检索项 检索词
  土壤学报  2023, Vol. 60 Issue (3): 716-725  DOI: 10.11766/trxb202108250452
0

引用本文  

朱爽阁, 张前前, 徐昕彤, 等. 田间老化生物质炭减缓稻麦轮作系统土壤N2O排放能力降低的机理. 土壤学报, 2023, 60(3): 716-725.
ZHU Shuangge, ZHANG Qianqian, XU Xintong, et al. Mechanisms of Diminishing Capacity for Mitigating Nitrous Oxide Emissions by Field-Aged Biochar in the Rice-Wheat Rotation Ecosystem. Acta Pedologica Sinica, 2023, 60(3): 716-725.

基金项目

国家自然科学基金项目(41977078)和江苏省研究生科研与实践创新计划(KYCX21_0618)资助

通讯作者Corresponding author

熊正琴, E-mail:zqxiong@njau.edu.cn

作者简介

朱爽阁(1996—),女,河南新乡人,硕士研究生,主要从事土壤碳氮循环研究。E-mail:2019103087@njau.edu.cn
田间老化生物质炭减缓稻麦轮作系统土壤N2O排放能力降低的机理
朱爽阁, 张前前, 徐昕彤, 毕瑞玉, 宋燕凤, 熊正琴    
南京农业大学资源与环境科学学院, 江苏省低碳农业与温室气体减排重点实验室, 南京 210095
摘要:生物质炭作为一种重要的土壤调节剂,在固碳减排尤其氧化亚氮(N2O)减排方面的作用日益突出。为明确生物质炭对田间N2O排放的持续效应及其作用机理,通过田间定位试验,分析稻麦轮作体系新鲜和田间不同时间老化生物质炭对N2O排放的影响。试验共设置5个处理,分别为CK(不施氮肥和生物质炭)、N(施氮肥)、NB0y(氮肥+新鲜生物质炭)、NB2y(氮肥+2年老化生物质炭)和NB5y(氮肥+5年老化生物质炭),动态监测稻麦轮作周期N2O排放,测定水稻和小麦收获后土壤理化性质和氮循环功能基因丰度。结果表明,生物质炭显著降低土壤N2O累积排放量32.4%~54.0%,且表现为NB0y > NB2y > NB5y。与N处理相比,NB0y、NB2y和NB5y处理显著提高土壤pH 0.6~1.2个单位、土壤有机碳含量21.4 %~58.6%、硝态氮($ {\text{NO}}_3^ - $-N)含量1.7%~31.3%,对土壤pH改善能力随着生物质炭老化而下降。生物质炭处理显著提高nosZ基因丰度54.9%~249.4%,土壤(nirS+nirK)/nosZ比值随着生物质炭老化而增加。相关性分析表明,土壤N2O累积排放量与pH呈显著负相关,与$ {\text{NO}}_3^ - $-N含量和amoA-AOB(氨氧化细菌)丰度呈显著正相关。因此,新鲜和田间不同时间老化生物质炭均能显著改善土壤理化特性,降低土壤N2O排放且新鲜生物质炭的作用效果优于老化生物质炭。土壤$ {\text{NO}}_3^ - $-N含量及(nirS+nirK)/nosZ比值的增加,是导致老化生物质炭减排N2O能力降低的主要原因。
关键词稻麦轮作系统    老化生物质炭    氧化亚氮(N2O)排放    
Mechanisms of Diminishing Capacity for Mitigating Nitrous Oxide Emissions by Field-Aged Biochar in the Rice-Wheat Rotation Ecosystem
ZHU Shuangge, ZHANG Qianqian, XU Xintong, BI Ruiyu, SONG Yanfeng, XIONG Zhengqin    
Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
Abstract: 【Objective】Biochar is an important soil amendment material, as it plays an increasingly prominent role in carbon sequestration and greenhouse gases mitigations, especially in nitrous oxide (N2O) mitigation. To investigate the effects and the mechanisms of the biochar aging process on soil N2O emissions under a rice-wheat rotation system, an in situ field experiment was conducted.【Method】Five treatments were established as follows: CK (without urea and biochar), N (urea), NB0y (urea with fresh biochar), NB2y (urea with 2-year aged biochar) and NB5y (urea with 5-year aged biochar). Soil N2O emission dynamics were monitored during rice and wheat annual rotation. Also, soil physicochemical characteristics and the abundance of relevant microbial functional genes during the N2O production process were determined after rice and wheat harvest.【Result】Biochar treatment significantly reduced the cumulative N2O emissions by 32.4% - 54.0%, with the reduction capacity following NB0y > NB2y > NB5y. Compared with the N treatment, NB0y, NB2y and NB5y treatment significantly increased soil pH by 0.6 - 1.2 units, soil$ {\text{NO}}_3^ - $-N content by 1.7% - 31.3%, and soil organic carbon content by 21.4% - 58.6%. Nevertheless, the ability of biochar to improve soil pH was decreased with aging. Also, NB0y, NB2y and NB5y treatments significantly increased the abundance of nosZ gene by 54.9% - 249.4%, and the soil (nirS+nirK)/nosZ ratio increased with the biochar age. Meanwhile, the cumulative N2O emissions showed a significant negative correlation with soil pH, and a positive correlation with$ {\text{NO}}_3^ - $-N content and amoA-AOB gene abundance.【Conclusion】In summary, both fresh and aged biochar can significantly improve soil physical and chemical properties and decrease soil N2O emissions, but the effect of fresh biochar was better than that of aged biochar. The mitigation capacity of aged biochar decreased mainly due to the increase of soil$ {\text{NO}}_3^ - $-N content and (nirS+nirK)/nosZ ratio.
Key words: Rice-wheat rotation    Aged biochar    Nitrous oxide(N2O)emission    

生物质炭作为一种富碳产物,因具有良好的多级孔隙结构和功能特性,被用作土壤改良剂,不仅能够提高土壤肥力、修复土壤污染,还可以增加原位土壤固碳、减缓温室气体氧化亚氮(N2O)排放,缓解气候变化[1]。农田土壤作为N2O排放的重要来源,已成为全球关注和研究的热点[2]。我国作为粮食生产大国,截至2020年,粮食播种面积已达11.7亿公顷,其中水稻和小麦总播种面积占45.8%[3]。稻麦轮作制度是我国东南部典型的种植制度之一,占我国粮食生产面积的8.2%,是我国温室气体排放的重要来源,其中稻田占全球N2O排放的11%[4-5]。研究表明生物质炭减少农田N2O排放的主要机制有直接吸附、提高土壤pH、提高N2O还原酶nosZ基因的表达及促进电子传递等[6-9]。但大多数研究仅集中于生物质炭短期一次性大量施用[10],关于生物质炭长期效应的研究较少[11]

生物质炭施用到土壤后受周围环境影响逐渐老化,导致其物理性质(比表面积、孔隙度和孔径)和化学性质(pH和表面官能团)发生变化[12],进而影响土壤N2O排放。研究发现温和老化生物质炭比表面积增大,微孔结构增多[13],会增加对N2O的直接吸附。田间自然老化或利用化学条件老化产生的生物质炭pH会显著降低[14],则可能会削弱其对N2O排放的抑制效果。Duan等[15]大田试验观测到2年老化生物质炭仍具有显著降低黑钙土N2O排放的能力,主要与生物质炭改善土壤曝气、提高土壤pH有关。Wu等田间试验研究[516-17]也表明,3年和6年老化生物质炭均能够降低稻麦轮作体系温室气体排放,且3年老化生物质炭显著增加稻季土壤AOA(氨氧化古菌)和AOB(氨氧化细菌)丰度。但Spokas[18]和Duan等[19]室内培养试验研究发现,3年老化生物质炭丧失了最初对土壤N2O排放的抑制能力,5年老化生物质炭则会促进酸、碱性土壤N2O的排放。由此可见,不同试验条件下老化生物质炭对土壤N2O排放的影响结果并不一致,作用机理也存在争议,需要在田间定位试验中探究其作用机理。

因此,本研究选择稻麦轮作系统开展田间定位试验,设置仅施氮肥、氮肥配施新鲜生物质炭、2年老化生物质炭和5年老化生物质炭处理,通过动态监测稻麦轮作周期内N2O气体排放、测定土壤理化和氮循环相关功能基因丰度,综合评估生物质炭对N2O缓解的长期效应及其微生物机制,以期为农业土壤施用生物质炭减排N2O的措施提供科学的理论依据。

1 材料与方法 1.1 试验地概况

田间定位试验于江苏省南京市江宁区秣陵镇(31°48′N,118°50′E)开展,试验区为典型稻-麦轮作系统,属亚热带季风气候区,年均温与年均降雨量分别为15.4℃和1 050 mm。试验观测期内日降雨和日均温如图 1所示。

图 1 2017—2018年水稻-小麦轮作周期内日降雨量和气温的动态变化 Fig. 1 Daily precipitation and temperature during the rice and wheat annual rotation cycle in 2017-2018

试验地土壤类型为水稻土,质地为黏壤土,pH6.4、有机碳15.2 g·kg–1、全氮1.4 g·kg–1、全磷0.3 g·kg–1、全钾13.2 g·kg–1、容重1.2 g·cm–3。试验供试生物质炭为400℃限氧条件下热解获得的小麦秸秆生物质炭,基本性质:pH 9.2、全碳462.4 g·kg–1、全氮7.2 g·kg–1、阳离子交换量(CEC)24.3 cmol·kg–1、比表面积9 m2·g–1、灰分21.4%。

1.2 试验设计与管理

田间定位试验采用随机区组设计,共设5个处理,每个处理3次重复,共15个小区,分别为CK(不施氮肥和生物质炭)、N(氮肥)、NB0y(氮肥+新鲜生物质炭,2017年6月施入)、NB2y(氮肥+2年老化生物质炭,2015年6月施入)和NB5y(氮肥+5年老化生物质炭,2012年6月施入)。每个小区面积为20 m2(5 m × 4 m),各小区之间设有20 cm宽、40 cm深的水泥隔板和独立的灌水排水系统。

稻麦轮作田间管理措施与当地常规管理一致,水稻季和小麦季施肥分为基肥和追肥,其中尿素(以N计)250 kg·hm–2,以4:3:3(基肥:追肥:追肥)的比例施入,钙镁磷肥(以P2O5计)60 kg·hm–2和氯化钾(以K2O计)120 kg·hm–2均作为基肥一次性施入。具体施肥日期见Wu等[5]研究。生物质炭分别于2012年、2015年和2017年6月水稻移栽前一次性翻耕施入40 t·hm–2,后续不再施用。

1.3 气体样品采集与测定

试验观测期(2017年6月17日至2018年5月22日)采用静态暗箱法采集气体样品,同时测定采样箱内温度,施肥后和水稻烤田期每周观测4~5次,其余时间每周至少观测1次。采样箱规格为43 cm × 43 cm × 50 cm(作物生长前期)或43 cm × 43 cm × 110 cm(作物生长后期),采样时间(特殊情况除外)集中于上午8:00~11:00,于采样箱密封后0、10、20、30 min用20 mL针筒采集气体样品,返回实验室后立即用气相色谱仪(Agilent 7890A,Agilent Ltd,Shanghai,China)测定。按照吴震等[17]提供的方法计算N2O排放通量及其累积排放量。

1.4 土壤样品采集与测定

2017年10月水稻和2018年5月小麦收获后,各小区均按照五点取样法采集0~20 cm耕层土壤。采集的土壤样品一式两份:一份存放于4℃用于土壤理化分析;一份过2 mm筛,存放于–80℃用于土壤DNA提取。土壤pH按水:土比5:1浸提,Mettler-Toledo pH计(FE28,上海)测定。土壤充水孔隙度(WFPS)经烘干法测定土壤质量含水后转换而得,土壤铵态氮($ {\text{NH}}_4^ + $-N)和硝态氮($ {\text{NO}}_3^ - $-N)含量用2 mol·L–1 KC1溶液浸提,紫外分光光度计(HITACHI,UV-2900,Japan)测定。土壤有机碳(SOC)采用重铬酸钾氧化法,全氮采用元素分析仪(Vario MAX,艾力蒙塔,德国)[20]

1.5 土壤DNA提取和qPCR定量分析

称取0.5 g土壤样品用Fast DNA SPIN Kit试剂盒(MP Biomedicals,Eschwege,Germany)提取DNA,采用SYBR Premix Ex Taq TM试剂盒分别对土壤微生物功能基因amoA-AOA、amoA-AOB、nirSnirKnosZ进行定量分析。并将上述已知拷贝数的目的基因质粒DNA进行连续10倍梯度稀释后,在PCR扩增仪iCycler iQ5(Bio-Rad,美国)上进行荧光定量,得到标准曲线(三次平行)。各基因定量PCR分析引物和反应条件见表 1所示。

表 1 荧光实时定量PCR扩增引物和反应条件 Table 1 The amplification primer and reaction condition of quantitative PCR
1.6 数据处理

采用Microsoft Excel 2019和SPSS 22.0(IBM Co,Armonk,NY,USA)对数据进行统计分析;采用单因素方差分析(One-way ANOVA)和Turkey比较法对各指标进行差异显著性分析(P < 0.05);并利用Origin 2018(Origin Lab,USA)进行绘图。

2 结果 2.1 生物质炭对土壤理化性质的影响

图 2所示,各处理对土壤理化性质的影响趋势稻麦两季基本一致。与CK处理相比,N处理显著提高稻麦两季土壤TN、$ {\text{NH}}_4^ + $-N、$ {\text{NO}}_3^ - $-N含量。生物质炭处理较N处理显著提高SOC含量35.6%~58.6%、TN含量8.4%~24.2%、$ {\text{NO}}_3^ - $-N含量13.3%~31.3%,降低$ {\text{NH}}_4^ + $-N含量4.2%~13.9%,且TN、$ {\text{NO}}_3^ - $-N含量随着生物质炭老化年限的增加而增加,$ {\text{NH}}_4^ + $-N含量则逐渐降低。

注:无相同字母表示同一作物生长季内差异显著(P < 0.05)。  Note: Different letters meant significant differences at 0.05 level within each crop season. 图 2 不同处理对2017—2018年稻麦轮作周期内土壤理化性质的影响 Fig. 2 Variation in soil physicochemical properties under different treatments during rice-wheat rotation cycle in 2017-2018

与N处理相比,生物质炭处理显著提高麦季土壤pH 0.53~1.17个单位,且均表现为NB0y > NB2y > NB5y,并显著改善土壤充水孔隙度(WFPS)。生物质炭处理较N处理相比,显著提高土壤SOC含量21.4%~35.4%、TN含量9.7%~30.5%、$ {\text{NO}}_3^ - $-N含量1.7%~12.3%,降低$ {\text{NH}}_4^ + $-N含量5.6%~25.3%,且TN、$ {\text{NO}}_3^ - $-N、$ {\text{NH}}_4^ + $-N含量随生物质炭老化变化趋势与水稻季一致。综上所述,生物质炭老化后对土壤养分含量仍具有显著影响,但随着老化年限的增加其改善效果显著降低。

2.2 生物质炭对稻麦轮作系统N2O排放的影响

图 3可知,水稻季土壤N2O排放通量仅在烤田期出现峰值,且变化范围为N 36.36~205.2 μg·m–2·h–1。小麦季则在基肥和第二次追肥后出现两次峰值,其变化范围分别为N 21.58~735.8 μg·m–2·h–1和23.61~343.4 μg·m–2·h–1。与N处理相比,生物质炭处理可降低稻麦整个周期内N2O排放通量,且降低趋势为NB0y > NB2y > NB5y

注:F0:基肥Basal fertilization;F1:第1次追肥First top-dressing;F2:第2次追肥Second top-dressing;不同字母表示同一作物生长季内差异显著(P < 0.05)。  Different letters meant significant differences at 0.05 level within each crop season. 图 3 不同处理2017—2018年稻麦轮作周期内N2O通量动态和季节性累积排放量 Fig. 3 Flux dynamics and seasonal cumulative emissions of N2O under different treatments during rice-wheat rotation cycle in 2017-2018

土壤N2O累积排放量表现为N处理最高,生物质炭处理随老化年限增加,N2O累积排放量增加,且表现为麦季 > 稻季。与N处理相比,NB0y、NB2y和NB5y处理均显著降低N2O累积排放量,稻季分别显著降低54.0%、39.4%和35.5%,麦季分别显著降低44.6%、34.5%和32.4%。综上所述,老化生物质炭仍可在一定程度上降低土壤N2O累积排放量,但随着老化年限增加其减排能力有降低趋势。

2.3 生物质炭对N2O排放相关功能基因丰度的影响

图 4可知,与CK相比,各处理均显著提高稻麦两季amoA-AOA、amoA-AOB、nirK、nosZ基因丰度,而nirS基因丰度仅在麦季显著增加。与N处理相比,NB0y处理显著降低稻季amoA-AOB基因丰度31.9%,与amoA-AOA基因丰度无显著差异;相反,NB5y处理显著提高amoA-AOA基因丰度39.1%,与amoA-AOB基因丰度无显著差异。生物质炭处理显著提高麦季amoA-AOA基因丰度79.2%~136.2%,而对amoA-AOB影响各异。与N处理相比,生物质炭处理对稻季AOA/AOB比值影响无显著差异,麦季则显著增加。

注:不同字母表示同一作物生长季内差异显著(P < 0.05)。  Different letters meant significant differences at 0.05 level within each crop season. 图 4 2017—2018稻麦轮作周期内不同处理N2O排放相关功能基因丰度的变化 Fig. 4 Abundance of functional genes related to N2O emissions under different treatments during rice-wheat rotation cycle in 2017-2018

与N处理相比,生物质炭处理降低稻季nirS基因丰度6.0%~72.0%,增加nirKnosZ基因丰度47.9%~110.5%和33.7%~249.4%,且nirK基因增幅表现为NB5y > NB2y > NB0ynosZ则相反。麦季生物质炭处理较N处理分别增加nirSnirKnosZ基因丰度–16.18%~80.58%、12.2%~138.1%和54.88%~206.7%,且nirKnosZ基因丰度增长趋势与稻季一致。与N处理相比,生物质炭处理均能降低稻麦两季(nirS+nirK)/nosZ比值,但随着生物质炭老化年限的增加逐渐增加。

2.4 N2O排放及相关功能基因与土壤理化性质的相关关系

表 2可知,稻季N2O累积排放量与土壤pH呈显著负相关(P < 0.05),与$ {\text{NO}}_3^ - $-N含量、$ {\text{NH}}_4^ + $-N含量、amoA-AOA及amoA-AOB基因丰度呈显著正相关。amoA-AOA与amoA-AOB基因丰度与SOC、TN、$ {\text{NO}}_3^ - $-N、$ {\text{NH}}_4^ + $-N含量均呈显著正相关(P < 0.01)。土壤pH与nirS基因丰度呈极显著负相关,与nosZ基因丰度呈极显著正相关。nirK基因丰度与SOC、TN、$ {\text{NO}}_3^ - $-N含量均呈显著正相关。

表 2 稻季土壤N2O累积排放与氨氧化古菌基因、氨氧化细菌基因、亚硝酸盐还原酶基因、N2O还原酶基因及土壤理化性质之间的相关关系 Table 2 Correlation coefficients of soil physicochemical properties and cumulative N2O emission, the abundance of ammonia-oxidizing archaea(amoA-AOA), ammonia-oxidizing bacteria gene(amoA-AOB), abundance of nitrite reductase(nirS, nirK)gene, N2O reductase(nosZ)gene during the rice-growing season

表 3可知,同稻季结果一致,麦季N2O累积排放量与土壤pH值呈显著负相关,与$ {\text{NO}}_3^ - $-N含量及amoA-AOB基因丰度呈显著正相关(P < 0.01)。amoA-AOA和amoA-AOB基因丰度均与TN、$ {\text{NO}}_3^ - $-N含量呈显著正相关,且仅amoA-AOB基因丰度与土壤pH值呈极显著负相关。nirK、nirSnosZ基因丰度与SOC、TN、$ {\text{NO}}_3^ - $-N含量均呈显著正相关。

表 3 麦季土壤N2O累积排放与氨氧化古菌基因、氨氧化细菌基因、亚硝酸盐还原酶基因、N2O还原酶基因及土壤理化性质之间的相关关系 Table 3 Correlation coefficients of soil physicochemical properties and cumulative N2O emission, the abundance of ammonia-oxidizing archaea(amoA-AOA), ammonia-oxidizing bacteria gene(amoA-AOB), abundance of nitrite reductase(nirS, nirK)gene, N2O reductase(nosZ)gene during the wheat-growing season
3 讨论

本研究结果表明,稻季N2O排放峰主要在烤田期,而麦季则主要在施肥后,且各处理麦季N2O累积排放量均显著高于稻季,同Liu等[4]和Wu等[5]研究结果一致。由于稻田长期处于淹水状态,导致土壤通气性差,氧浓度低,反硝化作用进行完全,进而减少了N2O的排放[26-27]

与N处理相比,无论是稻季还是麦季,生物质炭处理均显著降低N2O排放,且减排效果表现为NB0y > NB2y > NB5y图 3),表明老化生物质炭对土壤N2O排放的抑制作用降低。Liu等[28]研究表明生物质炭对N2O排放的影响受生物质炭施用年限的影响,与新鲜生物质炭相比,田间老化两年后减排N2O能力显著降低。老化生物质炭自身表面特性变化也与N2O排放密切相关。本研究发现不同时间老化生物质炭表面结构破坏严重,H和O含量增加,灰分含量降低(数据未发表)。Spokas[18]室内分析指出田间老化生物质炭孔隙结构被堵塞、表面附着的硝化反硝化抑制剂被分解,可能导致其对N2O的吸附和抑制能力下降。另有研究发现生物质炭在田间老化后,表面有明显覆盖层,可吸附大量细颗粒,增加硅、氧、铝等元素,降低碳含量,去除矿物覆盖层后与新鲜生物炭具有相似减排N2O能力[29]。老化生物质炭减排N2O能力下降,还可能与土壤pH有关。土壤pH是调节土壤N2O排放的重要因素,N2O累积排放与土壤pH呈显著负相关(表 2表 3)。与N处理相比,生物质炭处理增加土壤pH,但增幅随老化年限的增加而降低。研究指出,新鲜生物质炭表面有机酸在微生物作用下被分解,导致土壤pH增加[30],促进电子向反硝化微生物转移,有效降低N2O的排放[31]。随着生物质炭在田间自然老化,表面灰分降解,氧化和酸化作用使得生物质炭表面酸性含氧官能团羧基(-COOH)和羟基(-OH)等增加,导致土壤pH下降,可能会刺激N2O排放[2932]

土壤无机氮含量的变化可能导致老化生物质炭减排N2O能力下降。稻麦季土壤N2O累积排放均与土壤$ {\text{NO}}_3^ - $-N含量呈显著正相关,仅稻季土壤N2O累积排放还与土壤$ {\text{NH}}_4^ + $-N含量呈正相关(表 2表 3)。与N处理相比,土壤$ {\text{NH}}_4^ + $-N含量随着生物质炭的老化逐渐下降,而$ {\text{NO}}_3^ - $-N则逐渐增加。Duan等[19]对田间老化生物质炭进行剥离、室内重培养试验后发现,老化生物质炭能够增加土壤总氮矿化、氮固持及硝化速率,进而增加氮的生物有效性,并指出老化生物质炭能够显著增加土壤硝化和反硝化作用对N2O的排放。本研究基于田间原位观测发现,N2O排放可能与生物质炭的直接吸附作用导致$ {\text{NH}}_4^ + $-N含量下降有关,且伴随生物质炭老化,表面酚基和羧基等酸性官能团增加,吸附作用加强,有利于减少硝化反应对N2O的贡献[33]。作为反硝化过程的底物和电子受体,老化生物质炭表面氢键化学吸附加强,增加$ {\text{NO}}_3^ - $-N在土壤中的保留,有效减少土壤$ {\text{NO}}_3^ - $-N的淋溶,又能促进反硝化作用N2O的排放[34]。老化生物质炭还通过影响硝化细菌反硝化过程降低N2O排放[35]

生物质炭通过影响氮循环功能基因丰度影响土壤N2O排放。与N处理相比,NB0y处理显著降低amoA-AOB基因丰度,BN2y和NB5y则有不同程度的增加;生物质炭处理显著增加amoA-AOA丰度,增长趋势为NB5y > NB2y > NB0y。已有研究表明,中碱性土壤中硝化作用主要由AOB而不是AOA主导[36]。因此,新鲜生物质炭显著降低N2O排放可能主要与amoA-AOB丰度降低有关。随着生物质炭老化,amoA-AOB丰度显著增加。徐刚等[37]认为生物质炭主要是通过吸附作用降低抑制AOB活性的酚类化合物,促进硝化作用N2O排放。Liu等[38]则认为生物质炭能够促进铵($ {\text{NH}}_4^ + $)转化为氨(NH3),为氨单加氧酶(AOM)催化提供足够的底物,并能通过增加AOA和AOB丰度,促进硝化过程进行。

与N处理相比,随生物质炭老化,土壤nirKnirS基因丰度逐渐增加(图 4)。通常认为nirKnirS基因是反硝化过程中N2O排放的主要贡献者。nirK基因与SOC呈显著正相关(表 2、3),已有研究表明富含有机分子的秸秆生物质炭会刺激nirK基因增加[39],且老化生物质炭会进一步提高nirK基因丰度[19]。与N处理相比,生物质炭处理增加了稻麦季土壤nosZ基因丰度,且增幅表现为NB0y > NB2y > NB5y。Sun等[40]研究也发现生物质炭能够增加反硝化过程中nosZ基因丰度,从而降低N2O排放。nosZ基因丰度与稻季土壤pH呈显著正相关(表 2)。Obia等[8]指出生物质炭诱导土壤pH增加,会导致土壤中编码N2O还原酶nosZ基因丰度增加,使反硝化产物N2/N2O的化学计量比增加,从而减少N2O的排放。在田间自然条件下,老化生物质炭pH显著降低,对nosZ基因丰度影响减弱[12],导致其减排N2O能力下降。(nirS+nirK)/nosZ作为N2O排放重要的指示指标,随着生物质炭老化年限的增加,(nirS+nirK)/nosZ逐渐增加(图 4),表明老化生物质减排N2O的能力下降。

4 结论

在稻-麦轮作周期内,新、老生物质炭均能显著改善土壤理化特性,降低土壤N2O的排放;随着生物质炭老化年限的增加,土壤硝态氮含量及(nirS+nirK)/nosZ比值逐渐增加,从而导致生物质炭对土壤N2O减排能力逐渐降低。本研究利用田间定位试验在2年和5年的时间尺度上分析了老化生物质炭对稻麦轮作体系土壤N2O排放的作用机理,尚需从更长时间尺度探究自然老化生物质炭对N2O排放的长期效应。

参考文献
[1]
Bolan N, Hoang S A, Beiyuan J Z, et al. Multifunctional applications of biochar beyond carbon storage[J]. International Materials Reviews, 2021, 1-51. (0)
[2]
Cao W C, Song H, Wang Y J, et al. Key production processes and influencing factors of nitrous oxide emissions from agricultural soils (In Chinese)[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1781-1798. DOI:10.11674/zwyf.18441 [曹文超, 宋贺, 王娅静, 等. 农田土壤N2O排放的关键过程及影响因素[J]. 植物营养与肥料学报, 2019, 25(10): 1781-1798.] (0)
[3]
National Bureau of Statistics of China. China statistical yearbook (In Chinese). Beijing: China Statistics Press, 2020. [国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020.] (0)
[4]
Liu S W, Qin Y M, Zou J W, et al. Effects of water regime during rice-growing season on annual direct N2O emission in a paddy rice-winter wheat rotation system in southeast China[J]. Science of the Total Environment, 2010, 408(4): 906-913. DOI:10.1016/j.scitotenv.2009.11.002 (0)
[5]
Wu Z, Zhang X, Dong Y B, et al. Biochar amendment reduced greenhouse gas intensities in the rice-wheat rotation system: Six-year field observation and meta-analysis[J]. Agricultural and Forest Meteorology, 2019, 278: 107625. DOI:10.1016/j.agrformet.2019.107625 (0)
[6]
Cayuela M L, van Zwieten L, Singh B P, et al. Biochar's role in mitigating soil nitrous oxide emissions: A review and meta-analysis[J]. Agriculture, Ecosystems & Environment, 2014, 191: 5-16. (0)
[7]
Harter J, Krause H M, Schuettler S, et al. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community[J]. The ISME Journal, 2014, 8(3): 660-674. DOI:10.1038/ismej.2013.160 (0)
[8]
Obia A, Cornelissen G, Mulder J, et al. Effect of soil pH increase by biochar on NO, N2O and N2 production during denitrification in acid soils[J]. PLoS One, 2015, 10(9): e0138781. DOI:10.1371/journal.pone.0138781 (0)
[9]
Yuan H J, Zhang Z J, Li M Y, et al. Biochar's role as an electron shuttle for mediating soil N2O emissions[J]. Soil Biology & Biochemistry, 2019, 133: 94-96. (0)
[10]
Xie Z B, Liu Q. Rational application of biochar to sequester carbon and mitigate soil GHGs emissions: A review (In Chinese)[J]. Journal of Agro-Environment Science, 2020, 39(4): 901-907. [谢祖彬, 刘琦. 生物质炭的固碳减排与合理施用[J]. 农业环境科学学报, 2020, 39(4): 901-907.] (0)
[11]
Clough T, Condron L, Kammann C, et al. A review of biochar and soil nitrogen dynamics[J]. Agronomy, 2013, 3(2): 275-293. DOI:10.3390/agronomy3020275 (0)
[12]
Yuan H J, Deng G S, Zhou S G, et al. Biochar ageing and its effects on greenhouse gases emissions: A review (In Chinese)[J]. Ecology and Environmental Sciences, 2019, 28(9): 1907-1914. DOI:10.16258/j.cnki.1674-5906.2019.09.024 [袁海静, 邓桂森, 周顺桂, 等. 生物炭的老化及其对温室气体排放影响的研究进展[J]. 生态环境学报, 2019, 28(9): 1907-1914.] (0)
[13]
Liu Y Y, Sohi S P, Jing F Q, et al. Oxidative ageing induces change in the functionality of biochar and hydrochar: Mechanistic insights from sorption of atrazine[J]. Environmental Pollution, 2019, 249: 1002-1010. DOI:10.1016/j.envpol.2019.03.035 (0)
[14]
Li B, Bi Z C, Xiong Z Q. Dynamic responses of nitrous oxide emission and nitrogen use efficiency to nitrogen and biochar amendment in an intensified vegetable field in southeastern China[J]. GCB Bioenergy, 2017, 9(2): 400-413. DOI:10.1111/gcbb.12356 (0)
[15]
Duan M, Wu F P, Jia Z K, et al. Wheat straw and its biochar differently affect soil properties and field-based greenhouse gas emission in a Chernozemic soil[J]. Biology and Fertility of Soils, 2020, 56(7): 1023-1036. DOI:10.1007/s00374-020-01479-4 (0)
[16]
Wu Z, Zhang X, Dong Y B, et al. Microbial explanations for field-aged biochar mitigating greenhouse gas emissions during a rice-growing season[J]. Environmental Science and Pollution Research, 2018, 25(31): 31307-31317. DOI:10.1007/s11356-018-3112-x (0)
[17]
Wu Z, Dong Y B, Xiong Z Q. Effects of biochar application three-years ago on global warming potentials of CH4 and N2O in a rice-wheat rotation system (In Chinese)[J]. Chinese Journal of Applied Ecology, 2018, 29(1): 141-148. [吴震, 董玉兵, 熊正琴. 生物炭施用3年后对稻麦轮作系统CH4和N2O综合温室效应的影响[J]. 应用生态学报, 2018, 29(1): 141-148.] (0)
[18]
Spokas K A. Impact of biochar field aging on laboratory greenhouse gas production potentials[J]. GCB Bioenergy, 2013, 5(2): 165-176. DOI:10.1111/gcbb.12005 (0)
[19]
Duan P P, Zhang X, Zhang Q Q, et al. Field-aged biochar stimulated N2O production from greenhouse vegetable production soils by nitrification and denitrification[J]. Science of the Total Environment, 2018, 642: 1303-1310. DOI:10.1016/j.scitotenv.2018.06.166 (0)
[20]
Bao S D. Soil and agricultural chemistry analysis (In Chinese). 3rd ed[M]. Beijing: Chinese Agriculture Press, 2000. [鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.] (0)
[21]
Leininger S, Urich T, Schloter M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature, 2006, 442(7104): 806-809. DOI:10.1038/nature04983 (0)
[22]
Schauss K, Focks A, Leininger S, et al. Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils[J]. Environmental Microbiology, 2009, 11(2): 446-456. DOI:10.1111/j.1462-2920.2008.01783.x (0)
[23]
Rotthauwe J H, Witzel K P, Liesack W. The ammonia monooxygenase structural gene AmoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations[J]. Applied and Environmental Microbiology, 1997, 63(12): 4704-4712. DOI:10.1128/aem.63.12.4704-4712.1997 (0)
[24]
Michotey V, Méjean V, Bonin P. Comparison of methods for quantification of cytochrome cd1 -denitrifying bacteria in environmental marine samples[J]. Applied and Environmental Microbiology, 2000, 66(4): 1564-1571. DOI:10.1128/AEM.66.4.1564-1571.2000 (0)
[25]
Throbäck I N, Enwall K, Jarvis Å, et al. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE[J]. FEMS Microbiology Ecology, 2004, 49(3): 401-417. DOI:10.1016/j.femsec.2004.04.011 (0)
[26]
Stein L Y. The long-term relationship between microbial metabolism and greenhouse gases[J]. Trends in Microbiology, 2020, 28(6): 500-511. DOI:10.1016/j.tim.2020.01.006 (0)
[27]
Yan X Y, Shi S L, Du L J, et al. N2O emission from paddy soil as affected by water regime (In Chinese)[J]. Acta Pedologica Sinica, 2000, 37(4): 482-489. DOI:10.3321/j.issn:0564-3929.2000.04.007 [颜晓元, 施书莲, 杜丽娟, 等. 水分状况对水田土壤N2O排放的影响[J]. 土壤学报, 2000, 37(4): 482-489.] (0)
[28]
Liu H Y, Li H B, Zhang A P, et al. Inhibited effect of biochar application on N2O emissions is amount and time-dependent by regulating denitrification in a wheat-maize rotation system in North China[J]. Science of the Total Environment, 2020, 721: 137636. DOI:10.1016/j.scitotenv.2020.137636 (0)
[29]
Wang L, Gao C C, Yang K, et al. Effects of biochar aging in the soil on its mechanical property and performance for soil CO2 and N2O emissions[J]. Science of the Total Environment, 2021, 782: 146824. DOI:10.1016/j.scitotenv.2021.146824 (0)
[30]
Hua Y, Zheng X B, Xue L H, et al. Microbial aging of hydrochar as a way to increase cadmium ion adsorption capacity: Process and mechanism[J]. Bioresource Technology, 2020, 300: 122708. DOI:10.1016/j.biortech.2019.122708 (0)
[31]
Cayuela M L, Sánchez-Monedero M A, Roig A, et al. Biochar and denitrification in soils: When, how much and why does biochar reduce N2O emissions?[J]. Scientific Reports, 2013, 3: 1732. DOI:10.1038/srep01732 (0)
[32]
Wang L W, O'Connor D, Rinklebe J, et al. Biochar aging: Mechanisms, physicochemical changes, assessment, and implications for field applications[J]. Environmental Science & Technology, 2020, 54(23): 14797-14814. (0)
[33]
Mia S, Dijkstra F A, Singh B. Aging induced changes in biochar's functionality and adsorption behavior for phosphate and ammonium[J]. Environmental Science & Technology, 2017, 51(15): 8359-8367. (0)
[34]
Bai S H, Reverchon F, Xu C Y, et al. Wood biochar increases nitrogen retention in field settings mainly through abiotic processes[J]. Soil Biology & Biochemistry, 2015, 90: 232-240. (0)
[35]
Zhang Q Q, Wu Z, Zhang X, et al. Biochar amendment mitigated N2O emissions from paddy field during the wheat growing season[J]. Environmental Pollution, 2021, 281: 117026. DOI:10.1016/j.envpol.2021.117026 (0)
[36]
Zhang H L, Sun H F, Zhou S, et al. Effect of straw and straw biochar on the community structure and diversity of ammonia-oxidizing bacteria and Archaea in rice-wheat rotation ecosystems[J]. Scientific Reports, 2019, 9: 9367. DOI:10.1038/s41598-019-45877-7 (0)
[37]
Xu G, Zhang Y, Wu Y, et al. Effects of biochar application on nitrogen and phosphorus availability in soils: A review (In Chinese)[J]. Scientia Sinica: Vitae, 2016, 46(9): 1085-1090. [徐刚, 张友, 武玉, 等. 生物炭对土壤中氮磷有效性影响的研究进展[J]. 中国科学: 生命科学, 2016, 46(9): 1085-1090.] (0)
[38]
Liu Q, Zhang Y H, Liu B J, et al. How does biochar influence soil N cycle? A meta-analysis[J]. Plant and Soil, 2018, 426(1/2): 211-225. (0)
[39]
Xiao Z G, Rasmann S, Yue L, et al. The effect of biochar amendment on N-cycling genes in soils: A meta-analysis[J]. Science of the Total Environment, 2019, 696: 133984. DOI:10.1016/j.scitotenv.2019.133984 (0)
[40]
Sun X, Han X G, Ping F, et al. Effect of rice-straw biochar on nitrous oxide emissions from paddy soils under elevated CO2 and temperature[J]. Science of the Total Environment, 2018, 628/629: 1009-1016. (0)