检索项 检索词
  土壤学报  2023, Vol. 60 Issue (3): 904-912  DOI: 10.11766/trxb202109240513
0

引用本文  

唐琪, 曹蕾, 钱建南, 等. 沼液替代化肥对稻田土壤节肢动物群落的影响. 土壤学报, 2023, 60(3): 904-912.
TANG Qi, CAO Lei, QIAN Jiannan, et al. Effects of Biogas Slurry Instead of Chemical Fertilizer on Soil Arthropod Community in Paddy Field. Acta Pedologica Sinica, 2023, 60(3): 904-912.

基金项目

国家重点研发计划项目(2017YFC0505803)和江苏高校优势学科建设工程项目(PAPD)资助

通讯作者Corresponding author

韩建刚, E-mail:hjg@njfu.edu.com

作者简介

唐琪(1998—),女,江西赣州人,硕士研究生,主要从事废弃物资源化利用研究。E-mail:184938578@qq.com
沼液替代化肥对稻田土壤节肢动物群落的影响
唐琪1,2, 曹蕾1, 钱建南3, 汤逸帆1, 申建华4, 韩建刚1,2    
1. 南京林业大学生物与环境学院, 南京 210037;
2. 南京林业大学南方现代林业协同创新中心, 南京 210037;
3. 江苏金东台农业发展有限公司, 江苏东台 224200;
4. 中粮家佳康(江苏)有限公司, 江苏东台 224200
摘要:土壤节肢动物群落对施肥管理响应灵敏,是反映农田生态系统健康与稳定的重要指标。本文以江苏滩涂围垦稻田为例进行田间小区试验,研究沼液不同比例替代化肥(0%、33%、66%和100%)对土壤节肢动物群落在0~20 cm土层分布及多样性的影响。结果表明:各施肥处理下稻田土壤节肢动物优势类群均为前气门亚目(Prostigmata)、弹尾纲(Collembola)和甲螨亚目(Oribatida),分别占总密度的45.44%、20.00%、13.38%。沼液替代化肥(即沼液与化肥配施)有利于提高土壤节肢动物密度、多样性指数和丰富度指数。当沼液替代化肥比例为66%时(施N总量为225 kg·hm–2),土壤节肢动物密度、多样性指数和丰富度指数均显著高于纯化肥(沼液替代化肥比例为0)处理(P < 0.05),分别较纯化肥增加129.25%、8.67%和34.78%。相关性分析表明,土壤有机碳和全氮是影响稻田土壤节肢动物密度的主要因子。
关键词沼液    土壤节肢动物    沼液替代化肥    稻田    
Effects of Biogas Slurry Instead of Chemical Fertilizer on Soil Arthropod Community in Paddy Field
TANG Qi1,2, CAO Lei1, QIAN Jiannan3, TANG Yifan1, SHEN Jianhua4, HAN Jiangang1,2    
1. College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China;
2. Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China;
3. Jiangsu Jindongtai Agricultural Development Co Ltd, Dongtai, Jiangsu 224200, China;
4. COFCO Jiajiakang (Jiangsu) Co Ltd, Dongtai, Jiangsu 224200, China
Abstract: 【Objective】Soil arthropod is an important part of the soil ecosystem. They play an important role in decomposing organic matter, improving soil physical and chemical properties, improving soil fertility and promoting plant nutrient absorption. The arthropod community is sensitive to fertilization management and is, therefore an important indicator reflecting the health and stability of the farmland ecosystem.【Method】Soil samples were collected from experimental plots of reclaimed paddy fields in Jiangsu Tidal Flat, which has been running for 6 years. The plots were treated with biogas slurry instead of chemical fertilizer(0%, 33%, 66% and 100%). The collected samples were, analyzed for the effects of each treatment on species, quantity, community density and diversity of soil arthropods, and their relationship with the changes of soil properties.【Result】In the treatment of biogas slurry instead of chemical fertilizer, 1 024 soil animals were collected, belonging to 9 classes and 18 groups. The results showed that the dominant groups of soil arthropods in the paddy field under each fertilization treatment were Prostigmata, Collembola and Oribatida, accounting for 45.44%, 20% and 13.38% of the total density, respectively. Biogas slurry instead of chemical fertilizer(i.e. combined application of biogas slurry and chemical fertilizer)is beneficial for improving the density, diversity index and richness index of soil arthropods. When the ratio of biogas slurry to chemical fertilizer was 66%(the total amount of N applied was 225 kg·hm–2), the density, diversity index and richness index of soil arthropods were significantly higher than those of pure chemical fertilizer(the ratio of biogas slurry to chemical fertilizer was 0)(P < 0.05). Compared with pure chemical fertilizer, it increased by 129.25%, 8.67% and 34.78%, respectively. Correlation analysis showed that soil organic carbon and total nitrogen were the main factors affecting soil arthropod density in paddy fields.【Conclusion】The combined application of biogas slurry and chemical fertilizer has a significant effect on the soil arthropod community in paddy fields. From the effect of different proportions of biogas slurry replacing chemical fertilizer on soil arthropod density and community structure, the combined application of biogas slurry and chemical fertilizer is recommended instead of replacing chemical fertilizer.
Key words: Biogas slurry    Soil arthropods    Biogas slurry replaces chemical fertilizer    Paddy field    

节肢动物是土壤生态系统的重要组成部分,在分解有机质、改善土壤理化性质、提高土壤肥力、促进植物对养分的吸收等方面发挥关键作用[1-3]。土壤节肢动物的群落特征可作为反映土壤肥力变化及生态稳定性的重要指标[4-5]。施肥管理对土壤理化性质的改变,可能对土壤动物群落造成显著影响[6-7]。研究发现,施氮肥会减少土壤螨虫和弹尾目的数量[8],氮磷混施则显著提高了土壤微节肢动物的丰度[9]。有研究发现有机肥和化肥均增加了土壤微节肢动物的丰度,但对多样性指数没有显著影响[10]。有机肥配施化肥有利于增加土壤动物群落的丰富度和多样性,维持土壤动物群落稳定性[11]

沼液是畜禽养殖粪污充分厌氧发酵后残留的液体副产物,富含氮素及多种营养元素[12]。尤其是大型集约化养殖厂沼气工程后沼渣与沼液充分分离,沼液熟化完全,重金属等潜在污染物含量低,近年来已成为种养结合和循环农业化学氮肥的优质替代品[13-14],在增加农作物产量和提升品质方面发挥重要作用[15-16]。目前有关沼液替代化肥效应机理的探讨,主要集中在不同沼液施用量或沼液与化肥配施对土壤团粒结构、养分含量等物理化学性状[16-17]、土壤酶活性[18]以及重金属积累、迁移与转化的影响[19]等方面。初步研究表明,沼液施用对土壤动物的影响不容忽视。如玉米地施用沼液对蚯蚓密度和生物量均有促进作用[20];而对草地土壤中的弹尾纲密度有负面影响,施用沼液3 d后弹尾纲密度下降约90%[21];对设施大棚内土壤线虫的数量也有明显的抑制作用[22]。可见不同土壤动物种类对沼液施用的响应差异较大,同时受植物种植、土壤性状等的综合影响。但有关沼液施用对土壤节肢动物的研究十分有限[23],尤其对于消纳沼液最主要的农田类型——稻田土壤节肢动物的相关认识还相当缺乏。

因此,本研究以连续运行6年的江苏滩涂围垦稻田定位试验地为基础,设置沼液不同比例(0%、33%、66%和100%)替代化肥处理,并分析各处理对土壤节肢动物种类、数量、群落密度及多样性的影响,及其与土壤性状变化的关系,以期为稻田沼液的合理高效消纳及其生态风险评估提供理论依据。

1 材料与方法 1.1 研究区概况

研究区域位于江苏省东台市黄海猪场沼气站附近(32°38′25″N,120°54′17″E),属亚热带和暖温带气候的过渡区。年均气温15℃,年均降雨量1 190 mm,无霜期220 d。研究区农田由滩涂围垦改良形成,种植制度为稻麦两熟制,水稻种植周期为每年的6月下旬—10月下旬,10月下旬至次年6月种植冬小麦。

1.2 供试材料

供试土壤质地为粉砂质壤土,砂粒、粉粒和黏粒含量占比分别为36.2%、56.7%和7.1%。土壤偏碱性,pH8.28,电导率(EC)102.2 μS·cm–1,土壤有机碳(SOC)4.58 g·kg–1,全氮(TN)0.48 g·kg–1,全磷(TP)0.60 g·kg–1,全钾(TK)16.92 g·kg–1

供试沼液采集自中粮家佳康(江苏)有限公司,其生产过程为:猪场粪污经水泡粪工艺收集,通过匀浆池后进入发酵罐,36~38℃下全混合厌氧反应器(CSTR)发酵15 d。液体进入贮存池并稳定1~2个月,底部为沼渣,中上部为沼液。供试沼液基本理化性质见表 1

表 1 供试沼液理化性质 Table 1 Physical and chemical properties of biogas slurry
1.3 试验设计

田间小区定位实验始于2016年,共设沼液替代化肥比例0%、33%、66%和100% 4个处理(分别对应为S0、S1、S2和S3)。控制总氮量相同,即施加沼液折合的氮与补施化肥(尿素)氮总量均为225 kg·hm–2。每个处理均设3个重复,所有小区为(6 m×10 m)随机排列。小区间垒田埂(宽50 cm,高30 cm),铺设防渗布,区内设保护行。沼液分别在水稻基肥、蘖肥和穗肥期施入,比例为2:1:2。各处理沼液与灌溉水总量保持相同,田间管理与当地大田一致。

1.4 样品采集及分析

于2020年10月水稻收获后(水稻品种为淮稻5号)进行土壤样品采集,各处理小区按对角线法选取5个样点,采集0~20 cm土壤样品,剔除石砾和植物残体等杂质,装入密封袋带回实验室。一部分土壤样品用于收集土壤节肢动物,其余部分用于土壤理化性质的测定。

采用Tullgren干漏斗分离收集土壤节肢动物[23]。分离出的土壤节肢动物标本存放于75%乙醇溶液中。用生物显微镜(ECLIPSE E200MV,南京尼康江南光学仪器有限公司)进行鉴定计数并参照《中国土壤动物检索图鉴》[24]和《昆虫分类》[25]进行分类。

土壤pH采用pH计(pHS-3C)测定(土:液=1:5)。EC使用电导率仪测定(土:液=1:5)。土壤有机碳采用TOC分析仪测定,全氮采用凯氏定氮法测定,全磷和全钾经氢氧化钠消解后分别采用钼锑抗分光光度法和原子吸收分光光度法测定。

1.5 数据处理

土壤动物密度数据将分离的土壤动物个体数量换算成密度(ind·m–2),即个体数量/采样面积。

类群等级划分[26]:平均密度占总密度10%以上为优势类群(+++),1%~10%为常见类群(++),1%以下稀有类群(+)。

土壤动物群落多样性分析包括:Shannon-Wiener多样性指数(H)、Simpson优势度指数(C)、Pielou均匀度指数(J')、丰富度指数(用类群数表示)。

$ H = - \sum {\left( {{P_i}\ln {P_i}} \right)} $
$ C = - \sum {P_i^2} $
$ J’=H/\ln S $

式中,Pi=ni/Nni为第i个类群的个体数,N为总个体数,S为总类群数。

数据分析前,对不服从正态分布数据进行log(X+1)转换,采用SPSS 26.0软件进行单因素方差分析不同处理间的差异,并用邓肯(Duncan)法对不同处理之间进行差异显著性检验(P < 0.05)。皮尔森相关系数用于分析土壤节肢动物与土壤理化性质的关系。采用主成分分析(Principal component analysis,PCA)分析不同比例沼液替代化肥处理对土壤动物群落的影响。土壤节肢动物群落多样性分析用R 4.0.5计算,使用Origin 9.0软件制图。

2 结果 2.1 沼液替代化肥对土壤理化性质的影响

沼液替代化肥处理间的土壤有机碳(SOC)、全氮(TN)、全钾(TK)和C/N有明显差异(表 2)。具体表现为S2处理的SOC含量和TN含量显著高于S0和S3处理(P < 0.05),S1处理TK含量显著高于其他处理(P < 0.05),其他土壤性状差异不显著。

表 2 不同处理土壤理化性质指标 Table 2 Soil physical and chemical parameters under different treatments
2.2 沼液替代化肥对土壤节肢动物群落组成和密度的影响

沼液替代化肥4个处理中,共获得1 024只土壤动物,隶属9纲18个类群(表 3),优势类群均为前气门亚目(Prostigmata)、弹尾纲(Collembola)和甲螨亚目(Oribatida),分别占总密度的45.44%、20.00%、13.38%;常见类群为蜘蛛目(Araneida)、软甲纲(Malacostraca)、综合纲(Symphyla)、少足纲(Pauropoda)、双尾纲(Diplura)、蜚蠊目(Blattodea)、鞘翅目(Coleoptera)和双翅目(Diptera),共占总密度的19.21%;其余为稀有类群,共占总密度的1.97%。石蛃目为S1处理特有类群,缨翅目为S2特有类群,直翅目为S3特有类群,啮目为S0特有类群。唇足纲仅出现在S1和S2处理中,革翅目仅出现在S0和S3处理中。

表 3 沼液替代化肥处理的土壤节肢动物群落组成及密度 Table 3 Compositions of soil arthropod community under different fertilization treatments

不同沼液替代化肥处理的土壤节肢动物密度有显著差异(图 1)。S2处理(沼液替代化肥比例为66%)土壤节肢动物密度显著高于S0处理(P < 0.05),与纯化肥(S0)相比,S2处理总密度增加129.25%,S1、S2和S3处理间差异不显著;各处理的土壤节肢动物密度排序为S2 > S1 > S3 > S0。

注:无相同小写字母表示处理间差异显著(P < 0.05);图中误差线为标准差。下同。  Note: No same lowercase letter indicates significant difference between treatments(P < 0.05);The error bar in the figure is the standard deviation. The same below. 图 1 沼液替代化肥处理下的土壤节肢动物密度 Fig. 1 The effect of biogas slurry instead of chemical fertilizer treatment on soil arthropod density
2.3 沼液替代化肥对土壤节肢动物群落多样性的影响

土壤节肢动物群落的多样性指数、均匀度指数和丰富度指数在不同沼液替代比例处理间差异显著(图 2),优势度指数在不同处理间无显著差异。S0处理的土壤节肢动物多样性指数最低,并且均显著低于S1、S2和S3处理(P < 0.05)。与S0处理相比,S1、S2、S3处理的多样性指数分别增加了8.79%、8.67%和5.65%。各处理下的优势度指数差异均不显著。S3处理的均匀度指数最低,并且显著低于S0处理(P < 0.05)。丰富度指数以S3处理最大,并且S1、S2、S3处理均显著高于S0处理,分别较S0处理增加39.13%、34.78%和52.17%。

图 2 沼液替代化肥处理下的土壤节肢动物多样性指数、优势度指数、均匀度指数和丰富度指数 Fig. 2 The effect of biogas slurry instead of chemical fertilizer treatment on soil arthropod Shannon-Wiener index, Simpson index, Evenness index and Richness index
2.4 土壤节肢动物群落与土壤理化性质的相关性

将土壤节肢动物密度、多样性指数等以及密度占比最高的前五个类群分别与土壤理化性质进行相关性分析,结果表明(表 4),在沼液代替化肥处理中,土壤节肢动物密度与TN显著正相关,优势度指数与EC显著负相关,丰富度指数与土壤pH显著正相关。弹尾纲与SOC和EC显著正相关,双尾纲与土壤SOC、TN显著正相关。

表 4 土壤节肢动物密度、多样性指标和主要类群与土壤理化性质相关性分析 Table 4 Correlation between main groups of soil arthropod and soil chemical properties under different treatment
2.5 沼液替代化肥对土壤节肢动物群落的影响

为进一步探讨沼液替代化肥对土壤节肢动物群落的影响,将所有节肢动物类群进行主成分分析(图 3)。结果表明,第一主成分(横轴)和第二主成分(纵轴)分别解释了土壤节肢动物密度变化的92.7%和2%。第一主成分将纯化肥和纯沼液(S0和S3)与沼液和化肥配施(S1、S2)处理明显分开,反映了S0、S3与S1、S2处理土壤节肢动物群落组成的差别。前气门亚目、甲螨亚目和弹尾纲对不同比例沼液替代化肥处理有明显的相关性,其中弹尾纲在S1和S2处理中密度较大,表明沼液与化肥配施对弹尾纲有明显的促进作用;而S0和S3处理对前气门亚目和甲螨亚目影响最大。其他类群之间相关性较高,但与不同比例沼液替代化肥处理无明显相关性。

图 3 不同处理对土壤节肢动物群落的主成分分析 Fig. 3 Principal component analysis(PCA)of soil arthropod community under different treatments
3 讨论

施用沼液对稻田土壤节肢动物群落有显著影响。与S0(沼液替代化肥比例为0)相比,S1、S2、S3处理土壤节肢动物密度均明显增加(图 1),其中S2处理(沼液替代化肥比例66%)较S0处理达显著水平(P < 0.05),其差异主要是由优势类群弹尾纲密度的变化引起的,弹尾纲在S2处理下密度最高。这与以往研究有所不同,Platen和Glemnitz[27]研究表明,弹尾目个体数量在100%沼液处理下的占比最高。这可能是沼液性状及土壤类型方面的差异有关。不同沼液替代化肥处理下还出现一些稀有类群,如S1处理下的石蛃目、S2处理的缨翅目、S3处理的直翅目、S0处理的啮目(表 3)。由于稀有类群对环境的变化较敏感,只在特定的环境中存活,说明不同处理对土壤节肢动物具有一定的异质性。

液配施化肥(S1、S2)以及单施沼液(S3)均可较单施化肥(S0)显著增加土壤节肢动物的多样性指数和丰富度指数。但随着沼液替代化肥比例由33%和66%增至100%时,其多样性指数却有所下降。S3处理的丰富度显著增加,优势类群如前气门亚目密度也急剧增加,由此导致S3处理的均匀度指数显著低于S0处理。表明土壤节肢动物群落结构的变化并不完全依赖于氮肥的用量(尽管用量变化会显著改善部分类群的密度及多样性),沼液与化肥的配施可能增加了土壤养分供给效率,弥补了单施化肥或沼液的不足。

本研究还发现施用沼液处理下的SOC和TN增加明显,pH也随着沼液替代化肥比例的增加而增加,并且SOC和TN与土壤节肢动物显著相关(P < 0.05)。这与以往有关沼液施用能够提高土壤养分,改善土壤理化性质的研究结果一致[28]。除了受SOC和TN的影响外,有研究认为农田土壤节肢动物类群还受土壤温度、土壤湿度等的显著影响[29]。有关影响节肢动物类群的主要因子,不同生态系统间也有明显差异。李小涵等[30]研究表明土壤全磷含量和pH是影响南亚热带人工林中小型土壤节肢动物的重要因子。邱月等[31]研究发现影响草地小型土壤节肢动物群落组成结构的主要是土壤速效磷含量以及C/N和N/P。由此可见,保证充足的SOC和TN可能是维持土壤节肢动物群落稳定的基本条件。尽管沼液和化肥都能保障氮素的供应,但沼液向土壤提供了化肥所缺乏的小分子有机酸[32]$ {\text{HCO}}_3^ - $ [33]、矿质离子等,这些可能也会对土壤节肢动物产生直接或间接的有利影响,从而促进土壤节肢动物群落的发展。

4 结论

滨海稻田各沼液替代化肥比例(0%、33%、66%和100%)处理下土壤节肢动物优势类群均为前气门亚目、弹尾纲和甲螨亚目。沼液与化肥配施有利于提高土壤节肢动物密度和多样性,沼液替代化肥比例为66%时(施氮总量225 kg·hm–2),土壤节肢动物密度和多样性指数最高。土壤有机碳和全氮是影响稻田土壤节肢动物密度的主要因子。从对土壤节肢动物密度及群落结构的影响看,推荐沼液与化肥配施而非全部替代化肥。

参考文献
[1]
Carrillo Y, Ball B A, Bradford M A, et al. Soil fauna alter the effects of litter composition on nitrogen cycling in a mineral soil[J]. Soil Biology & Biochemistry, 2011, 43(7): 1440-1449. (0)
[2]
Ugarte C M, Zaborski E R, Wander M M. Nematode indicators as integrative measures of soil condition in organic cropping systems[J]. Soil Biology & Biochemistry, 2013, 64: 103-113. (0)
[3]
Sun X, Li Q, Yao H F, et al. Soil fauna and soil health (In Chinese)[J]. Acta Pedologica Sinica, 2021, 58(5): 1073-1083. [孙新, 李琪, 姚海凤, 等. 土壤动物与土壤健康[J]. 土壤学报, 2021, 58(5): 1073-1083.] (0)
[4]
Yan S K, Singh A N, Fu S L, et al. A soil fauna index for assessing soil quality[J]. Soil Biology & Biochemistry, 2012, 47: 158-165. (0)
[5]
Wang Y, Wang Q G, Sun Y, et al. Ecological functions of soil animals and environmental factors of terrestrial ecosystems: Relationship review (In Chinese)[J]. Chinese Agricultural Science Bulletin, 2020, 36(23): 54-59. [王媛, 王庆贵, 孙元, 等. 土壤动物生态功能与陆地生态系统各环境因子的关系[J]. 中国农学通报, 2020, 36(23): 54-59.] (0)
[6]
Murray P J, Cook R, Currie A F, et al. Interactions between fertilizer addition, plants and the soil environment: Implications for soil faunal structure and diversity[J]. Applied Soil Ecology, 2006, 33(2): 199-207. DOI:10.1016/j.apsoil.2005.11.004 (0)
[7]
Li Y Y, Xu Z Q, Xu H M, et al. Review of the effect of fertilizer application on the soil fauna in soil ecosystems (In Chinese)[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2018, 42(5): 179-184. [李媛媛, 许子乾, 徐涵湄, 等. 施肥对陆地生态系统土壤动物影响的研究述评[J]. 南京林业大学学报: 自然科学版, 2018, 42(5): 179-184.] (0)
[8]
Tabaglio V, Gavazzi C, Menta C. Physico-chemical indicators and microarthropod communities as influenced by no-till, conventional tillage and nitrogen fertilisation after four years of continuous maize[J]. Soil & Tillage Research, 2009, 105(1): 135-142. (0)
[9]
Sun F, Tariq A, Chen H, et al. Effect of nitrogen and phosphorus application on agricultural soil food webs[J]. Archives of Agronomy and Soil Science, 2017, 63(8): 1176-1186. DOI:10.1080/03650340.2016.1266483 (0)
[10]
Wang S J, Tan Y, Fan H, et al. Responses of soil microarthropods to inorganic and organic fertilizers in a poplar plantation in a coastal area of Eastern China[J]. Applied Soil Ecology, 2015, 89: 69-75. DOI:10.1016/j.apsoil.2015.01.004 (0)
[11]
Zhu X Y, Zhu B. Diversity and abundance of soil fauna as influenced by long-term fertilization in cropland of purple soil, China[J]. Soil & Tillage Research, 2015, 146: 39-46. (0)
[12]
Tang Y F, Wang L Y, Carswell A, et al. Fate and transfer of heavy metals following repeated biogas slurry application in a rice-wheat crop rotation[J]. Journal of Environmental Management, 2020, 270: 110938. DOI:10.1016/j.jenvman.2020.110938 (0)
[13]
Chen G, Zhao G H, Zhang H M, et al. Biogas slurry use as N fertilizer for two-season Zizania aquatica Turcz. in China[J]. Nutrient Cycling in Agroecosystems, 2017, 107(3): 303-320. DOI:10.1007/s10705-017-9831-4 (0)
[14]
Dahiya A K, Vasudevan P. Biogas plant slurry as an alternative to chemical fertilizers[J]. Biomass, 1986, 9(1): 67-74. DOI:10.1016/0144-4565(86)90013-2 (0)
[15]
Zheng X B, Fan J B, Cui J, et al. Effects of biogas slurry application on peanut yield, soil nutrients, carbon storage, and microbial activity in an Ultisol soil in Southern China[J]. Journal of Soils and Sediments, 2016, 16(2): 449-460. DOI:10.1007/s11368-015-1254-8 (0)
[16]
Hu L, Tang J, Wu D F, et al. Effects of short-term combined application of biogas slurry and chemical fertilizers on aggregate characteristics of Shajiang black soil (In Chinese)[J]. Journal of Henan Institute of Science and Technology: Natural Science Edition, 2021, 49(3): 6-13. [胡林, 唐蛟, 吴大付, 等. 短期沼液化肥配施对砂姜黑土团聚体特征的影响[J]. 河南科技学院学报: 自然科学版, 2021, 49(3): 6-13.] (0)
[17]
Wentzel S, Schmidt R, Piepho H P, et al. Response of soil fertility indices to long-term application of biogas and raw slurry under organic farming[J]. Applied Soil Ecology, 2015, 96: 99-107. DOI:10.1016/j.apsoil.2015.06.015 (0)
[18]
Wu J C, Pan X Y, Yang Y H, et al. Effects of long-term application of biogas slurry on soil nutrient content and enzyme activity (In Chinese)[J]. Journal of Henan Agricultural Sciences, 2021, 50(7): 76-86. [武继承, 潘晓莹, 杨永辉, 等. 长期施用沼液对土壤养分含量和酶活性的影响[J]. 河南农业科学, 2021, 50(7): 76-86.] (0)
[19]
Wang W, Zhou J N, Tang Y F, et al. Effects of combined application of biogas slurry and straw on the migration and fractions of soil heavy metals in rice-wheat rotation system in coastal reclamation areas (In Chinese)[J]. Environmental Science, 2021, 42(4): 1979-1988. [王伟, 周珺楠, 汤逸帆, 等. 沼液秸秆联用对滨海围垦田土壤重金属迁移及形态变化的影响[J]. 环境科学, 2021, 42(4): 1979-1988.] (0)
[20]
Koblenz B, Tischer S, Rücknagel J, et al. Influence of biogas digestate on density, biomass and community composition of earthworms[J]. Industrial Crops and Products, 2015, 66: 206-209. DOI:10.1016/j.indcrop.2014.12.024 (0)
[21]
Pommeresche R, Løes A K, Torp T. Effects of animal manure application on springtails(Collembola)in perennial ley[J]. Applied Soil Ecology, 2017, 110: 137-145. DOI:10.1016/j.apsoil.2016.10.004 (0)
[22]
Zhang C G, Zhang Y F, Lin H T, et al. The effects of biogas sourry on continuous cropping obstacle factors in green-shed (In Chinese)[J]. Journal of Irrigation and Drainage, 2014, 33(2): 117-120. [张昌爱, 张玉凤, 林海涛, 等. 沼液漫灌对设施土壤连作障碍因子的影响[J]. 灌溉排水学报, 2014, 33(2): 117-120.] (0)
[23]
Cao L, Tang Q, Guo Y H, et al. Effect of biogas slurry application on small- and medium-sized arthropods communities in coastal reclaimed wheat fields (In Chinese)[J]. Acta Ecologica Sinica, 2022, 42(2): 646-655. [曹蕾, 唐琪, 郭俨辉, 等. 沼液施用对海岸带围垦麦田土壤中小型节肢动物群落的影响[J]. 生态学报, 2022, 42(2): 646-655.] (0)
[24]
Yin W Y. Pictorical keys to soil animals of China (In Chinese). Beijing: Science Press, 1998. [尹文英. 中国土壤动物检索图鉴[M]. 北京: 科学出版社, 1998.] (0)
[25]
Zheng L Y, Gui H. Insect classification (In Chinese). Nanjing: Nanjing Normal University Press, 1999. [郑乐怡, 归鸿. 昆虫分类[M]. 南京: 南京师范大学出版社, 1999.] (0)
[26]
González G, Seastedt T R. Comparison of the abundance and composition of litter fauna in tropical and subalpine forests[J]. Pedobiologia, 2000, 44(5): 545-555. (0)
[27]
Platen R, Glemnitz M. Does digestate from biogas production benefit to the numbers of springtails(Insecta: Collembola)and mites(Arachnida: Acari)?[J]. Industrial Crops and Products, 2016, 85: 74-83. (0)
[28]
Niyungeko C, Liang X Q, Liu C L, et al. Effect of biogas slurry application on soil nutrients, phosphomonoesterase activities, and phosphorus species distribution[J]. Journal of Soils and Sediments, 2020, 20(2): 900-910. (0)
[29]
Lu P, Xu Y P, Tan F, et al. Relationship between cropland soil arthropods community and soil properties in black soil area (In Chinese)[J]. Scientia Agricultura Sinica, 2013, 46(9): 1848-1856. [卢萍, 徐演鹏, 谭飞, 等. 黑土区农田土壤节肢动物群落与土壤理化性质的关系[J]. 中国农业科学, 2013, 46(9): 1848-1856.] (0)
[30]
Li X H, Liu S R, Wei X, et al. Soil microarthropod diversity in six subtropical forest plantations (In Chinese)[J]. Chinese Journal of Ecology, 2021, 40(5): 1458-1468. [李小涵, 刘世荣, 魏雪, 等. 南亚热带6种人工林小型土壤节肢动物群落多样性[J]. 生态学杂志, 2021, 40(5): 1458-1468.] (0)
[31]
Qiu Y, Wu P F, Wei X. Differences among three artificial grasslands in dynamics and community diversity of soil microarthropods (In Chinese)[J]. Acta Prataculturae Sinica, 2020, 29(5): 21-32. [邱月, 吴鹏飞, 魏雪. 三种人工草地小型土壤节肢动物群落多样性动态及其差异[J]. 草业学报, 2020, 29(5): 21-32.] (0)
[32]
Guo X J, He X S, Zhang H, et al. Characterization of dissolved organic matter extracted from fermentation effluent of swine manure slurry using spectroscopic techniques and parallel factor analysis(PARAFAC)[J]. Microchemical Journal, 2012, 102: 115-122. (0)
[33]
Liang F H, Yang W J, Xu L, et al. Closing extra CO2 into plants for simultaneous CO2 fixation, drought stress alleviation and nutrient absorption enhancement[J]. Journal of CO2 Utilization, 2020, 42: 101319. (0)