤水分含量是土壤N2O排放的主要驱动力之一。土壤水分含量不仅决定了O2的有效性,同时影响养分在土壤基质中的扩散和运输以及微生物细胞的代谢活性[68]。当土壤水分含量达到饱和或含量较高时,O2浓度相对较低,N2O的扩散速率也相对较低,为完全反硝化过程提供了有利的环境条件;而土壤水分含量较低时,O2浓度较高,不完全厌氧条件不仅使得反硝化微生物优先利用
温度对土壤N2O排放同时表现出直接作用和间接作用。直接作用表现为:在一定温度范围内,随着温度的升高,土壤微生物活性和N2O产生与还原过程中的酶活性增加,对土壤N2O排放具有倍增效应[18]。间接作用表现为:温度升高引起的土壤呼吸增加导致土壤O2浓度降低,为反硝化细菌创造了厌氧条件。
4.6 pH土壤pH是控制N2O排放的重要因素。在土壤pH5~8范围内,N2O/(N2+N2O)的比值与土壤pH呈显著负相关[69]。低pH影响细胞周质中N2OR的组装或折叠,使其不能正确装配从而活性很低甚至无活性。向酸性土壤中施加生石灰可以中和土壤酸性,从而通过减少土壤中
Cu的生物可利用性是决定N2OR活性的重要因素。依赖Cu2+的N2OR由两个亚基组成,每个亚基包含一个双核CuA中心(电子传递结构域)和一个独特的四核CuZ中心(催化结构域)[70]。典型的反硝化细菌在纯培养条件下,缺少Cu2+会导致nosZ基因表达水平降低[71]或者N2OR的合成受阻[59],进而N2O不能被还原,导致大量N2O产生。在土壤生态系统中,施入添加Cu2+的颗粒有机肥增强了反硝化细菌将N2O还原为N2的能力,减少了土壤N2O的排放[72]。因此,N2OR的合成依赖N2O还原细菌的生存环境中有足够的可利用性Cu。
5 应用微生物减排农业土壤N2O的难点与问题尽管利用微生物减少农业土壤N2O排放取得了一定的进展,但是该生物减排方法仍然有以下难点与问题,制约着微生物介导的土壤N2O减排技术的高效设计和应用。
5.1 筛选获得的具有N2O减排效应的菌株数量有限目前仅分离获得少量N2O减排微生物。N2O还原细菌种类丰富多样,很难将信息从有限的生理学研究推广至整个N2O还原细菌群落,也很难将实验室研究结果类推至土壤生态系统。此外,在实验室条件下单个模型菌株的行为与其在自然环境中的行为也可能不尽相同。因此,尽管有些N2O还原细菌在纯培养条件下具有高效减排N2O的能力,但将它们接种至一个新环境后其还原N2O的能力可能发生改变,阻碍在生态系统水平上精确预测或调控nosZ基因的表达和N2OR活性。例如:Gao等[13]从纯培养条件下筛选出38株具有较高N2O还原活性的反硝化细菌,经过接种到有机肥和土壤微宇宙土壤进一步筛选,最终获得两株在田间原位条件下有效减少农业土壤N2O排放的高效N2O还原细菌。
5.2 接种微生物在自然环境中存活和定殖等情况不够明确自然界中的微生物群落是复杂且动态变化的,它们具有高度互联的代谢和生态互作网络[73]。将微生物接种至存在生存竞争的土壤环境中,接种的微生物在与土著微生物的竞争中能否存活与定殖对其执行减少土壤N2O排放功能起着决定性作用。例如:由于接种的根瘤菌与土著根瘤菌之间存在竞争,在土壤中存在土著根瘤菌的情况下,通常接种的高效根瘤菌无法发挥作用[74]。因此选择接种的微生物时,菌株的竞争力已被认为是需要考虑的关键特征[75]。
5.3 接种微生物功能发挥的微生物生态学机制不够清晰自然环境中复杂的微生物群落很难在实验室条件下再现[73]。因此,在实验室条件下难以准确预测接种的微生物在自然环境中基因表达调控和功能的变化,以及对土著微生物群落组成和生态功能的影响。植物根际促生菌可分泌多种化合物,有些化合物可以调控植物基因的表达;此外,这些化合物也对土壤中其他微生物产生一定的影响。例如,Wu等[48]通过高通量测序发现向土壤中施用含有B. amyloliquefaciens EBL11的生物肥料相对于施用化肥显著改变了土著的氨氧化微生物和反硝化细菌的群落组成和丰度,对其他关键土著微生物群落组成和生态功能的影响尚有待进一步探究。
5.4 有效调控接种微生物功能发挥的技术手段缺乏接种的微生物减少N2O排放功能的发挥通常受到多个因素的限制,除存在竞争性的土著微生物,还包括环境条件、农业管理措施、接种微生物本身以及接种方法等因素。N2O还原为N2的生物过程本身受诸多环境因子的影响,pH和Cu2+浓度是决定N2OR活性的两个关键因素[76]。例如,Shen等[72]发现与未接种且未添加Cu2+的土壤相比,在火山灰土和灰色低地土中施入添加适宜浓度CuSO4的颗粒有机肥后,再接种Azospirillum sp.UNPF1会显著降低两种土壤的N2O累积排放量。即:向土壤中添加Cu2+后优化了接种N2O还原细菌的环境条件。然而,采用Cu2+调控N2OR活性措施在Cu2+缺乏的土壤中可能起到较好的效果,在Cu2+富集的土壤背景条件下,高浓度Cu2+可能抑制N2O生成的微生物活性进而表现为减少N2O的排放[72]。此外,长期向土壤中添加Cu2+可能引起铜的累积量超过环境标准,导致土壤污染,同时危害植物、动物和人类健康[72]。在施用动物源的有机肥和/或在Cu2+浓度较高的土壤中,特别需要注意这一点。分别采用土壤接种和有机肥接种时,Burkholderia sp. TSO47-3对土壤N2O的减排效应有显著区别[16]。Akiyama等[52]改进发芽和接种方法后含有nosZ基因的根瘤比例大大提高。由此可见,优化的接种模式可能是调控微生物菌减排功能发挥的有效措施。
5.5 评估N2O减排效果的方法有待改进合适的定量模型可最终明确生态系统中微生物群落潜在的生态相互作用及其宏观效应[73]。土壤N2O产生和消耗的微生物生态学机制可能会在模型中得到实际体现,可将接种的微生物作为因子参数化来评估减排效果。但是要在广泛的气候条件、农业管理措施和土地利用类型中建立一套“微生物N2O排放因子”,将大大增加参数的数量和模型的复杂性,非常具有挑战性[19]。
6 结论与展望本综述主要总结了基于微生物的新型N2O减排方法。增强微生物作为N2O汇的功能对于减少农业土壤N2O排放至关重要。利用N2O还原细菌或者具有N2O减排功能的植物根际促菌可高效减少土壤N2O排放,但涉及的微生物生态学机制有所不同。利用N2O还原细菌减少农业土壤N2O排放的主要机制是其本身含有nosZ基因,而利用植物根际促生菌减少土壤N2O排放的的机制则是由于其改变了N2O还原细菌群落的组成和丰度以及代谢活性。在
将来需要在以下几个方面开展相关研究。首先,进一步筛选获得高效的具有N2O减排效应的N2O减排微生物。从自然环境中筛选具有N2O还原能力的新菌株或挖掘现有菌株的新功能,特别是筛选近些年发现的具有nosZ Ⅱ基因的非典型反硝化细菌;采用功能性宏基因组学、转录组和转座子测序等方法鉴定单个微生物在特定代谢位中其基因水平适应性的决定因素[77-78]等将有助于推进农田N2O减排技术的发展。其次,增强接种微生物在自然环境中存活和定殖等研究。例如通过创新方式克服在田间条件下接种微生物难以存活和定殖的困难,最大化提高接种微生物在农业土壤中的成活率;通过添加化学物质(如外源性物质)和载体(如有机肥、沼液、沼渣)为接种微生物创造适宜的生存环境;接种人工的微生物群落有可能增强接种微生物的生存能力和竞争能力;采用长时间内连续接种的缓释系统(如将其压缩至富营养基的开放式硅胶管)[79]等。再次,进一步明确接种微生物功能发挥的微生物生态学机制。通过深入的遗传和生物化学研究确定微生物群落成员,接种人工微生物群落以发挥其复杂集合体的功能[73]。然后,尝试调控影响其功能发挥的技术手段。如探究接种的N2O还原细菌在特定代谢位中其nosZ基因表达水平的变化以及决定因素,结合测定结果通过添加特异的外源性物质精确地调节土著微生物群落,开展基于N2O还原细菌的种属特异性调控。原位微生物组工程是通过工程化载体直接修饰自然微生物群落的宏基因组,可以更大范围和更高特异性地改变复杂微生物群落功能。原位微生物组工程或许可以为农业土壤N2O减排提供关键技术[73]。最后,改进评估N2O减排效果的方法。建立合适的定量模型需要微生物生态学家、生物地球化学家、农学家、土壤学家和建模者进行紧密的跨学科合作。通过密切合作,将土壤微生物信息纳入相关模型,明确接种微生物在田间尺度或区域尺度对N2O减排的贡献。总之,利用微生物减少农业土壤N2O排放是一种低成本、高效益和切实可行的方法,可为我国实现农业碳中和战略目标提供重要技术参考。
[1] |
Montzka S A, Dlugokencky E J, Butler J H. Non-CO2 greenhouse gases and climate change[J]. Nature, 2011, 476(7358): 43-50. DOI:10.1038/nature10322
( ![]() |
[2] |
Prather M J, Hsu J, DeLuca N M, et al. Measuring and modeling the lifetime of nitrous oxide including its variability[J]. Journal of Geophysical Research Atmospheres, 2015, 120(11): 5693-5705. DOI:10.1002/2015JD023267
( ![]() |
[3] |
Ravishankara A R, Daniel J S, Portmann R W. Nitrous oxide(N2O): The dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5949): 123-125. DOI:10.1126/science.1176985
( ![]() |
[4] |
Prinn R G, Weiss R F, Arduini J, et al. History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment(AGAGE)[J]. Earth System Science Data, 2018, 10(2): 985-1018. DOI:10.5194/essd-10-985-2018
( ![]() |
[5] |
Davidson E A. Representative concentration pathways and mitigation scenarios for nitrous oxide[J]. Environmental Research Letters, 2012, 7(2): 024005. DOI:10.1088/1748-9326/7/2/024005
( ![]() |
[6] |
Gidden M J, Riahi K, Smith S J, et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century[J]. Geoscientific Model Development, 2019, 12(4): 1443-1475. DOI:10.5194/gmd-12-1443-2019
( ![]() |
[7] |
Tian H, Xu R, Canadell J G, et al. A comprehensive quantification of global nitrous oxide sources and sinks[J]. Nature, 2020, 586(7828): 248-256. DOI:10.1038/s41586-020-2780-0
( ![]() |
[8] |
Syakila A, Kroeze C. The global nitrous oxide budget revisited[J]. Greenhouse Gas Measurement and Management, 2011, 1(1): 17-26. DOI:10.3763/ghgmm.2010.0007
( ![]() |
[9] |
Chen H, Li B, Xiong Z Q. Effects of N reduction and nitrification inhibitor on N2O emissions in intensive vegetable field (In Chinese)[J]. Acta Pedologica Sinica, 2017, 54(4): 938-947. [陈浩, 李博, 熊正琴. 减氮及硝化抑制剂对菜地氧化亚氮排放的影响[J]. 土壤学报, 2017, 54(4): 938-947.]
( ![]() |
[10] |
Ji Y L, Suo L, Xie Y, et al. Effects of different biochars on Hainan latosol properties and N2O emission (In Chinese)[J]. Soils, 2017, 49(6): 1172-1178. [季雅岚, 索龙, 解鈺, 等. 不同生物质炭对海南砖红壤性质及N2O排放的影响[J]. 土壤, 2017, 49(6): 1172-1178.]
( ![]() |
[11] |
Mao X W, Cheng M, Xu Q F, et al. Effects of nitrification inhibitors on soil N2O emission and community structure and abundance of ammonia oxidation microorganism in soil under extensively managed Phyllostachys edulis stands (In Chinese)[J]. Acta Pedologica Sinica, 2016, 53(6): 1528-1540. [毛新伟, 程敏, 徐秋芳, 等. 硝化抑制剂对毛竹林土壤N2O排放和氨氧化微生物的影响[J]. 土壤学报, 2016, 53(6): 1528-1540.]
( ![]() |
[12] |
Wu Y, Hong M, Lin L L, et al. Influence of different fertilization measures on NH3 volatilization and N2O emission in salined flavo-aquic soil of Hetao irrigation area (In Chinese)[J]. Soils, 2017, 49(4): 745-752. [武岩, 红梅, 林立龙, 等. 不同施肥措施对河套灌区盐化潮土氨挥发及氧化亚氮排放的影响[J]. 土壤, 2017, 49(4): 745-752.]
( ![]() |
[13] |
Gao N, Shen W S, Camargo E, et al. Nitrous oxide(N2O)-reducing denitrifier-inoculated organic fertilizer mitigates N2O emissions from agricultural soils[J]. Biology and Fertility of Soils, 2017, 53(8): 885-898. DOI:10.1007/s00374-017-1231-z
( ![]() |
[14] |
Gao N, Shen W, Kakuta H, et al. Inoculation with nitrous oxide(N2O)-reducing denitrifier strains simultaneously mitigates N2O emission from pasture soil and promotes growth of pasture plants[J]. Soil Biology and Biochemistry, 2016, 97: 83-91. DOI:10.1016/j.soilbio.2016.03.004
( ![]() |
[15] |
Itakura M, Uchida Y, Akiyama H, et al. Mitigation of nitrous oxide emissions from soils by Bradyrhizobium japonicum inoculation[J]. Nature Climate Change, 2013, 3(3): 208-212. DOI:10.1038/nclimate1734
( ![]() |
[16] |
Nishizawa T, Quan A H, Kai A, et al. Inoculation with N2-generating denitrifier strains mitigates N2O emission from agricultural soil fertilized with poultry manure[J]. Biology and Fertility of Soils, 2014, 50(6): 1001-1007. DOI:10.1007/s00374-014-0918-7
( ![]() |
[17] |
Regan K, Stempfhuber B, Schloter M, et al. Spatial and temporal dynamics of nitrogen fixing, nitrifying and denitrifying microbes in an unfertilized grassland soil[J]. Soil Biology and Biochemistry, 2017, 109: 214-226. DOI:10.1016/j.soilbio.2016.11.011
( ![]() |
[18] |
Butterbach-Bahl K, Baggs E M, Dannenmann M, et al. Nitrous oxide emissions from soils: how well do we understand the processes and their controls?[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2013, 368(1621): 20130122. DOI:10.1098/rstb.2013.0122
( ![]() |
[19] |
Hu H W, Chen D L, He J Z. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates[J]. FEMS Microbiology Reviews, 2015, 39(5): 729-749. DOI:10.1093/femsre/fuv021
( ![]() |
[20] |
Paustian K, Lehmann J, Ogle S, et al. Climate-smart soils[J]. Nature, 2016, 532(7597): 49-57. DOI:10.1038/nature17174
( ![]() |
[21] |
Stein L Y. Insights into the physiology of ammonia-oxidizing microorganisms[J]. Current Opinion in Chemical Biology, 2019, 49: 9-15. DOI:10.1016/j.cbpa.2018.09.003
( ![]() |
[22] |
Stein L Y. The long-term relationship between microbial metabolism and greenhouse gases[J]. Trends in Microbiology, 2020, 28(6): 500-511. DOI:10.1016/j.tim.2020.01.006
( ![]() |
[23] |
Caranto J D, Vilbert A C, Lancaster K M. Nitrosomonas europaea cytochrome P460 is a direct link between nitrification and nitrous oxide emission[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(51): 14704-14709. DOI:10.1073/pnas.1611051113
( ![]() |
[24] |
Kozlowski J A, Stieglmeier M, Schleper C, et al. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota[J]. The ISME Journal, 2016, 10(8): 1836-1845. DOI:10.1038/ismej.2016.2
( ![]() |
[25] |
Stieglmeier M, Mooshammer M, Kitzler B, et al. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea[J]. The ISME Journal, 2014, 8(5): 1135-1146. DOI:10.1038/ismej.2013.220
( ![]() |
[26] |
Jung M Y, Gwak J H, Rohe L, et al. Indications for enzymatic denitrification to N2O at low pH in an ammonia-oxidizing archaeon[J]. The ISME Journal, 2019, 13(10): 2633-2638. DOI:10.1038/s41396-019-0460-6
( ![]() |
[27] |
Han P, Wu D, Sun D, et al. N2O and NOy production by the comammox bacterium Nitrospira inopinata in comparison with canonical ammonia oxidizers[J]. Water Research, 2021, 190: 116728. DOI:10.1016/j.watres.2020.116728
( ![]() |
[28] |
Zumft W G. Cell biology and molecular basis of denitrification[J]. Microbiology and Molecular Biology Reviews, 1997, 61(4): 533-616.
( ![]() |
[29] |
Philippot L, Andert J, Jones C M, et al. Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil[J]. Global Change Biology, 2011, 17(3): 1497-1504. DOI:10.1111/j.1365-2486.2010.02334.x
( ![]() |
[30] |
Jones C M, Spor A, Brennan F P, et al. Recently identified microbial guild mediates soil N2O sink capacity[J]. Nature Climate Change, 2014, 4(9): 801-805. DOI:10.1038/nclimate2301
( ![]() |
[31] |
Coby A J, Picardal F W. Inhibition of NO3- and NO2- reduction by microbial Fe(Ⅲ)reduction: Evidence of a reaction between NO2- and cell surface-bound Fe2+[J]. Applied and Environmental Microbiology, 2005, 71(9): 5267-5274. DOI:10.1128/AEM.71.9.5267-5274.2005
( ![]() |
[32] |
Cavigelli M A, Robertson G P. Role of denitrifier diversity in rates of nitrous oxide consumption in a terrestrial ecosystem[J]. Soil Biology and Biochemistry, 2001, 33(3): 297-310. DOI:10.1016/S0038-0717(00)00141-3
( ![]() |
[33] |
Graf D R, Jones C M, Hallin S. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions[J]. PLoS One, 2014, 9(12): e114118. DOI:10.1371/journal.pone.0114118
( ![]() |
[34] |
Hallin S, Philippot L, Löffler F E, et al. Genomics and ecology of novel N2O-reducing microorganisms[J]. Trends in Microbiology, 2018, 26(1): 43-55. DOI:10.1016/j.tim.2017.07.003
( ![]() |
[35] |
Jones C M, Graf D R H, Bru D, et al. The unaccounted yet abundant nitrous oxide-reducing microbial community: A potential nitrous oxide sink[J]. The ISME Journal, 2013, 7(2): 417-426. DOI:10.1038/ismej.2012.125
( ![]() |
[36] |
Shan J, Sanford R A, Chee-Sanford J, et al. Beyond denitrification: The role of microbial diversity in controlling nitrous oxide reduction and soil nitrous oxide emissions[J]. Global Change Biology, 2021, 27(12): 2669-2683. DOI:10.1111/gcb.15545
( ![]() |
[37] |
Juhanson J, Hallin S, Söderström M, et al. Spatial and phyloecological analyses of nosZ genes underscore niche differentiation amongst terrestrial N2O reducing communities[J]. Soil Biology and Biochemistry, 2017, 115: 82-91. DOI:10.1016/j.soilbio.2017.08.013
( ![]() |
[38] |
Graf D R H, Zhao M, Jones C M, et al. Soil type overrides plant effect on genetic and enzymatic N2O production potential in arable soils[J]. Soil Biology and Biochemistry, 2016, 100: 125-128. DOI:10.1016/j.soilbio.2016.06.006
( ![]() |
[39] |
Ashida N, Ishii S, Hayano S, et al. Isolation of functional single cells from environments using a micromanipulator: Application to study denitrifying bacteria[J]. Applied Microbiology and Biotechnology, 2010, 85(4): 1211-1217. DOI:10.1007/s00253-009-2330-z
( ![]() |
[40] |
Ishii S, Ohno H, Tsuboi M, et al. Identification and isolation of active N2O reducers in rice paddy soil[J]. The ISME Journal, 2011, 5(12): 1936-1945. DOI:10.1038/ismej.2011.69
( ![]() |
[41] |
Tago K, Ishii S, Nishizawa T, et al. Phylogenetic and functional diversity of denitrifying bacteria isolated from various rice paddy and rice-soybean rotation fields[J]. Microbes and Environments, 2011, 26(1): 30-35. DOI:10.1264/jsme2.ME10167
( ![]() |
[42] |
Gao N, Shen W, Nishizawa T, et al. Genome sequences of two Azospirillum sp. Strains, TSA2S and TSH100, plant growth-promoting rhizobacteria with N2O mitigation abilities[J]. Microbiology Resource Announcements, 2019, 8(32): e00459-00419.
( ![]() |
[43] |
Gao N, Zhou C, Shen W, et al. Genome sequence of Novoherbaspirillum sp. UKPF54, a plant growth-promoting rhizobacterial strain with N2O-mitigating abilities, isolated from paddy soil[J]. Microbiology Resource Announcements, 2020, 9(3): e00999-00919.
( ![]() |
[44] |
Sameshima-Saito R, Chiba K, Minamisawa K. Correlation of denitrifying capability with the existence of nap, nir, nor and nos genes in diverse strains of soybean bradyrhizobia[J]. Microbes and Environments, 2006, 21(3): 174-184. DOI:10.1264/jsme2.21.174
( ![]() |
[45] |
Liu C M, Sheng R, Liu Y, et al. Capability of N2O reduction of a facultative N2O reducer (In Chinese)[J]. Acta Microbiologica Sinica, 2018, 58(8): 1431-1438. [刘春梅, 盛荣, 刘毅, 等. 一株兼性氧化亚氮还原菌的还原N2O能力[J]. 微生物学报, 2018, 58(8): 1431-1438.]
( ![]() |
[46] |
Domeignoz-Horta L A, Putz M, Spor A, et al. Non-denitrifying nitrous oxide-reducing bacteria - An effective N2O sink in soil[J]. Soil Biology and Biochemistry, 2016, 103: 376-379. DOI:10.1016/j.soilbio.2016.09.010
( ![]() |
[47] |
Bakken L R, Frostegård Å. Emerging options for mitigating N2O emissions from food production by manipulating the soil microbiota[J]. Current Opinion in Environmental Sustainability, 2020, 47: 89-94. DOI:10.1016/j.cosust.2020.08.010
( ![]() |
[48] |
Wu S, Zhuang G, Bai Z, et al. Mitigation of nitrous oxide emissions from acidic soils by Bacillus amyloliquefaciens, a plant growth-promoting bacterium[J]. Global Change Biology, 2018, 24(6): 2352-2365. DOI:10.1111/gcb.14025
( ![]() |
[49] |
Xu S, Feng S, Sun H, et al. Linking N2O emissions from biofertilizer-amended soil of tea plantations to the abundance and structure of N2O-reducing microbial communities[J]. Environmental Science & Technology, 2018, 52(19): 11338-11345.
( ![]() |
[50] |
Calvo P, Watts D B, Kloepper J W, et al. The influence of microbial-based inoculants on N2O emissions from soil planted with corn(Zea mays L.)under greenhouse conditions with different nitrogen fertilizer regimens[J]. Canadian Journal of Microbiology, 2016, 62(12): 1041-1056. DOI:10.1139/cjm-2016-0122
( ![]() |
[51] |
Xu S, Fu X, Ma S, et al. Mitigating nitrous oxide emissions from tea field soil using bioaugmentation with a Trichoderma viride biofertilizer[J]. The Scientific World Journal, 2014, 2014: 793752.
( ![]() |
[52] |
Akiyama H, Hoshino Y T, Itakura M, et al. Mitigation of soil N2O emission by inoculation with a mixed culture of indigenous Bradyrhizobium diazoefficiens[J]. Scientific Reports, 2016, 6: 32869. DOI:10.1038/srep32869
( ![]() |
[53] |
Grave R A, Nicoloso R d S, Cassol P C, et al. Determining the effects of tillage and nitrogen sources on soil N2O emission[J]. Soil and Tillage Research, 2018, 175: 1-12. DOI:10.1016/j.still.2017.08.011
( ![]() |
[54] |
Vázquez E, Teutscherova N, Pastorelli R, et al. Liming reduces N2O emissions from Mediterranean soil after-rewetting and affects the size, structure and transcription of microbial communities[J]. Soil Biology and Biochemistry, 2020, 147: 107839. DOI:10.1016/j.soilbio.2020.107839
( ![]() |
[55] |
Harter J, Krause H M, Schuettler S, et al. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community[J]. The ISME Journal, 2014, 8(3): 660-674. DOI:10.1038/ismej.2013.160
( ![]() |
[56] |
Calvo P, Watts D B, Ames R N, et al. Microbial-based inoculants impact nitrous oxide emissions from an incubated soil medium containing urea fertilizers[J]. Journal of Environmental Quality, 2013, 42(3): 704-712. DOI:10.2134/jeq2012.0300
( ![]() |
[57] |
Chaabouni I, Guesmi A, Cherif A. Secondary metabolites of Bacillus: Potentials in biotechnology //Sansinenea E. Bacillus thuringiensis biotechnology[M]. Dordrecht: Springer Netherlands, 2012: 347—366
( ![]() |
[58] |
Alfano G, Ivey M L, Cakir C, et al. Systemic modulation of gene expression in tomato by Trichoderma hamatum 382[J]. Phytopathology, 2007, 97(4): 429-437. DOI:10.1094/PHYTO-97-4-0429
( ![]() |
[59] |
Felgate H, Giannopoulos G, Sullivan M J, et al. The impact of copper, nitrate and carbon status on the emission of nitrous oxide by two species of bacteria with biochemically distinct denitrification pathways[J]. Environmental Microbiology, 2012, 14(7): 1788-1800. DOI:10.1111/j.1462-2920.2012.02789.x
( ![]() |
[60] |
Sui W K, Li J, Wu X G, et al. Microbial mechanism of sulfide inhibiting N2O reduction during denitrification in fluvo-aquic soil (In Chinese)[J]. Microbiology China, 2020, 47(10): 3114-3125. [隋维康, 李冀, 吴晓刚, 等. 硫化物抑制潮土反硝化过程中氧化亚氮还原的菌群机制[J]. 微生物学通报, 2020, 47(10): 3114-3125.]
( ![]() |
[61] |
Cleemput O v. Subsoils: chemo-and biological denitrification, N2O and N2 emissions[J]. Nutrient Cycling in Agroecosystems, 1998, 52: 187-194. DOI:10.1023/A:1009728125678
( ![]() |
[62] |
Senbayram M, Chen R, Budai A, et al. N2O emission and the N2O/(N2O+N2)product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations[J]. Agriculture, Ecosystems & Environment, 2012, 147: 4-12.
( ![]() |
[63] |
Highton M P, Bakken L R, Dörsch P, et al. Soil N2O emission potential falls along a denitrification phenotype gradient linked to differences in microbiome, rainfall and carbon availability[J]. Soil Biology and Biochemistry,, 2020, 150: 108004. DOI:10.1016/j.soilbio.2020.108004
( ![]() |
[64] |
Pan Y, Ni B J, Bond P L, et al. Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment[J]. Water Research, 2013, 47(10): 3273-3281. DOI:10.1016/j.watres.2013.02.054
( ![]() |
[65] |
Xu Z, Dai X, Chai X. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes[J]. The Science of the Total Environment, 2018, 634: 195-204. DOI:10.1016/j.scitotenv.2018.03.348
( ![]() |
[66] |
Chapuis-Lardy L, Wrage N, Metay A, et al. Soils, a sink for N2O? A review[J]. Global Change Biology, 2007, 13(1): 1-17. DOI:10.1111/j.1365-2486.2006.01280.x
( ![]() |
[67] |
Morley N, Baggs E M, Dörsch P, et al. Production of NO, N2O and N2 by extracted soil bacteria, regulation by NO2- and O2 concentrations[J]. FEMS Microbiology Ecology, 2008, 65(1): 102-112. DOI:10.1111/j.1574-6941.2008.00495.x
( ![]() |
[68] |
Hu H W, Macdonald C A, Trivedi P, et al. Water addition regulates the metabolic activity of ammonia oxidizers responding to environmental perturbations in dry subhumid ecosystems[J]. Environmental Microbiology, 2015, 17(2): 444-461. DOI:10.1111/1462-2920.12481
( ![]() |
[69] |
Bakken L R, Bergaust L, Liu B, et al. Regulation of denitrification at the cellular level: a clue to the understanding of N2O emissions from soils[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2012, 367(1593): 1226-1234. DOI:10.1098/rstb.2011.0321
( ![]() |
[70] |
Pomowski A, Zumft W G, Kroneck P M, et al. N2O binding at a[4Cu: 2S]copper-sulphur cluster in nitrous oxide reductase[J]. Nature, 2011, 477(7363): 234-237. DOI:10.1038/nature10332
( ![]() |
[71] |
Sullivan M J, Gates A J, Appia-Ayme C, et al. Copper control of bacterial nitrous oxide emission and its impact on vitamin B12-dependent metabolism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(49): 19926-19931. DOI:10.1073/pnas.1314529110
( ![]() |
[72] |
Shen W S, Xue H W, Gao N, et al. Effects of copper on nitrous oxide(N2O)reduction in denitrifiers and N2O emissions from agricultural soils[J]. Biology and Fertility of Soils, 2020, 56(1): 39-51. DOI:10.1007/s00374-019-01399-y
( ![]() |
[73] |
Sheth R U, Cabral V, Chen S P, et al. Manipulating bacterial communities by in situ microbiome engineering[J]. Trends in Genetics, 2016, 32(4): 189-200. DOI:10.1016/j.tig.2016.01.005
( ![]() |
[74] |
Bogino P, Banchio E, Bonfiglio C, et al. Competitiveness of a Bradyrhizobium sp. strain in soils containing indigenous rhizobia[J]. Current Microbiology, 2008, 56(1): 66-72. DOI:10.1007/s00284-007-9041-4
( ![]() |
[75] |
Schumpp O, Deakin W J. How inefficient rhizobia prolong their existence within nodules[J]. Trends in Plant Science, 2010, 15(4): 189-195. DOI:10.1016/j.tplants.2010.01.001
( ![]() |
[76] |
Thomson A J, Giannopoulos G, Pretty J, et al. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2012, 367(1593): 1157-1168. DOI:10.1098/rstb.2011.0415
( ![]() |
[77] |
van Opijnen T, Camilli A. Transposon insertion sequencing: A new tool for systems-level analysis of microorganisms[J]. Nature Reviews Microbiology, 2013, 11(7): 435-442. DOI:10.1038/nrmicro3033
( ![]() |
[78] |
Yaung S J, Deng L, Li N, et al. Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics[J]. Molecular Systems Biology, 2015, 11(3): 788. DOI:10.15252/msb.20145866
( ![]() |
[79] |
Boon N, De Gelder L, Lievens H, et al. Bioaugmenting bioreactors for the continuous removal of 3-chloroaniline by a slow release approach[J]. Environmental Science & Technology, 2002, 36(21): 4698-4704.
( ![]() |