2. 湖北省烟草科学研究院, 武汉 430030;
3. 土肥资源高效利用国家工程实验室(山东农业大学资源与环境学院), 山东泰安 271018
2. Hubei Academy of Tobacco Science, Wuhan 430030, China;
3. National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
土壤的自然酸化过程极其缓慢,在自然条件下,土壤pH下降1个单位需上百万年[1]。然而,近年来由于酸沉降、过量氮肥施用等因素,导致我国农田土壤酸化速度大大加快[2-3]。研究[4]表明,1980年至2010年期间,我国农田耕层土壤pH平均下降0.5个pH单位,其中经济作物(如蔬菜、果木、茶叶、棉花等)土壤pH下降0.30~0.80个单位,粮食作物(如小麦、玉米、水稻等)土壤pH下降0.13~0.76个单位。可见,种植经济作物的土壤酸化幅度显著高于粮食作物。烟草(Nicotiana tabacum)是我国重要的经济作物之一,长期植烟土壤同样也呈现出明显的酸化趋势。Zhang等[5]对重庆市长期植烟土壤的性质比较研究发现,连续种植烟草10年后,土壤pH平均下降0.2个单位,土壤交换性盐基阳离子平均下降27.6%。随着土壤酸化程度加深,土壤酸害、铝毒、养分匮乏等因素严重限制了烟草等农作物生长。此外,土壤酸化也是诱发烟草青枯病爆发的主要因素之一[6-7]。烟田土壤酸化严重影响烤烟产量与品质。
土壤酸化速度主要取决于外源酸输入量和土壤自身抗酸化能力。当等量外源酸输入土壤时,土壤自身抗酸化能力越强,土壤pH降低幅度越小[8-9]。土壤自身抗酸化能力与土壤中酸缓冲物质的种类和含量密切相关。土壤主要酸碱缓冲体系可大体分为碳酸盐(pH 6.2~8.6)、硅酸盐(pH > 5.0)、阳离子交换(pH 4.2~5.0)及铝(pH < 4.2)、铁(pH < 3.8)缓冲体系[10]。土壤母质类型和初始土壤pH可通过影响土壤酸缓冲物质组成影响土壤酸缓冲性能。不同母质发育土壤黏粒含量、矿物组成、阳离子交换量(CEC)、有机质等理化性质不同,从而影响土壤的缓冲性能和酸化进程[11-12]。研究[8]表明,红砂岩发育红壤的缓冲容量显著低于第四纪红黏土、花岗岩、玄武岩发育的红壤、赤红壤和砖红壤。红砂岩母质发育的表层水稻土酸缓冲容量较河流冲积物母质发育的水稻土低26.8%[9]。红砂岩母质发育的土壤黏粒含量、CEC以及有机质含量通常较低,缺少缓冲物质,抗酸化能力较弱。目前这方面研究主要集中于我国南方酸性红壤区,而对于酸化问题广泛存在的西南山地土壤关注较少。山地土壤成土母质复杂多样,在短距离内即可分布多种不同母质发育的土壤类型。科学评估不同成土母质发育山地土壤的抗酸化能力,对山地土壤酸化阻控和科学管理具有重要实际意义。
本研究以武陵秦巴生态区典型成土母质发育的烟田土壤为研究对象,分析比较不同成土母质对该地区土壤缓冲性能的影响,进一步通过模拟酸化实验,评估不同母质发育烟田土壤的潜在酸化风险,以期为山地烟田土壤酸化的分类调控和科学管理提供理论依据和技术支撑。
1 材料与方法 1.1 供试土壤供试土壤为武陵秦巴山区不同母质发育的烟田土壤,采集0~20 cm表层土壤用于本研究。黄棕壤分别发育自碳酸盐岩、硅质岩和泥质岩三类成土母质,黄壤分别发育自石灰岩和石英岩母质。土壤初始pH范围在4.5~7.0之间。土样经自然风干后,磨细分别过2 mm和0.25 mm孔径筛,用以测定土壤基本理化性质和模拟酸化实验,12种供试土壤的采样位置信息与基本性质分别列于表 1和表 2。
![]() |
表 1 采样点基本概况 Table 1 The basic information of soil sampling sites |
![]() |
表 2 不同母质发育黄棕壤和黄壤的基本理化性质 Table 2 Basic properties of the yellow-brown soils and yellow soils derived from different parent materials |
土壤pH利用复合pH电极通过Orion pH计(Thermo Scientific Orion Star A211,美国)在土水比为1︰2.5条件下测定。
土壤交换性酸(H+和Al3+)通过1 mol·L–1氯化钾溶液淋洗提取,再用0.01 mol·L–1 NaOH滴定测得。土壤交换性盐基阳离子(K+、Na+、Ca2+和Mg2+)通过1 mol·L–1乙酸铵溶液浸提,提取液中K+和Na+用火焰光度计(Sherwood M410,Sherwood Scientific Ltd,Cambridge,英国)测定,Ca2+和Mg2+用原子吸收光谱仪(nov AA350,Analytik,Jena AG,德国)测定。
土壤CEC采用醋酸铵法测定(pH=7.0),有机质通过重铬酸钾法测定,碳酸盐含量通过气量法测定[13]。X射线衍射仪(XRD,Model ULTIMA Ⅳ,Rigaku,日本)对过0.075 mm筛的土壤样品直接测定以确定土壤矿物组成,矿物百分比含量通过分析样品中矿物的最强衍射峰与标准矿物最强衍射峰比值求得[14]。土壤颗粒粒径分布用激光粒度分析仪(LS13320,Beckman Coulter Inc.,Fullerton,CA,美国)测定[15],计算获得黏粒(< 2 μm)、粉粒(2~20 μm)和砂砾(> 20 μm)各粒级含量,确定土壤机械组成。
土壤pH缓冲容量(pHBC)指单位质量土壤pH升高或降低1个单位所需的酸或碱量,通过酸碱滴定法测定,以pH 4.0~7.0区间内滴定曲线的斜率作为土壤pH缓冲容量[16-17]。具体操作如下:在聚乙烯离心管中加入4.00 g土样,添加20 mL不同浓度梯度的HCl或NaOH溶液。酸碱溶液的浓度梯度设置为0~100 mmol·L–1,为保证酸碱滴定曲线位于pH 4.0~7.0之间,酸碱添加量根据土壤初始pH调整。0.01 mol·L–1 CaCl2作为不同酸碱溶液的背景浓度,以减小土壤离子强度变异。向各离心管中添加0.25 mL的氯仿以抑制微生物活动干扰。悬液在25℃下振荡24 h,平衡6 d,每天振荡2 min。结束后测定悬液pH,获得滴定曲线,计算土壤pH缓冲容量。
1.3 模拟酸化实验称取4.00 g过0.25 mm筛的风干土壤样品于已称重的塑料离心管中,添加20 mL不同浓度梯度的HNO3溶液(0~100 mmol·L–1),200 r·min–1振荡24 h后静置6 d,期间每天振荡2 h。各处理重复三次。反应结束后利用Orion pH计和玻璃电极与双盐桥(LiCl)甘汞参比电极测定悬液pH[18]。通过4 500 r·min–1离心5 min分离土壤固相与上清液,上清液过0.45 μm滤膜,通过电感耦合等离子体发射光谱仪(ICP-AES,Optima 8000 DV,PerkinElmer,美国)测定溶液铝含量。将装有残留土壤的离心管称量后,于45℃烘干,再次称量,计算残留溶液和土壤固相质量。烘干后的土样磨细过0.25 mm孔筛,通过1 mol·L–1 KCl溶液淋洗,NaOH滴定法测定交换性酸(H+和1/3 Al3+)含量。
1.4 数据分析采用SPSS 20.0软件进行统计分析。采用单因素方差分析(AVOVA)不同处理之间的差异性,并通过最小显著差异(LSD)法检验差异的显著性(P < 0.05)。
2 结果与讨论 2.1 不同母质发育土壤的酸缓冲容量差异土壤酸缓冲容量(pHBC)是衡量土壤缓冲性能的关键指标。由图 1可见,不同初始土壤pH、不同成土母质发育的黄壤和黄棕壤的pHBC表现出显著差异。这是由于成土母质类型和土壤初始pH状态决定了土壤中缓冲物质的组成。中性土壤中含有较多缓冲物质,如碳酸盐等。随着土壤酸化,土壤中酸缓冲物质被消耗,缓冲性能减弱[5]。因此,初始pH低的黄壤和黄棕壤酸缓冲容量低于初始pH高的土壤(图 1)。
![]() |
注:图中不同小写字母表示不同土壤间差异显著(P < 0.05)。Note:The different letters mean the significant differences among different soils(P < 0.05). ① Carbonate rock parent material,② Siliceous rock parent material,③ Pelite parent material,④ Limestone parent material,⑤ Quartzite parent material. 图 1 不同母质发育黄棕壤与黄壤的土壤酸缓冲容量(pHBC) Fig. 1 The pH buffering capacity(pHBC)of yellow-brown soils and yellow soils derived from different parent materials |
在中性土壤中,土壤酸缓冲容量大小随土壤碳酸盐含量增加而增加(图 1和表 2)。土壤酸缓冲容量大小整体呈现碳酸盐类母质发育土壤高于硅质岩母质发育土壤(图 1)。碳酸盐类母质中含有丰富的方解石、白云石等碳酸盐矿物,在土壤发生过程中母质中的碳酸盐类物质残留于土壤。例如,石灰岩母质发育黄壤pHBC远高于其他母质发育土壤,其碳酸盐含量高达21.14 g·kg–1,XRD结果显示其矿物组成中含有一定量的方解石(表 3)。当土壤发生酸化时,碳酸盐类物质与质子发生中和反应,维持土壤pH稳定。
![]() |
表 3 土壤的矿物组成 Table 3 Mineral composition of the soil/% |
在酸性黄棕壤和黄壤中,碳酸盐含量极低(表 2),硅酸盐矿物和交换性盐基阳离子成为土壤中主要的缓冲物质[10]。土壤pHBC则与CEC呈显著正相关(R2=0.981,P < 0.01),与我国酸性红壤、紫色土以及澳大利亚酸性土壤具有相似的变化规律[16,19-20]。土壤CEC越高,表明土壤具有更多的盐基阳离子交换位点,可与质子发生交换反应,缓冲质子输入对土壤酸化的影响。比较发现,硅质岩发育土壤CEC和pHBC均高于碳酸盐类母质发育土壤(图 1)。土壤黏粒和有机质是土壤交换性位点的重要来源。通常土壤黏粒含量和有机质含量越高,土壤CEC越高。硅质岩发育黄棕壤有机质含量显著高于碳酸盐岩母质发育黄棕壤(表 2),这可能是由于其海拔高度在1 300 m左右,高于碳酸盐岩母质黄棕壤(约1 000 m),年均温较低,有利于土壤有机质积累[21]。石英岩和石灰岩发育黄壤海拔高度相近,土壤有机质含量无显著差异,但石英岩黄壤黏粒含量较石灰岩发育黄壤高33%(表 2),蛭石、水云母、高岭石等黏土矿物含量高于石灰岩黄壤(表 3),因此其CEC显著高于石灰岩发育黄壤,土壤缓冲性能较强。由于泥质岩发育的酸性黄棕壤中黏粒和有机质含量均远远低于其他母质发育土壤,导致其酸缓冲容量最低(11.79 mmol·kg–1·pH–1),仅为硅质岩发育酸性黄棕壤pHBC的26%,表明其对外源酸输入极度敏感,潜在酸化风险高。
2.2 不同母质发育土壤的模拟酸化过程通过添加不同浓度梯度HNO3溶液模拟比较不同母质发育土壤的人为酸化过程。结果表明,不同土壤酸化过程中pH下降速度与土壤的酸缓冲容量大小恰恰相反(图 1,图 2,图 3)。在pH 6.5的黄棕壤中,碳酸盐岩发育黄棕壤随外源酸输入pH下降最慢,其次为硅质岩发育黄棕壤,泥质岩发育黄棕壤pH下降最快。在三种pH 5.0的黄棕壤中,pH下降速度由低到高依次为:硅质岩母质黄棕壤、碳酸盐岩母质黄棕壤、泥质岩母质黄棕壤(图 2)。
![]() |
图 2 不同母质发育黄棕壤模拟酸化过程中土壤pH的变化(a. 初始pH≈6.5黄棕壤;b. 初始pH≈5.0黄棕壤) Fig. 2 Soil pH change trends of yellow-brown soils derived from different parent materials with increasing HNO3 addition(a. Yellow-brown soil with initial pH≈6.5;b. Yellow-brown soil with initial pH≈5.0) |
![]() |
图 3 不同母质发育黄壤模拟酸化过程中土壤pH的变化(a. 初始pH≈7.5黄壤;b. 初始pH≈5.5黄壤;c. 初始pH≈4.5黄壤) Fig. 3 Soil pH change trends of yellow soils derived from different parent materials with increasing HNO3 addition(a. Yellow soil with initial pH≈7.5;b. Yellow soil with initial pH≈5.5;c. Yellow soil with initial pH≈4.5) |
在pH 7.5的黄壤中,石灰岩发育黄壤pH降低速度明显慢于石英岩发育的黄壤(图 3a),尤其是在pH > 6.0区间内。两种土壤的pH变化过程明显分为两个阶段:在酸化初期pH下降缓慢;当pH < 6.0以后,土壤pH快速下降。这也说明在pH > 6.0时,石灰岩母质发育黄壤中的碳酸盐物质发挥主要的缓冲作用。由于石灰岩黄壤中含有更多碳酸盐,因此在缓慢下降阶段能够消耗更多外源酸。初始pH 5.5的石灰岩黄壤pH降低速度慢于石英岩黄壤(图 3b)。一方面是由于该石灰岩发育黄壤pH较高,尚残存少许碳酸盐类物质,起到缓冲外源酸的作用;另一方面,石灰岩发育的黄壤中有机质含量较石英岩发育黄壤高80%以上,可通过有机阴离子的质子化作用消耗部分外源酸[22]。在pH 4.5的黄壤中,石灰岩发育黄壤的酸化速度则略快于石英岩母质黄壤(图 3c)。此时,土壤中的缓冲物质主要是交换性盐基阳离子。石英岩母质发育土壤黏粒含量略高于石灰岩母质发育黄壤,可提供更多消耗质子的盐基阳离子交换位点,减缓土壤pH降低。
所有供试土壤中,由于泥质岩母质发育的黄棕壤中碳酸盐物质、有机质、黏粒矿物等缓冲物质含量较低,其酸化速度快,对外源酸最敏感。当外源质子输入量为15 mmol·L–1时,泥质岩发育中性黄棕壤pH分别较硅质岩和碳酸盐岩母质发育中性黄棕壤低0.36和1.26个pH单位(图 2a);当外源质子输入量为6 mmol·L–1时,泥质岩发育酸性黄棕壤pH分别较硅质岩和碳酸盐岩母质发育酸性黄棕壤低1.10和0.74个pH单位(图 2b)。
2.3 不同母质发育土壤在酸化过程中固相铝的释放铝(Al)是土壤中最丰富的金属元素,通常以无毒的铝硅酸盐矿物和铝(氢)氧化物等非活性Al形式存在。当土壤发生酸化时,土壤固相铝溶出造成植物铝毒害[23]。如图 4所示,随外源酸输入,土壤溶液Al浓度呈指数增加。土壤pH > 5.0时,溶液Al浓度较低,土壤pH < 5.0时,溶液Al浓度快速增加(图 4和图 5)。在酸性条件下,土壤溶液Al以Al3+为主,其浓度与土壤pH呈指数关系[18,24]。在初始pH 6.5的三种黄棕壤中,添加等量酸的情况下,泥质岩黄棕壤中溶液Al浓度最高,其次为硅质岩黄棕壤,碳酸盐岩黄棕壤中溶液Al含量最低。初始pH 5.0的三种黄棕壤中,土壤溶液Al随外源酸输入的增加速度由高到低依次为:泥质岩黄棕壤、硅质岩黄棕壤、碳酸盐岩黄棕壤。在初始pH > 5.5黄壤中,石英岩母质发育黄壤溶液Al浓度增加幅度均显著高于石灰岩母质黄壤。初始pH为4.5时,石灰岩母质发育黄壤较石英岩母质发育黄壤更易释放Al。土壤溶液Al增加趋势与土壤pH降低趋势一致(图 2和图 3)。酸缓冲容量高的土壤,外源酸输入时土壤pH下降缓慢,溶液Al增加相对较缓。比较初始pH不同的泥质岩发育黄棕壤发现,在等pH条件下,中性泥质岩黄棕壤溶液Al浓度显著高于弱酸性泥质岩发育黄棕壤。当土壤pH下降至4.0时,中性泥质岩黄棕壤中溶液Al浓度为酸性泥质岩黄棕壤的3.5倍。这可能与不同初始pH状态的泥质岩发育黄棕壤中控制Al溶解度的固相铝形态不同有关[25]。中性泥质岩黄棕壤中含有较多的黏土矿物,黏粒含量较高,有利于土壤矿物Al释放,而酸性泥质岩黄棕壤中绿泥石等矿物结晶度高,并以砂砾为主,土壤固相Al溶解度较低。由此可见,初始pH较高的泥质岩黄棕壤一旦发生酸化,将导致更多的固相铝释放至土壤溶液中,极易造成植物铝毒害,危害烟草等作物的生长。
![]() |
图 4 不同母质发育黄棕壤模拟酸化过程中溶液铝的变化(a. 初始pH≈6.5黄棕壤;b. 初始pH≈5.0黄棕壤) Fig. 4 Change trends of soluble Al in yellow-brown soils derived from different parent materials with increasing HNO3 addition(a. Yellow-brown soil with initial pH≈6.5;b. Yellow-brown soil with initial pH≈5.0) |
![]() |
图 5 不同母质发育黄壤模拟酸化过程中溶液铝的变化(a. 初始pH≈7.5黄壤;b. 初始pH≈5.5黄壤;c. 初始pH≈4.5黄壤) Fig. 5 Change trends of soluble Al in yellow soils derived from different parent materials with increasing HNO3 addition(a. Yellow soil with initial pH≈7.5;b. Yellow soil with initial pH≈5.5;c. Yellow soil with initial pH≈4.5) |
土壤交换性铝通过静电作用吸附于土壤表面,是土壤酸度的主要组成部分,可快速释放进入土壤溶液,造成植物铝毒害。随外源酸输入,土壤交换性Al3+含量逐渐上升(图 6和图 7)。在不同母质发育土壤中,随外源酸输入,交换性铝的增加趋势存在显著差异。供试黄棕壤中,泥质岩发育黄棕壤交换性铝增加幅度明显大于相同初始pH水平的其他母质发育的土壤。当添加15 mmol·L–1 HNO3时,中性泥质岩发育黄棕壤交换性铝含量较硅质岩发育黄棕壤高36.5%,较碳酸盐岩发育黄棕壤高7.8倍。向弱酸性黄棕壤中添加6 mmol·L–1 HNO3时,泥质岩发育黄棕壤分别较碳酸盐岩母质和硅质岩母质发育黄棕壤高1.8倍和3.2倍(图 6)。高初始pH的黄棕壤和黄壤中,石英岩和硅质岩母质发育土壤交换性铝增加快于石灰岩和碳酸盐岩母质发育土壤。在酸性黄棕壤和黄壤中呈相反趋势。土壤交换性Al的增加与外源酸输入导致土壤pH下降趋势一致。土壤交换性铝含量与土壤pH呈指数相关[26-27]。在等量外源酸输入的情况下,酸缓冲能力强的土壤pH下降速度慢,土壤pH保持在较高水平,进而导致土壤交换性铝含量较低。
![]() |
图 6 不同母质发育黄棕壤模拟酸化过程中交换性铝的变化(a. 初始pH≈6.5黄棕壤;b. 初始pH≈5.0黄棕壤) Fig. 6 Change trends of exchangeable Al3+ in yellow-brown soils derived from different parent materials with increasing HNO3 addition(a. Yellow-brown soil with initial pH≈6.5;b. Yellow-brown soil with initial pH≈5.0) |
![]() |
图 7 不同母质发育黄壤模拟酸化过程中交换性铝的变化(a. 初始pH≈7.5黄壤;b. 初始pH≈5.5黄壤;c. 初始pH≈4.5黄壤) Fig. 7 Change trends of exchangeable Al3+ in yellow soils derived from different parent materials with increasing HNO3 addition(a. Yellow soil with initial pH≈7.5;b. Yellow soil with initial pH≈5.5;c. Yellow soil with initial pH≈4.5) |
不同母质发育黄壤和黄棕壤的抗酸化能力存在显著差异,导致土壤酸化趋势不同。在初始pH较高的黄壤和黄棕壤中,碳酸盐类物质起主要的酸缓冲作用。碳酸盐类母质发育土壤中碳酸盐含量高,土壤抗酸化能力强,土壤pH随外源酸输入下降缓慢,土壤溶液铝和交换性Al3+升高趋势较缓。在pH < 5.0的黄壤和黄棕壤中,交换性盐基阳离子起到主要的酸缓冲作用。在这一pH条件下,碳酸盐类母质发育土壤相较于硅质岩/石英岩母质土壤缓冲性能弱,对外源酸输入更为敏感,易形成土壤活性铝,造成植物铝毒害。所有供试土壤中,泥质岩发育黄棕壤缓冲物质含量最低,酸缓冲性能差,随外源酸输入极易发生土壤酸化并释放大量活性铝,亟需加强对该类土壤酸化趋势的监测,同时采取有效措施提高土壤自身抗酸化能力,降低这类土壤的酸化风险。
[1] |
Jiang J, Xu R K, Zhao A Z. Surface chemical properties and pedogenesis of tropical soils derived from basalts with different ages in Hainan, China[J]. Catena, 2011, 87(3): 334-340. DOI:10.1016/j.catena.2011.06.016
( ![]() |
[2] |
Xu R K, Li J Y, Zhou S W, et al. Scientific issues and controlling strategies of soil acidification of croplands in China (In Chinese)[J]. Bulletin of Chinese Academy of Sciences, 2018, 33: 160-167. [徐仁扣, 李九玉, 周世伟, 等. 我国农田土壤酸化调控的科学问题与技术措施[J]. 中国科学院院刊, 2018, 33: 160-167.]
( ![]() |
[3] |
Hao T X, Zhu Q C, Zeng M F, et al. Quantification of the contribution of nitrogen fertilization and crop harvesting to soil acidification in a wheat-maize double cropping system[J]. Plant and Soil, 2019, 434(1/2): 167-184.
( ![]() |
[4] |
Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010. DOI:10.1126/science.1182570
( ![]() |
[5] |
Zhang Y T, He X H, Liang H, et al. Long-term tobacco plantation induces soil acidification and soil base cation loss[J]. Environmental Science and Pollution Research, 2016, 23(6): 5442-5450. DOI:10.1007/s11356-015-5673-2
( ![]() |
[6] |
Li S L, Liu Y Q, Wang J, et al. Soil acidification aggravates the occurrence of bacterial wilt in South China[J]. Frontiers in Microbiology, 2017, 8: 703. DOI:10.3389/fmicb.2017.00703
( ![]() |
[7] |
Wang H C, Yu J, Cai L T, et al. Effect of temperature, relative humidity, inoculum amount and pH on pathogenicity of ralstonia solanacearum on tobacco (In Chinese)[J]. Chinese Tobacco Science, 2017, 38(5): 8-12. [汪汉成, 余婧, 蔡刘体, 等. 温度、湿度、接菌量及pH对烟草青枯病菌致病力的影响[J]. 中国烟草科学, 2017, 38(5): 8-12.]
( ![]() |
[8] |
Shi R Y, Li J Y, Jiang J, et al. Incorporation of corn straw biochar inhibited the re-acidification of four acidic soils derived from different parent materials[J]. Environmental Science and Pollution Research, 2018, 25(10): 9662-9672. DOI:10.1007/s11356-018-1289-7
( ![]() |
[9] |
Tang X, Cai Z J, Xu M G, et al. Research on buffering capacity and acidification rate of paddy soil profiles in Yujiang County (In Chinese)[J]. Journal of Agricultural Resources and Environment, 2019, 36(6): 774-782. [唐贤, 蔡泽江, 徐明岗, 等. 余江县水稻土剖面酸缓冲性能与酸化速率[J]. 农业资源与环境学报, 2019, 36(6): 774-782.]
( ![]() |
[10] |
Ulrich B. Natural and anthropogenic components of soil acidification[J]. Journal of Plant Nutrition and Soil Science, 1986, 149(6): 702-717.
( ![]() |
[11] |
Zhao K L, Wang B R, Xu M G, et al. Changes in pH with depths of soils derived from different parent materials and analysis of acidification in Southern China (In Chinese)[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(8): 1308-1315. [赵凯丽, 王伯仁, 徐明岗, 等. 我国南方不同母质土壤pH剖面特征及酸化因素分析[J]. 植物营养与肥料学报, 2019, 25(8): 1308-1315.]
( ![]() |
[12] |
Fujii K, Kanetani S, Tetsuka K. Effects of volcanic parent materials on the acid buffering capacity of forest soils on Yakushima Island, Japan[J]. Soil Science and Plant Nutrition, 2020, 66(5): 680-692. DOI:10.1080/00380768.2020.1812363
( ![]() |
[13] |
Lu R K. Analytical methods for soil and agro-chemistry (In Chinese). Beijing: China Agricultural Science and Technology Press, 2000. [鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科学技术出版社, 2000.]
( ![]() |
[14] |
Zhao Y, Yang J L, Dong Y, et al. Stoichiometry of soil mineral weathering in intensely weathered soil as leached by simulated acid rain (In Chinese)[J]. Acta Pedologica Sinica, 2019, 56(2): 310-319. [赵越, 杨金玲, 董岳, 等. 模拟酸雨淋溶下强风化土壤矿物风化计量关系研究[J]. 土壤学报, 2019, 56(2): 310-319.]
( ![]() |
[15] |
Jiang J, Dai Z X, Sun R, et al. Evaluation of ferrolysis in arsenate adsorption on the paddy soil derived from an Oxisol[J]. Chemosphere, 2017, 179: 232-241.
( ![]() |
[16] |
Xu R K, Zhao A Z, Yuan J H, et al. pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars[J]. Journal of Soils and Sediments, 2012, 12(4): 494-502.
( ![]() |
[17] |
Liu L, Cheng Y Y, Li Z Y, et al. Influence of fitting method on the accuracy of measuring soil acid buffering capacity by acid-base titration (In Chinese)[J]. Acta Pedologica Sinica, 2022. DOI:10.11766/trxb202007230301 [刘莉, 程永毅, 李忠意, 等. 拟合方式对酸碱滴定法测定土壤酸缓冲容量准确性的影响[J]. 土壤学报, 2022.]
( ![]() |
[18] |
Xu R K, Ji G L. Effects of H2SO4 and HNO3 on soil acidification and aluminum speciation in variable and constant charge soils[J]. Water, Air, and Soil Pollution, 2001, 129(1/4): 33-43.
( ![]() |
[19] |
Liu L, Xie D T, Li Z Y, et al. Cations exchange and its effect on acid buffering capacity of acid purple soil (In Chinese)[J]. Acta Pedologica Sinica, 2020, 57(4): 887-897. [刘莉, 谢德体, 李忠意, 等. 酸性紫色土的阳离子交换特征及其对酸缓冲容量的影响[J]. 土壤学报, 2020, 57(4): 887-897.]
( ![]() |
[20] |
Nelson P N, Su N. Soil pH buffering capacity: A descriptive function and its application to some acidic tropical soils[J]. Soil Research, 2010, 48(3): 201-207.
( ![]() |
[21] |
Shang B, Zou Y, Xu Y M, et al. Relationship between SOM contents of tobacco fields and elevation and parent materials in central region of Guizhou Province (In Chinese)[J]. Soils, 2014, 46(3): 446-451. [尚斌, 邹焱, 徐宜民, 等. 贵州中部山区植烟土壤有机质含量与海拔和成土母质之间的关系[J]. 土壤, 2014, 46(3): 446-451.]
( ![]() |
[22] |
Shi R Y, Liu Z D., Li Y, et al. Mechanisms for increasing soil resistance to acidification by long-term manure application[J]. Soil and Tillage Research, 2019, 185: 77-84.
( ![]() |
[23] |
Yamamoto Y. Aluminum toxicity in plant cells: Mechanisms of cell death and inhibition of cell elongation[J]. Journal of Soil Science and Plant Nutrition, 2019, 65(1): 41-55.
( ![]() |
[24] |
Xu R K, Ji G L. Influence of pH on dissolution of aluminum in acid soils and the distribution of aluminum ion species (In Chinese)[J]. Acta Pedologica Sinica, 1998, 35(2): 162-171. [徐仁扣, 季国亮. pH对酸性土壤中铝的溶出和铝离子形态分布的影响[J]. 土壤学报, 1998, 35(2): 162-171.]
( ![]() |
[25] |
Shen R F. The behavior of aluminum in soil-plants and the adaptation mechanism of plants (In Chinese). Beijing: Science Press, 2008. [沈仁芳. 铝在土壤-植物中的行为及植物的适应机制[M]. 北京: 科学出版社, 2008.]
( ![]() |
[26] |
Yu T R, Ji G L, Ding C P, et al. Electrochemistry of variable charge soils (In Chinese). Beijing: Science Press, 1996. [于天仁, 季国亮, 丁昌璞, 等. 可变电荷土壤的电化学[M]. 北京: 科学出版社, 1996.]
( ![]() |
[27] |
Zhang Y P, Zong L G, Shi Y F. Effects of soil pH on characteristics of soil Al in tea plantations (In Chinese)[J]. Soils, 2019, 51(4): 746-751. [张艳萍, 宗良纲, 史艳芙. 茶园土壤pH变化对土壤中铝特性的影响[J]. 土壤, 2019, 51(4): 746-751.]
( ![]() |