检索项 检索词
  土壤学报  2023, Vol. 60 Issue (3): 644-656  DOI: 10.11766/trxb202112020653
0

引用本文  

刘超华, 李凤巧, 廖杨文科, 等. 人工林对土壤地力的影响过程及其调控研究进展. 土壤学报, 2023, 60(3): 644-656.
LIU Chaohua, LI Fengqiao, LIAO Yangwenke, et al. Research Progress on Effects and Regulation of Plantation on Soil Fertility. Acta Pedologica Sinica, 2023, 60(3): 644-656.

基金项目

国家重点研发计划项目(2021YFD2201202)和国家自然科学基金(32122056,42077045)资助

通讯作者Corresponding author

李孝刚,E-mail:xgli@njfu.edu.cn

作者简介

刘超华(1995—),女,浙江舟山人,硕士研究生,主要从事人工林土壤地力研究。E-mail:18358096816@163.com
人工林对土壤地力的影响过程及其调控研究进展
刘超华1, 李凤巧1, 廖杨文科1, 李孝刚1,2    
1. 南京林业大学生物与环境学院, 南京 210037;
2. 南京林业大学南方现代林业协同创新中心, 南京 210037
摘要:土壤是支撑人工林健康生长的基础资源,是营养物质转化和生物多样性保护的主要场所。目前,我国人工林经营中土壤地力衰退问题突出,是制约我国林业生产可持续经营、增大生态安全屏障脆弱性的重要因素。因此,有必要深入认识和理解人工林土壤地力衰退的生物障碍形成及影响过程,同时开发保障人工林健康和初级生产力的关键调控技术。本文从土壤物理化学环境、土壤生物群落特性及功能等方面,系统论述了人工林土壤地力的维持机制,重点探讨了林龄结构、林分密度、树种类型、抚育管理方式等影响人工林地力的地下生态学过程。未来需要关注环境变化下人工林土壤理化性质与生物学性质的耦合机制,并进一步量化林木健康、土壤生物以及环境之间的互作关系模型,形成从造林配置、过程经营、症状诊断及土壤地力调控等全方位的人工林健康定向调控体系,保障人工林可持续、多目标经营。
关键词人工林    土壤地力衰退    生产力    生物障碍    地下生态学过程    定向调控体系    
Research Progress on Effects and Regulation of Plantation on Soil Fertility
LIU Chaohua1, LI Fengqiao1, LIAO Yangwenke1, LI Xiaogang1,2    
1. College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China;
2. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
Abstract: Forest is the main body of the terrestrial ecosystem, and plays a central role in regulating terrestrial ecological balance. At present, the total amount of forest resources are insufficient, and there are increasing demands for wood, which require the development of plantations globally. Soil is the basic resource supporting the growth of plantations and the main site for nutrient transformation and biodiversity protection. To date, the decline of soil fertility has become a serious problem in plantation management in China, severely restricting the sustainable management of forestry production and leading to an increased vulnerability of ecological security barriers. Therefore, it is important to increase our understanding of the formation and impact factors of biological barriers derived from soil fertility decline in plantations and to explore key technology for modulating plantation health and primary productivity. The present study systemically discussed the mechanism of maintaining soil fertility in plantations from soil physical and chemical properties, soil biological community characteristics and functions, and probed the underground ecological processes affecting soil fertility of plantations, including forest age structure, stand density, tree species type and tending management mode. In the future, more attention should be paid to the mechanism of coupling soil's physical, chemical, and biological properties in plantations when the environment changes. Besides, it is necessary to further quantify the interaction model among tree health, soil biology and environment, and to form a comprehensive directional system of regulating plantation health through afforestation, process management, symptom diagnosis and soil fertility modulation, so as to ensure the sustainable and multi-objective management of plantations.
Key words: Plantation    Soil fertility decline    Productivity    Biological barriers    Underground ecological processes    Directional system of regulating    

森林作为陆地生态系统的主体,是陆地生态平衡的调节中枢,是陆地生态系统中最大的碳库[1-2]。2020年联合国粮农组织发布,全球森林面积共计40.6亿hm2,约为陆地总面积的31%[3]。我国虽然具有丰富的林木种质资源,但森林资源总量不足,森林覆盖率只有全球平均水平的2/3[4]。随着经济的发展,人类对木材的需求量日益增多,发展人工林成为全球趋势。人工林作为森林重要的组成部分,具有生产力高、生长周期短、立木分布均匀等特点,合理种植人工林可以有效减缓气候变化、增加碳汇、实现碳中和以及保护生物多样性[5]。目前,全球人工林面积稳步增长,我国已成为世界上人工林保存面积最大的国家,主要人工林种类有马尾松林、杉木林、杨树林、桉树林、落叶松林、樟子松林等[6]

土壤是支撑林业发展最重要的基础资源。土壤性质影响着林木根系的分布,支撑着林木营养的获取。其中,作为人工林生态系统的关键调控者,土壤生物可加快土壤养分的归还,促进林木根系对养分的汲取;同时还能改善土壤团粒结构,为林木根系生长提供更好的伸展空间[7]。土壤地力是指土壤满足生产功能和生态系统服务的能力,由土壤物理、化学以及生物学性质共同作用的结果,是提升人工林初级生产力的关键[8]。土壤肥力或质量与林木生长和土壤养分循环密切相关,因此我国关于人工林的研究中土壤地力一词常代替为土壤肥力或土壤质量。然而,现阶段人工林普遍存在种植不合理的现象,土壤地力衰退问题突出,制约着初级生产力的提升。

从20世纪60年代初,我国开始杉木人工林土壤地力衰退问题的研究,80年代以后,关于杉木、桉树等人工林经营对土壤地力影响的研究日益增多[9]。樟子松作为我国三北防护林工程的重要树种,由于长期纯林连作,自20世纪90年代初,出现不同程度的地力衰退现象[10]。研究发现樟子松人工林土壤养分贫瘠化,主要表现为磷元素的亏缺,同时土壤微生物和土壤酶的活性弱化,严重影响樟子松林生态系统的健康稳定[11]。然而,目前相关研究多集中揭示人工林下土壤地力的演变特征及其调控过程,关于人工林土壤菌群间相互作用以及微生物组功能代谢与人工林系统土壤养分周转的研究仍较少,且土壤有害生物影响人工林健康的机理问题亟待系统研究。

本文着重从人工林经营对土壤理化性质、生物学性质影响方面,探讨人工林土壤地力的维持过程及调控机制,并简要论述人工林土壤地力提升的主要调控方向,以期为提升人工林土壤地力水平提供参考。

1 我国人工林概况

我国人工林发展迅速,种植面积位居世界第一,已逐步成为木材的主要供应源。根据第九次全国森林资源清查结果显示,我国人工林面积约80.0× 106 hm2,占全国森林面积的36.3%,面积从大到小依次分布在广西、广东、内蒙古、云南、四川以及湖南等省(自治区);人工林蓄积约33.9×108 m3,占全国森林蓄积的19.3%,从大到小依次分布在广西、福建、四川、云南以及广东等省(自治区)[12]。其中,广西人工林面积最大,蓄积量最多,分别约73.4×105 hm2和34.5×107 m3[12]。按用途类型,人工林可分为用材林、薪炭林、经济林以及防护林等;树种类型上,主要为马尾松林、杨树林、杉木林以及桉树林等(表 1)。人工林造林方式主要分为纯林和混交林两种[12]。现阶段,所营造的人工林主要以中幼龄林为主,树种结构单一,立地条件较差,稳定性低,生产力总体不高,普遍存在土壤地力衰退的问题,已成为制约我国林业可持续发展的重要障碍因素[413]

表 1 我国主要人工林类型及特点 Table 1 Types and characteristics of main plantations in my country
2 人工林对土壤理化性质的影响及过程

人工林可通过地下根-土互作和地上凋落物降解对土壤理化性质产生影响,而这一影响与人工林的林分结构和抚育管理方式有关(图 1)。首先,人工林土壤理化性质对林龄的变化响应敏感。相比于幼龄林,成熟林土壤根系密度和伸展增大,这使得土壤通气性和透水性增强,土壤总孔隙度得到改善,从而导致林地土壤容重减小。同时,林分发育导致凋落物含量显著增加,这为土壤团聚体的形成提供了丰富的胶结物质,有利于土壤结构的稳定。研究发现,刺槐人工林和兴安落叶松林在中龄期和近熟林期生长迅速,林木根系代谢活性增加,提高了养分吸收速率,进而影响土壤养分的分配格局,导致土壤有机碳、全氮等物质的消耗大于积累[19-20]。还有研究发现,随着尾细桉和华北落叶松人工林林龄的增加,其根系从土壤中吸收大量的矿物离子,使土壤中氢离子含量相对较高,增加了土壤酸性[21-22]。华北落叶松人工林凋落物中含有树脂、木质素等物质会分解产生富里酸水溶液,且随着林龄增加,土壤酸性加剧[22]。此外,随着林分发育,土壤酸化促使无机磷转化为团聚体内磷或闭蓄态磷,降低土壤磷有效性[23]

图 1 人工林对土壤理化性质的影响及过程 Fig. 1 Change factors and processes of soil physical and chemical properties in plantation

人工林树种类型特别是针、阔或混交林对土壤有机碳的积累作用影响差异明显。通常情况下,阔叶和混交林地具有比针叶林地更高的土壤有机碳储量[24]。一方面,树种差异会引起人工林地表凋落物碳、氮含量及碳氮比差异,从而导致凋落物分解及释放到土壤的养分速率不同[25-26]。通常,针叶林凋落物量相对较少,且含有单宁、木质素等难以降解的物质,具有较低的养分释放速率[27]。另一方面,不同树种的地下根系特性和细根周转速率对土壤中有机碳的积累作用存在差异。研究发现,杉木、杨树林地细根周转率与土壤有机碳含量呈正相关,说明细根周转对人工林土壤碳平衡和养分循环具有重要作用[28-29]。此外,阔叶林较高的根系密度有利于土壤大团聚体的形成,尤其是根系分泌物中存在的大量黏胶物质对土壤团聚体的形成和稳定性具有直接影响[30],使得有机碳封存免受微生物的分解和矿化。

人工林林分密度会直接影响凋落物的数量,并通过水分、光、热等非生物因素调控凋落物分解速率,从而间接影响土壤养分物质周转。研究发现杉木人工林林分密度与土壤有机质的含量之间呈负相关性[31],通常较高的林分密度会减弱人工林的透光性,改变光降解能力,从而进一步影响凋落物自身的理化性质,使其不易淋溶和分解。在栽植密度为2 500、3 300、4 500和6 000株·hm–2的马尾松人工林中,密度较低(3 300株·hm–2)林分的凋落物含量丰富,土壤疏松、透气性和持水性好,这有利于根系的伸展和生长,加快土壤养分循环[32]

人工林抚育管理方式也是影响土壤理化性质的重要因素。通过间伐等调控措施可改善林内郁闭度间接影响林分小气候,提高林木的根系活力和周转速率,从而加快凋落物的分解,降低土壤容重,加速团粒结构的形成,使土壤结构得到改善。有研究发现,柳树人工林长期连作会造成土壤有机碳贮量减低,土壤容重增加,适当施肥可改善土壤结构和养分含量[33]。但不合理的施肥会破坏人工林土壤的团粒结构,导致土壤养分失衡,加速土壤退化[34]。例如,过量施用氮肥会加剧土壤酸化和板结现象,降低土壤C/N,加快土壤有机碳的矿化分解;而配施磷肥可增加土壤碱解氮、有效磷、有机碳等养分含量,促进林木生长[35-36]

综上,人工林可通过凋落物分解、地下根系周转以及林地管理等过程影响土壤理化性质,然而,充分认识这一影响过程有利于深入理解人工林土壤地力的维持和长期生产力高效形成过程(图 2)。

图 2 人工林对土壤地力的影响过程 Fig. 2 Effects of plantation on soil fertility
3 人工林对土壤生物学性质的影响及过程 3.1 人工林对土壤动物的影响

土壤动物(包括线虫、蚯蚓等)作为人工林生态系统中的消费者,能加速分解堆积在地表的枯枝落叶等物质,有利于土壤团粒结构的形成和微生物菌群活性的提升,从而提高土壤肥力[37]。与大多数人工针叶纯林相比,混交林地上凋落物的增加会吸引大量的腐食性土壤动物的取食;同时,地下生物量的增加为土壤动物提供了更适宜的栖息场所,有利于激发土壤动物活性[38],并进一步影响人工林凋落物的分解速率和营养周转[39]。此外,阔叶树种较高的根系密度有利于土壤团聚体的形成,为小型土壤动物如蚯蚓、线虫等提供更好的生存空间。

有意思的是,有研究发现人工林林窗大小会通过调控林地光照、土壤有机质、土壤水分和孔隙度等因素[40],间接影响人工林土壤动物的活动。例如,随着巨桉人工林林分密度的降低,林内光照增强,立地受光面积增大、土温升高,利于中小型杂食性、腐食性和菌食性土壤动物的生存,并进一步加快凋落物的分解速率[41]。此外有研究发现,林龄结构与土壤动物的密度、多样性和组成之间呈正相关性,这极可能由不同林龄结构中土壤动物可食用食物的数量和质量存在差异所致[42]。例如,相较于幼龄阶段,云杉和杨树人工林在成熟期存在较高的林下植被生物量、细根生物量和凋落物含量,提供给土壤动物取食的食物变多,这就使得土壤中节肢动物的密度增大[43-45]

3.2 人工林对土壤微生物的影响

土壤微生物是人工林生态系统中潜在的管理者,对所处环境的变化非常敏感,是土壤养分供给、转换和循环的主要调控者。通常,土壤微生物群落多样性越高,越有利于提高土壤的恢复力与抗压力,对植物促生抗逆性的提升发挥重要驱动作用[46-47]。一些微生物种群通过竞争、溶菌作用抑制病原真菌的生长发育,进而促进林木根系生长和抗病能力[48-49]。人工林生态系统可通过凋落物、植物根系分泌物以及与菌根真菌互作等过程调控林地土壤微生物群落多样性[50]

人工林林分构成及林龄是影响土壤微生物群落分布和代谢活性的关键因素。研究发现,相较于针叶林,阔叶林具有较高的根系密度能改善土壤孔隙的分布,利于土壤微生物的生长和繁殖,加快了土壤养分的周转。相较于阔叶林,针叶林通常凋落物量少,而难以分解的物质(如单宁、木质素等)含量较高,分解过程中产生脂肪族羟基酸和芳香族羟基酸而引起土壤酸化,进而抑制土壤微生物活性[27]。与幼龄阶段相比,杉木人工林在成熟期具有发达且完整的菌根系统,菌根真菌可以通过改变植物根系的物理结构和菌根际的化学成分,间接调控林地土壤微生物群落[51]

林下植被凋落物通常具有较低的碳氮比和木质素含量,易于分解,因此改善林下植被的多样性可以更好地为土壤微生物提供基质,从而有助于提高土壤微生物的多样性和代谢活性[52-53]。通过抚育间伐等调控措施可适当降低林分密度,增加林木间的透光性,促进林下植被的生长,增加凋落物量,加快土壤腐生菌的分解速率和养分循环[54-56]。通常,低密度林林下植被种类较多,生长较好,具有较高的细根生物量和凋落物种类,有利于提高土壤固碳能力,为土壤微生物提供更丰富的碳源,进而改善土壤微生物群落结构和加快土壤养分周转[57-59]

3.3 人工林对土壤生物功能的影响

在人工林生态系统中,土壤生物功能的实现主要借助于土壤酶来完成。例如,营养元素的转化和循环(如碳、氮、磷循环等)主要受到植物根系分泌物、土壤微生物和土壤动物分泌的酶驱动的影响,其活性高低一定程度上反映土壤养分转化能力的强弱[60-62]。研究发现,过高的林分密度和郁闭度会减少林木间的透光性,导致人工林下土壤的水肥气热条件变差,削弱酶的活性,从而降低土壤营养元素的生物利用度,不利于养分积累[63-64]。对杉木人工林而言,较低的林分密度会促进林下植被的生长,增加凋落物量,为土壤微生物提供更多的有机物质,有利于土壤微生物分泌更多相关酶[65]

此外,混交林生态系统具有更高的根系分泌物代谢谱,其含有的多糖物质有利于土壤团聚体的稳定性,为微生物生理功能的实现提供良好的空间环境[6266]。同时,混交林中凋落物分解速率较快,加速了土壤有机碳的周转,促进土壤微生物群落演变[67-6862]。研究发现,在马占相思-巨桉混交林中凋落物量的增加可以促进两者菌根的发育,显著提升磷酸酶活性,从而促进有机磷转化成易被植物直接吸收的矿物磷酸盐,增加土壤和植物凋落物中磷的有效性[69]。有意思的是,相关研究还发现,相比于外生菌根树种,丛枝菌根树种凋落物质量较高,初期分解速度相对较快,可利用底物较丰富,这使得丛枝菌根树种中酶活性较高,并最终导致与外生菌根树林土壤碳、氮循环的差异[6070-71]。此外,随着人工林林龄的增加,林下植被生物量和凋落物含量增多,使得微生物活性增加,加强了微生物生命活动对土壤氮素的竞争,进而影响土壤酶活性和养分循环[72]

综上,土壤动物、微生物及其生态功能是支撑人工林生态系统物质循环、营养转化及抗逆性提升的关键驱动因素,而人工林系统可通过凋落物、根系分泌物、根际菌根互作以及林地环境等主要生态过程,调控其土壤生物在人工林土壤地力维持的作用(图 2)。适宜的林分结构和抚育管理方式有利于调动土壤生物参与生态系统主要生态过程的能力,加强土壤地力维持的可持续性,进而提升人工林初级生产力。

4 人工林土壤病害及其成因

人工林土壤病害是人工林健康和生产力的潜在威胁,逐渐成为人工林土壤地力维持的重要障碍因素(图 2)。人工林土传性病原真菌主要包括串珠镰刀菌属(Fusarium moniliforme)、尖孢镰刀菌(F. oxysporum)、立枯丝核菌(Rhizoctonia solani)、青枯雷尔氏菌(Ralstonia solanacearum)和腐霉属(Pythium)等[73-76]

纯林连作引起土壤微生物多样性和活性下降,降低了土壤对病原菌的抑制性作用。例如,桉树人工林长期连作导致土壤酸化加剧,使土壤微生物群落结构发生变化,容易受到青枯雷尔氏菌(Ralstonia solanacearum)和青枯假单胞菌(Pseudomonas solanacarum)等土传病原菌的侵染,导致桉树人工林青枯病上升[75]。而且,青枯菌种群多样性高,在根际定殖时会发生移动、趋化、群体感应等行为,增强致病性[77]。此外,桉树人工林还易受丽赤壳属(Calonectria)真菌的侵染,使林木感染焦枯病和叶腐病[78]。研究发现,茶树多年连作会使其根系分泌大量有机酸等自身代谢产物引起土壤酸化,导致茶树根际微生物群落结构失衡,主要表现为有益细菌(如假单胞菌(Pseudomonas)、产黄杆菌(Rhodanobacter)、分枝杆菌(Mycobacterium)、慢生根瘤菌(Bradyrhizobium)、鞘氨醇单胞菌(Sphingomonas)等)的急剧减少,病原真菌(如链格孢菌(Alternaria))的不断增加,加重土壤病害[79]

也有研究发现,长期连作林木选择性地吸收养分以及不科学施肥等导致的营养元素比例失衡,会使林木新陈代谢失调,抗病能力减弱。例如,罹病植物根际土壤有效磷亏缺,而其它营养元素富集,促使病害的发生[80]。云杉及赤松等人工林由于受到丝核菌属(Rhizoctonia)、镰刀菌属(Fusarium)和腐霉属(Pythium)等土传病原菌的侵染会影响其吸收土壤水分和养分的能力,使根腐病发生率增加[76]。同时,随着氮沉降的加剧,硝化过程释放出大量H+会导致土壤酸化,改变土壤有益菌、病原菌的丰度和功能,在制约人工林土壤地力提升方面应引起重视[81]。除此之外,过量的氮添加会使植物对菌根的依赖性降低,从而减弱外生菌根真菌侵染植物根系的能力[82-83]。研究表明,外生菌根真菌对病原真菌的拮抗作用可增强林木抗病性。其中,菌套等的物理结构是根系有效保护层,阻挡病原菌对根部的直接侵袭;同时外生菌根共生体产生的抗生素、草酸等化学物质对病原菌具有一定的拮抗作用[84-87]

5 人工林生产力提升的调控措施及技术

由上述论述,土壤地力的维持能有效提升人工林生产力,实施定向改善人工林土壤地力的调控措施及技术显得十分重要。因此,需注重从土壤施肥优化、林木经营管理以及造林配置等方面调控人工林生态系统凋落物回归,地下根-土互作以及林地环境改善,从而维持人工林初级生产力可持续的实现(图 3)。

图 3 人工林生产力提升的调控措施及技术 Fig. 3 Regulation measures and technologies for productivity improvement of plantation
5.1 人工林施肥调控技术

施肥可通过影响土壤理化性质及生物活性来维持人工林土壤地力。当前,人工林施肥方式仍处于粗放型管理模式,对于施肥重要性的认识依然不足,存在肥料种类单一、施肥方式简单以及盲目施肥的现象。例如,通常注重施用化肥类基肥以增强林木的前期定植和生长,忽略了施肥与人工林不同发育阶段养分需求的匹配关系[88]。近些年来,土壤微生物在土壤养分活化中的作用理论不断深化,尤其是基于“适地适树适菌”的重要造林树种根际关键微生物类群生理功能及其对林木生长的调控作用受到不断关注[489]。通过定向调控土壤微生物来维持人工林土壤地力,提高人工林生产力一直是研究热点。通过添加定向筛选制备的生物菌肥可以促进根际有益微生物的定殖,增强人工林的抗病性,改善土壤微环境,维持人工林土壤地力的稳定和养分动态平衡(图 3)。但是,目前多数生物菌肥均存在稳定性差、针对性不强及见效慢等问题,未来不仅要寻找简洁、高效的微生物,还要结合营养诊断技术共同维持、改善人工林土壤地力。

5.2 人工林经营管理技术

人工林可通过生态系统经营管理达到森林与环境之间关系的协调,保障人工林生产力稳定提升。其中,适宜轮作或合理植物伴生有利于提高人工林生产力(图 3)。例如,杉木作为我国主要的人工林类型,可采取与木本豆科树种轮作以增加土壤地力。一些人工林也可通过人工促进天然更新的方式经营人工林,如:人工补植、林冠下更新等。抚育间伐是人工林经营管理中常见的育林手段。林分密度过高时,合理间伐会增加土壤温度、湿度,有利于土壤微生物和酶活性增加,加速凋落物和细根的周转,进而增加土壤有机碳含量[90-91]。人工林生长的不同阶段应采取区别性的抚育间伐措施,通常可分为透光伐、除伐、疏伐和生长伐。根据林分恢复郁闭的速度选择合理的抚育间伐间隔期也是人工林经营管理需要重视的内容。通常情况下,透光抚育的间隔期为3~5年,生长抚育的间隔期为7~15年。间伐强度过高往往导致人工林中的小气候发生急剧变化,不利于人工林的生长。然而这些技术措施大多缺乏完备的体系,未来需结合现代科学手段,如运用森林生长收获模型评估人工林初级生产力的可持续性[4],从而充分认识生态系统经营管理技术对人工林土壤地力维持及生产力提升的调控机理。

5.3 人工林造林配置技术

人工林造林配置方式通过影响单株林木生长空间进而影响人工林的初级生产力(图 3)。值得注意的是,不同树种适宜生长的造林密度各不相同,通常造林密度与林木胸径的生长、林木单株冠幅、林木高度的生长和生物量具有显著的负相关性[92]。种植点配置方式也是影响人工林生产力的关键因素,它通常指一定密度的植株在造林地的分布、排列形式。林木分布、排列方式直接影响林木间的透光性和土壤水热环境[93],从而改变林分地上、地下部分的生长状态[94],影响土壤微生物和土壤酶活性等调控土壤养分周转的能力。林木的配置方式通常分为正方形、长方形、三角形和群状配置四种。通常,“宽行窄距”的长方形配置是提高群体生产力的有效配置方式[95]。幼龄林地通常采用群状配置方式种植,有利于加快林木郁闭,抵抗不良环境。营造混交林也是一项具有实际意义的调控措施。混交林善于通过化感作用、竞争等方面改善种间关系,使地上-地下生物量增加,利于土壤生物的生存和菌根的发育。根据种间关系特点和林分生长状况,混交造林方式可分为星状混交、株间混交、带状混交、行间混交、块状混交、不规则混交、植生组混交等。因此,应结合不同树种的生理特性及环境适应特点,合理应用人工林高效、便捷的配置技术。

6 结论与展望

人工林的健康发展对实现碳中和、减缓气候变化以及保护生物多样性具有至关重要的作用。人工林土壤地力的维持能有效提升人工林生产力,然而,长期单一化种植人工林使土壤地力衰退问题突出,表现为地上林木定向诱导土壤理化环境、生物活性和多样性协同的生态功能退化。国内外学者围绕人工林土壤碳循环、不同条件下人工林土壤肥力特征及影响因素、土壤微生物群落组成及群落多样性等,开展了长期系统的研究。为深入认识人工林土壤地力维持的过程机理,有效提高人工林初级生产力潜能,相关研究还需从以下方面开展。

1)研究内容。气候变化、环境污染以及人为扰动会直接或间接地影响人工林土壤生物及其相关的地下生态过程和功能,未来需要重点关注全球环境变化下人工林土壤理化性质与生物学性质的耦合机制及生态过程。对于人工林土壤病原菌制约生产力的研究也存在不足,特别是人工林土壤病害影响人工林健康的机理亟待揭示,重点探究林木抗病基因型-气候-病原菌影响人工林病害发生的互作关系。这些机理问题的研究将会为人工林土壤地力可持续维持以及初级生产力有效提升提供重要科学依据和支撑。

2)研究技术。为更好地理解人工林土壤地力维持与生物多样性功能,应加强宏基因组、宏转录组、宏代谢组和宏蛋白质组等土壤组学技术的应用。同时,结合传统的生物分离培养、单细胞分选以及同位素标记等技术手段,获取人工林土壤中有特定功能的微生物资源以及林木共生菌系统的动态特征,聚焦它们在人工林生态系统的根系-土壤、凋落物-土壤及植被-环境等关键交互界面上的调控作用。

3)调控措施。构建提升人工林生产力的林木-土壤-生物等链条式、多营养级的调控技术体系。例如,通过优化造林配置方式,定期营造合理的林分密度,并结合营养诊断技术调控施肥应用,以加强人工林土壤地力维持的可持续性,提高初级生产力的实现。然而,调控措施易受土壤地理环境、林木生物特性及人为干扰等因素制约,今后需进一步量化林木健康、土壤生物以及环境之间的互作关系模型,形成从造林配置-过程经营-症状诊断等全方位的人工林健康定向调控体系,保障人工林可持续、多目标经营。

致谢 感谢中国林业科学研究院亚热带林业研究所袁志林研究员对本文的建议。

参考文献
[1]
Li M J. Carbon stock and sink economic values of forest ecosystem in the forest industry region of Heilongjiang Province, China[J]. Journal of Forestry Research, 2021. DOI:10.1007/s11676-021-01347-3 (0)
[2]
Cui X W, Liang J, Lu W Z, et al. Stronger ecosystem carbon sequestration potential of mangrove wetlands with respect to terrestrial forests in subtropical China[J]. Agricultural and Forest Meteorology, 2018, 249: 71-80. DOI:10.1016/j.agrformet.2017.11.019 (0)
[3]
The Food and Agriculture Organization. Global Forest Resources Assessment 2020[M]. United Nations: The Food and Agriculture Organization, 2020. https://www.fao.org/forest-resources-assessment/2020/en/. (0)
[4]
Zhao G L, Li X, Zeng Q Y, et al. The key scientific questions for demand-oriented basic researches in forestry (In Chinese)[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(4): 394-402. DOI:10.16262/j.cnki.1000-8217.2019.04.014 [赵桂玲, 李响, 曾庆银, 等. 基于需求导向的林学基础研究关键科学问题[J]. 中国科学基金, 2019, 33(4): 394-402.] (0)
[5]
Wingfield M J, Brockerhoff E G, Wingfield B D, et al. Planted forest health: The need for a global strategy[J]. Science, 2015, 349(6250): 832-836. DOI:10.1126/science.aac6674 (0)
[6]
Farooq T H, Shakoor A, Wu X H, et al. Perspectives of plantation forests in the sustainable forest development of China[J]. iForest - Biogeosciences and Forestry, 2021, 14(2): 166-174. DOI:10.3832/ifor3551-014 (0)
[7]
Doran J W, Zeiss M R. Soil health and sustainability: Managing the biotic component of soil quality[J]. Applied Soil Ecology, 2000, 15(1): 3-11. DOI:10.1016/S0929-1393(00)00067-6 (0)
[8]
Xue L, Kuang L G, Chen H Y, et al. Soil nutrients, microorganisms and enzyme activities of different stands (In Chinese)[J]. Acta Pedologica Sinica, 2003, 40(2): 280-285. [薛立, 邝立刚, 陈红跃, 等. 不同林分土壤养分、微生物与酶活性的研究[J]. 土壤学报, 2003, 40(2): 280-285.] (0)
[9]
Sheng W T, Fan S H. Study on the mechanism of maintaining long-term productivity of plantation: Background, present condition and trends (In Chinese)[J]. Forest Research, 2004, 17(1): 106-115. [盛炜彤, 范少辉. 人工林长期生产力保持机制研究的背景、现状和趋势[J]. 林业科学研究, 2004, 17(1): 106-115.] (0)
[10]
Song L N, Zhu J J, Zheng X. Forestation and management scheme of Pinus sylvestris var. mongolica plantations in sandy lands based on their decline mechanisms (In Chinese)[J]. Chinese Journal of Ecology, 2017, 36(11): 3249-3256. [宋立宁, 朱教君, 郑晓. 基于沙地樟子松人工林衰退机制的营林方案[J]. 生态学杂志, 2017, 36(11): 3249-3256.] (0)
[11]
Zhao S Y, Li J T, Sun X K, et al. Responses of soil and plant stoichiometric characteristics along rainfall gradients in Mongolian pine plantations in native and introduced regions (In Chinese)[J]. Acta Ecologica Sinica, 2018, 38(20): 7189-7197. [赵姗宇, 黎锦涛, 孙学凯, 等. 樟子松人工林原产地与不同自然降水梯度引种地土壤和植物叶片生态化学计量特征[J]. 生态学报, 2018, 38(20): 7189-7197.] (0)
[12]
中国林业科学研究院林业科技信息研究所. 林业专业知识服务系统[DB/OL]. [2021-12-02]. http://forest.ckcest.cn/sd/si/zgslzy.html.
Research Institute of Forestry Policy and Information, Chinese Academy of Forestry. Forestry Knowledge Service System[DB/OL]. [2021-12-02]. http://forest.ckcest.cn/sd/si/zgslzy.html. (0)
[13]
Chen X L, Ju Q, Lin K L. Development status, issues and countermeasures of China's plantation (In Chinese)[J]. World Forestry Research, 2014, 27(6): 54-59. [陈幸良, 巨茜, 林昆仑. 中国人工林发展现状、问题与对策[J]. 世界林业研究, 2014, 27(6): 54-59.] (0)
[14]
Wang J Y, Deng Y S, Li D Y, et al. Characteristics of soil macropores and their influence on saturated hydraulic conductivity of successive Eucalyptus plantation (In Chinese)[J]. Acta Ecologica Sinica, 2021, 41(19): 7689-7699. [王金悦, 邓羽松, 李典云, 等. 连栽桉树人工林土壤大孔隙特征及其对饱和导水率的影响[J]. 生态学报, 2021, 41(19): 7689-7699.] (0)
[15]
Li J P, Chen X L, Zhu N H, et al. Study on selection of main fuel-wood forest tree species in South China and combustion characteristics of wood pellets of fuel-wood trees (In Chinese)[J]. Journal of Central South University of Forestry & Technology, 2013, 33(12): 126-129. [李际平, 陈喜龙, 朱宁华, 等. 南方薪炭林树种选择及其木质颗粒燃烧特性研究[J]. 中南林业科技大学学报, 2013, 33(12): 126-129.] (0)
[16]
Lan G Y, Li Y W, Wu Z X, et al. Soil bacterial diversity impacted by conversion of secondary forest to rubber or Eucalyptus plantations: A case study of Hainan Island, South China[J]. Forest Science, 2017, 63(1): 87-93. DOI:10.5849/forsci.16-012 (0)
[17]
Zhu Y C. Analysis of the economic forest development status, existing problems and countermeasure in China (In Chinese)[J]. China Forestry Economics, 2020(3): 89-91. [朱熠晟. 我国经济林发展现状、存在问题及对策分析[J]. 中国林业经济, 2020(3): 89-91.] (0)
[18]
Zhang H, Cao J, Wang H B, et al. Water utilization characteristics of the degraded poplar shelterbelts in Zhangbei, Hebei, China (In Chinese)[J]. Chinese Journal of Applied Ecology, 2018, 29(5): 1381-1388. [张欢, 曹俊, 王化冰, 等. 张北地区退化杨树防护林的水分利用特征[J]. 应用生态学报, 2018, 29(5): 1381-1388.] (0)
[19]
Li K, Han X, Ni R Q, et al. Impact of Robinia pseudoacacia stand conversion on soil properties and bacterial community composition in Mount Tai, China[J]. Forest Ecosystems, 2021, 8(1): 253-264. (0)
[20]
Wang B, Zhang P J, Zhang Q L. Relationship between soil total organic carbon and physicochemical properties in Larix gmelinii forests at different ages (In Chinese)[J]. Journal of Northwest A & F University: Natural Science Edition, 2021, 49(10): 36-45. [王冰, 张鹏杰, 张秋良. 不同林龄兴安落叶松林土壤总有机碳与理化性质的关系[J]. 西北农林科技大学学报: 自然科学版, 2021, 49(10): 36-45.] (0)
[21]
Zhang P J, Xu J M, Lu W H, et al. Plant diversity and soil physicochemical properties under different aged Eucalyptus urophylla×Eucalyptus tereticornis plantations in Leizhou Peninsula (In Chinese)[J]. Journal of Central South University of Forestry & Technology, 2021, 41(9): 96-105. [张沛健, 徐建民, 卢万鸿, 等. 雷州半岛不同林龄尾细桉人工林植物多样性和土壤理化性质分析[J]. 中南林业科技大学学报, 2021, 41(9): 96-105.] (0)
[22]
Zhao H Y, Xu F L, Wang W L, et al. Soil nutrients and enzyme activities in Larix principis-rupprechtii plantations in the Qinling Mountains, China (In Chinese)[J]. Acta Ecologica Sinica, 2015, 35(4): 1086-1094. [赵海燕, 徐福利, 王渭玲, 等. 秦岭地区华北落叶松人工林地土壤养分和酶活性变化[J]. 生态学报, 2015, 35(4): 1086-1094.] (0)
[23]
Ren C Q, Wang J C, Cheng H T, et al. Effects of rubber (Hevea brasiliensis) plantations on soil phosphorus fractions and microbial community composition (In Chinese)[J]. Acta Ecologica Sinica, 2017, 37(23): 7983-7993. [任常琦, 王进闯, 程汉亭, 等. 不同林龄橡胶(Hevea brasiliensis)林土壤微生物群落和磷组分的变化[J]. 生态学报, 2017, 37(23): 7983-7993.] (0)
[24]
Yu M X, Wang Y P, Jiang J, et al. Soil organic carbon stabilization in the three subtropical forests: Importance of clay and metal oxides[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(10): 2976-2990. DOI:10.1029/2018JG004995 (0)
[25]
Vesterdal L, Schmidt I K, Callesen I, et al. Carbon and nitrogen in forest floor and mineral soil under six common European tree species[J]. Forest Ecology and Management, 2008, 255(1): 35-48. DOI:10.1016/j.foreco.2007.08.015 (0)
[26]
Norris M D, Avis P G, Reich P B, et al. Positive feedbacks between decomposition and soil nitrogen availability along fertility gradients[J]. Plant and Soil, 2013, 367(1/2): 347-361. (0)
[27]
Yang C D. Decline of quantity and quality of soil organic matter is the key factor restricting the growth of plantation in China (In Chinese)[J]. Scientia Silvae Sinicae, 2016, 52(12): 1-12. DOI:10.11707/j.1001-7488.20161201 [杨承栋. 我国人工林土壤有机质的量和质下降是制约林木生长的关键因子[J]. 林业科学, 2016, 52(12): 1-12.] (0)
[28]
Wang Q, Teng Z, Wang J J, et al. Elevation distribution of fine root biomass and soil organic carbon storage of mature Chinese fir (Cunninghamia lanceolata) plantations in East China[J]. Polish Journal of Ecology, 2020, 68(1): 84-93. DOI:10.3161/15052249PJE2020.68.1.007 (0)
[29]
He Y T, Shi P L, Zhang X Z, et al. Fine root production and turnover of poplar plantation in the Lhasa river valley, Tibet Autonomous Region (In Chinese)[J]. Acta Ecologica Sinica, 2009, 29(6): 2877-2883. [何永涛, 石培礼, 张宪洲, 等. 拉萨河谷杨树人工林细根的生产力及其周转[J]. 生态学报, 2009, 29(6): 2877-2883.] (0)
[30]
Wang Z H, Fang H, Chen M H. Effects of root exudates of woody species on the soil anti-erodibility in the rhizosphere in a Karst region, China[J]. PeerJ, 2017, 5: e3029. DOI:10.7717/peerj.3029 (0)
[31]
Shu W W, Lu L H, Li H, et al. Effects of stand density on understory vegetation and soil properties of Cunninghamia lanceolata plantation (In Chinese)[J]. Acta Ecologica Sinica, 2021, 41(11): 4521-4530. [舒韦维, 卢立华, 李华, 等. 林分密度对杉木人工林林下植被和土壤性质的影响[J]. 生态学报, 2021, 41(11): 4521-4530.] (0)
[32]
Li P, Chen X, Yang Z Q, et al. Effects of litter input on soil physical and chemical properties of Pinus massoniana plantations with different densities (In Chinese)[J]. Journal of Soil and Water Conservation, 2022, 36(2): 368-377. [李鹏, 陈璇, 杨章旗, 等. 不同密度马尾松人工林枯落物输入对土壤理化性质的影响[J]. 水土保持学报, 2022, 36(2): 368-377.] (0)
[33]
Lin Y X, Ye G P, Kuzyakov Y, et al. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa[J]. Soil Biology & Biochemistry, 2019, 134: 187-196. (0)
[34]
Chen Y H, Li S S, Liu N, et al. Effects of different types of microbial inoculants on available nitrogen and phosphorus, soil microbial community, and wheat growth in high-P soil[J]. Environmental Science and Pollution Research International, 2021, 28(18): 23036-23047. DOI:10.1007/s11356-020-12203-y (0)
[35]
Mao Q G, Lu X K, Zhou K J, et al. Effects of long-term nitrogen and phosphorus additions on soil acidification in an N-rich tropical forest[J]. Geoderma, 2017, 285(1): 57-63. (0)
[36]
Jin Y D, Bai Y F, Shen Y Y, et al. Effects of fertilization and litter addition on soil nutrient and soil microbial properties of Chinese fir plantation (In Chinese)[J]. Journal of Huazhong Agricultural University, 2021, 40(5): 72-80. [靳云铎, 白彦锋, 沈杨阳, 等. 施肥和凋落物添加对杉木人工林土壤养分和土壤微生物特性的影响[J]. 华中农业大学学报, 2021, 40(5): 72-80.] (0)
[37]
Peguero G, Sardans J, Asensio D, et al. Nutrient scarcity strengthens soil fauna control over leaf litter decomposition in tropical rainforests[J]. Proceedings Biological Sciences, 2019, 286(1910): 20191300. (0)
[38]
Tian L, Hu M M, Yang J Y. Reviews on the effects of forest managements on soil fauna (In Chinese)[J]. Forestry and Ecological Sciences, 2021, 36(1): 1-7. [田龙, 扈梦梅, 杨晋宇. 森林经营对土壤动物影响研究进展[J]. 林业与生态科学, 2021, 36(1): 1-7.] (0)
[39]
Li M, Wu P F, Wang Y. Vertical distributions of soil fauna communities on the eastern slope of Gongga Mountain (In Chinese)[J]. Acta Ecologica Sinica, 2015, 35(7): 2295-2307. [李萌, 吴鹏飞, 王永. 贡嘎山东坡典型植被类型土壤动物群落特征[J]. 生态学报, 2015, 35(7): 2295-2307.] (0)
[40]
Schliemann S A, Bockheim J G. Influence of gap size on carbon and nitrogen biogeochemical cycling in Northern hardwood forests of the Upper Peninsula, Michigan[J]. Plant and Soil, 2014, 377(1/2): 323-335. (0)
[41]
Zhang A J, Zhang J, Li J J, et al. Characteristics of soil faunal community structure before and after the rotation period of Eucalyptus grandis plantations with various densities (In Chinese)[J]. Acta Ecologica Sinica, 2020, 40(3): 808-821. [张阿娟, 张健, 李金金, 等. 轮伐期前后不同密度巨桉(Eucalyptus grandis)人工林土壤动物群落结构特征[J]. 生态学报, 2020, 40(3): 808-821.] (0)
[42]
Bokhorst S, Wardle D A, Nilsson M C, et al. Impact of understory mosses and dwarf shrubs on soil micro-arthropods in a boreal forest chronosequence[J]. Plant and Soil, 2014, 379(1/2): 121-133. (0)
[43]
Salmon S, Artuso N, Frizzera L, et al. Relationships between soil fauna communities and humus forms: Response to forest dynamics and solar radiation[J]. Soil Biology & Biochemistry, 2008, 40(7): 1707-1715. (0)
[44]
Salmon S, Mantel J, Frizzera L, et al. Changes in humus forms and soil animal communities in two developmental phases of Norway spruce on an acidic substrate[J]. Forest Ecology and Management, 2006, 237(1/2/3): 47-56. (0)
[45]
Yan M F, Guo N, Ren H R, et al. Autotrophic and heterotrophic respiration of a poplar plantation chronosequence in northwest China[J]. Forest Ecology and Management, 2015, 337: 119-125. (0)
[46]
Coban O, de Deyn G B, van der Ploeg M. Soil microbiota as game-changers in restoration of degraded lands[J]. Science, 2022, 375(6584): abe0725. (0)
[47]
Wei Z, Gu Y A, Friman V P, et al. Initial soil microbiome composition and functioning predetermine future plant health[J]. Science Advances, 2019, 5(9): eaaw0759. (0)
[48]
Jiang H Y, Di J L, Cong L, et al. Resistance of four endophytic fungi to Fusarium sp. of Picea mongolica (In Chinese)[J]. Journal of Zhejiang A & F University, 2021, 38: 1-8. [姜海燕, 狄佳麟, 丛林, 等. 4株内生真菌对沙地云杉立枯病的抗病作用[J]. 浙江农林大学学报, 2021, 38: 1-8.] (0)
[49]
Verma S K, White J F. Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntop millet (Urochloa ramosa L.)[J]. Journal of Applied Microbiology, 2018, 124(3): 764-778. (0)
[50]
Ding X X, Liu G L, Fu S L, et al. Tree species composition and nutrient availability affect soil microbial diversity and composition across forest types in subtropical China[J]. Catena, 2021, 201: 105224. (0)
[51]
Cui L N, Guo H T, Li W Y, et al. Study on the characteristics of mycorrhizal colonization in Chinese fir plantations at different ages (In Chinese)[J]. Acta Ecologica Sinica, 2019, 39(6): 1926-1934. [崔莉娜, 郭弘婷, 李维扬, 等. 不同林龄杉木人工林菌根侵染特征研究[J]. 生态学报, 2019, 39(6): 1926-1934.] (0)
[52]
He W, Keyhani A B, Ma Z Y, et al. Leaf litter lignin degradation in response to understory vegetation removal in a Masson pine plantation[J]. Land Degradation & Development, 2021, 32(4): 1632-1642. (0)
[53]
Zhang J Y, She T, E X W, et al. Effects of understory vegetation management on soil microbial biomass carbon and nitrogen and extracellular enzyme activities in the early stages of poplar plantation (In Chinese)[J]. Acta Ecologica Sinica, 2021, 41(24): 9898-9909. [张贾宇, 佘婷, 鄂晓伟, 等. 杨树人工林幼林阶段林下植被管理对土壤微生物生物量碳、氮酶活性的影响[J]. 生态学报, 2021, 41(24): 9898-9909.] (0)
[54]
Lee B J, Eo S H. Metagenomic approach revealed effects of forest thinning on bacterial communities in the forest soil of Mt. Janggunbong, South Korea[J]. Journal of Mountain Science, 2018, 15(1): 59-67. (0)
[55]
Lin W R, Wang P H, Chen W C, et al. Responses of soil fungal populations and communities to the thinning of Cryptomeria japonica forests[J]. Microbes and Environments, 2016, 31(1): 19-26. (0)
[56]
Xu X L, Wang X J, Hu Y, et al. Short-term effects of thinning on the development and communities of understory vegetation of Chinese fir plantations in Southeastern China[J]. PeerJ, 2020, 8: e8536. (0)
[57]
Ding K, Zhang Y T, Zhang J H, et al. Effects of Chinese fir plantations with different densities on understory vegetation and soil microbial community structure (In Chinese)[J]. Chinese Journal of Plant Ecology, 2021, 45(1): 62-73. [丁凯, 张毓婷, 张俊红, 等. 不同密度杉木林对林下植被和土壤微生物群落结构的影响[J]. 植物生态学报, 2021, 45(1): 62-73.] (0)
[58]
Wang X P, Yang X, Yang N, et al. Effects of litter diversity and composition on litter decomposition characteristics and soil microbial community (In Chinese)[J]. Acta Ecologica Sinica, 2019, 39(17): 6264-6272. [王小平, 杨雪, 杨楠, 等. 凋落物多样性及组成对凋落物分解和土壤微生物群落的影响[J]. 生态学报, 2019, 39(17): 6264-6272.] (0)
[59]
Wang C Q, Xue L, Dong Y H, et al. Responses of soil microbial community structure to stand densities of Chinese fir plantations[J]. Journal of Forest Research, 2019, 24(3): 162-167. (0)
[60]
Cornelissen J, Aerts R, Cerabolini B, et al. Carbon cycling traits of plant species are linked with mycorrhizal strategy[J]. Oecologia, 2001, 129(4): 611-619. (0)
[61]
Wang C Q, Xue L, Jiao R Z. Soil phosphorus fractions, phosphatase activity, and the abundance of phoC and phoD genes vary with planting density in subtropical Chinese fir plantations[J]. Soil & Tillage Research, 2021, 209: 104946. (0)
[62]
Luo M X, Hu Z D, Liu X L, et al. Characteristics of soil microbial biomass carbon, nitrogen and enzyme activities in Picea asperata plantations with different ages in subalpine of western Sichuan, China (In Chinese)[J]. Acta Ecologica Sinica, 2021, 41(14): 5632-5642. [罗明霞, 胡宗达, 刘兴良, 等. 川西亚高山不同林龄粗枝云杉人工林土壤微生物生物量及酶活性[J]. 生态学报, 2021, 41(14): 5632-5642.] (0)
[63]
Wang M Z, Bi H J, Jin S, et al. Effects of stand density on understory species diversity and soil physicochemical properties of a Cupressus funebris plantation in Yunding Mountain (In Chinese)[J]. Acta Ecologica Sinica, 2019, 39(3): 981-988. [王媚臻, 毕浩杰, 金锁, 等. 林分密度对云顶山柏木人工林林下物种多样性和土壤理化性质的影响[J]. 生态学报, 2019, 39(3): 981-988.] (0)
[64]
Zhang Y Q, Li Z C, Hou L Y, et al. Effects of stand density on understory species diversity and soil nutrients in Chinese fir plantation (In Chinese)[J]. Acta Pedologica Sinica, 2020, 57(1): 239-250. [张勇强, 李智超, 厚凌宇, 等. 林分密度对杉木人工林下物种多样性和土壤养分的影响[J]. 土壤学报, 2020, 57(1): 239-250.] (0)
[65]
Wang C Q, Xue L, Dong Y H, et al. Effects of stand density on soil microbial community composition and enzyme activities in subtropical Cunninghamia lanceolate (Lamb.) Hook plantations[J]. Forest Ecology and Management, 2021, 479: 118559. (0)
[66]
Huang Z J, Xu X, Zhang H G, et al. Advances in effects of root input on forest soil carbon pool and carbon cycle (In Chinese)[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2022, 46(1): 25-32. [黄梓敬, 徐侠, 张惠光, 等. 根系输入对森林土壤碳库及碳循环的影响研究进展[J]. 南京林业大学学报: 自然科学版, 2022, 46(1): 25-32.] (0)
[67]
Lajtha K, Bowden R D, Nadelhoffer K. Litter and root manipulations provide insights into soil organic matter dynamics and stability[J]. Soil Science Society of America Journal, 2014, 78(S1): S261-S269. (0)
[68]
Duan Y, Chen L, Zhang J B, et al. Long-term fertilisation reveals close associations between soil organic carbon composition and microbial traits at aggregate scales[J]. Agriculture, Ecosystems and Environment, 2021, 306(1): 107169. (0)
[69]
Bini D, Santos C A D, da Silva M C P, et al. Intercropping Acacia mangium stimulates AMF colonization and soil phosphatase activity in Eucalyptus grandis[J]. Scientia Agricola, 2018, 75(2): 102-110. (0)
[70]
Lin G G, McCormack M L, Ma C G, et al. Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests[J]. New Phytologist, 2017, 213(3): 1440-1451. (0)
[71]
Phillips R P, Brzostek E, Midgley M G. The mycorrhizal-associated nutrient economy: A new framework for predicting carbon-nutrient couplings in temperate forests[J]. New Phytologist, 2013, 199(1): 41-51. (0)
[72]
Qiao H, Mo X Q, Luo Y H, et al. Patterns of soil ecoenzymatic stoichiometry and its influencing factors during stand development in Camellia oleifera plantations (In Chinese)[J]. Acta Ecologica Sinica, 2019, 39(6): 1887-1896. [乔航, 莫小勤, 罗艳华, 等. 不同林龄油茶人工林土壤酶化学计量及其影响因素[J]. 生态学报, 2019, 39(6): 1887-1896.] (0)
[73]
Luo Y, Liu S Y, Zhou L T, et al. Fusarium community variation in rhizosphere soil of continuous planting Chinese fir plantation (In Chinese)[J]. Chinese Journal of Ecology, 2020, 39(9): 2921-2929. [罗扬, 刘书影, 周柳婷, 等. 连栽杉木根际土壤镰刀菌属真菌群落变化规律[J]. 生态学杂志, 2020, 39(9): 2921-2929.] (0)
[74]
Qi J Y, Yin D C, Song R Q. Effects of inoculating Suilus leutus and Trichoderma virens on damping-off resistance of mongolian pine seedlings (In Chinese)[J]. Journal of Jilin Agricultural University, 2018, 40(1): 43-49. [祁金玉, 尹大川, 宋瑞清. 褐环乳牛肝菌与绿木霉复合接种对樟子松苗木立枯病的控制作用[J]. 吉林农业大学学报, 2018, 40(1): 43-49.] (0)
[75]
Siregar B A, Giyanto, Hidayat S H, et al. Epidemiology of bacterial wilt disease on Eucalyptus pellita F. Muell. in Indonesia[J]. IOP Conference Series: Earth and Environmental Science, 2020, 468(1): 012033. (0)
[76]
Chen Y S, Yin Q, Sang Z Y, et al. Research progress in occurrence and control measures of tree root rot (In Chinese)[J]. World Forestry Research, 2020, 33(1): 26-32. [陈雨姗, 尹群, 桑子阳, 等. 林木根腐病发生及防治研究进展[J]. 世界林业研究, 2020, 33(1): 26-32.] (0)
[77]
Ma C, Yang X R, Jiang G F, et al. Research progresses on key factors affecting survival of Ralstonia solanacearum in soils (In Chinese)[J]. Acta Pedologica Sinica, 2021, 58(6): 1359-1367. [马超, 杨欣润, 江高飞, 等. 病原青枯菌土壤存活的影响因素研究进展[J]. 土壤学报, 2021, 58(6): 1359-1367.] (0)
[78]
Wu W X, Chen S F. Species diversity, mating strategy and pathogenicity of Calonectria species from diseased leaves and soils in the Eucalyptus plantation in Southern China[J]. Journal of Fungi, 2021, 7(2): 73. DOI:10.3390/jof7020073 (0)
[79]
Ye J H, Chen X T, Liu G Y, et al. Effect of tea soil acidification on the diversity and function of fungi community[J]. Journal of Applied Botany and Food Quality, 2021, 94. DOI:10.5073/JABFQ.2021.094.024 (0)
[80]
Li Y C, Chen Z P, Lin W W, et al. Research advances in mechanisms and preventions of continuous cropping obstacles of tea plants (In Chinese)[J]. Ecological Science, 2019, 38(5): 225-232. [李艳春, 陈志鹏, 林伟伟, 等. 茶树连作障碍形成机制及调控措施研究进展[J]. 生态科学, 2019, 38(5): 225-232.] (0)
[81]
Hu J X, Peng S L, Zhang D, et al. Effects of nitrogen addition on arbuscular mycorrhizal fungi community in poplar plantations at different ages (In Chinese)[J]. Ecology and Environmental Sciences, 2020, 29(9): 1768-1775. [胡家欣, 彭思利, 张栋, 等. 氮添加对不同林龄杨树人工林丛枝菌根真菌群落的影响[J]. 生态环境学报, 2020, 29(9): 1768-1775.] (0)
[82]
Xue J H, Mo J M, Li J, et al. Effects of nitrogen deposition on ectomycorrhizal fungi (In Chinese)[J]. Acta Ecologica Sinica, 2004(8): 1789-1796. [薛璟花, 莫江明, 李炯, 等. 氮沉降对外生菌根真菌的影响[J]. 生态学报, 2004(8): 1789-1796.] (0)
[83]
Kjoller R, Nilsson L O, Hansen K, et al. Dramatic changes in ectomycorrhizal community composition, root tip abundance and mycelial production along a stand-scale nitrogen deposition gradient[J]. New Phytologist, 2012, 194(1): 278-286. (0)
[84]
Bennett J A, Maherali H, Reinhart K O, et al. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics[J]. Science, 2017, 355(6321): 181-184. (0)
[85]
Sen R. Multitrophic interactions between a Rhizoctonia sp. and mycorrhizal fungi affect Scots pine seedling performance in nursery soil[J]. New Phytologist, 2001, 152(3): 543-553. (0)
[86]
Perotto S, Angelini P, Bianciotto V, et al. Interactions of fungi with other organisms[J]. Plant Biosystems, 2013, 147(1): 208-218. (0)
[87]
Wagg C, Husband B C, Green D S, et al. Soil microbial communities from an elevational cline differ in their effect on conifer seedling growth[J]. Plant and Soil, 2011, 340(1/2): 491-504. (0)
[88]
Bai X F, Xu F L, Wang W L. Research advance on soil degradation and fertilization of larch plantations in China (In Chinese)[J]. World Forestry Research, 2016, 29(1): 75-79. [白小芳, 徐福利, 王渭玲. 我国落叶松人工林地力衰退与施肥研究综述[J]. 世界林业研究, 2016, 29(1): 75-79.] (0)
[89]
Delgado-Baquerizo M, Oliverio A M, Brewer T E, et al. A global atlas of the dominant bacteria found in soil[J]. Science, 2018, 359(6373): 320-325. (0)
[90]
Zhu D M, Chen J H, Jiang P K. Research progress on soil organic carbon and microbial characteristics of Cunninghamia lanceolata plantation and their influencing factors (In Chinese)[J]. Journal of Zhejiang A & F University, 2021, 38(5): 973-984. [朱丹苗, 陈俊辉, 姜培坤. 杉木人工林土壤有机碳和微生物特征及其影响因素的研究进展[J]. 浙江农林大学学报, 2021, 38(5): 973-984.] (0)
[91]
Wang D, Olatunji O A, Xiao J L. Thinning increased fine root production, biomass, turnover rate and understory vegetation yield in a Chinese fir plantation[J]. Forest Ecology and Management, 2019, 440: 92-100. (0)
[92]
Yuan Z W, Ding X S, Li C L, et al. The relationship between plantation productivity and stand density for Pinus sylvestris var. mongolica (In Chinese)[J]. Journal of Northeast Forestry University, 2000, 28(1): 21-24. [苑增武, 丁先山, 李成烈, 等. 樟子松人工林生物生产力与密度的关系[J]. 东北林业大学学报, 2000, 28(1): 21-24.] (0)
[93]
Dai J H, Han N, Yu F Y, et al. Effects of different row spacing on photosynthesis of walnut trees (In Chinese)[J]. Journal of Northwest Forestry University, 2019, 34(4): 96-100. [戴建昊, 韩暖, 余飞燕, 等. 不同株行距对核桃光合作用的影响[J]. 西北林学院学报, 2019, 34(4): 96-100.] (0)
[94]
Qin Z N, Sun C, Han Y, et al. Effect of plants spacing on growth and photosynthetic of poplar plantations (In Chinese)[J]. Journal of Shandong University: Natural Science, 2014, 49(7): 1-6. [秦柱南, 孙超, 韩义, 等. 株行距配置对杨树生长及光合特性的影响[J]. 山东大学学报: 理学版, 2014, 49(7): 1-6.] (0)
[95]
Huang J, Li D, Wang N N, et al. Differences in photosynthetic characteristics and growth in short-rotation poplar of different spacing configurations (In Chinese)[J]. Scientia Silvae Sinicae, 2016, 52(8): 131-137. [黄绢, 李丹, 王宁宁, 等. 不同配置方式杨树超短轮伐人工林光合特性及生长差异[J]. 林业科学, 2016, 52(8): 131-137.] (0)