2. 中国科学院大学, 北京 100049
2. University of Chinese Academy of Sciences, Beijing 100049, China
据FAO最新数据显示全球盐渍土壤共计约8.33× 108 hm2,其中亚非干旱和半干旱区域占比20%~25%[1]。在我国,盐渍土面积高达3.60×107 hm2,随着不合理的人为活动和加剧的气候变化,盐渍土面积仍不断增加,在影响粮食产量的同时,也严重威胁到我国18亿亩耕地红线保障工作的开展,土壤盐渍化已经成为制约农业发展的主要因素[2-3]。因此土壤水盐运移过程、盐渍土的治理利用及其调控仍然是盐渍土研究的核心问题[4]。西北干旱区地处亚欧大陆,是典型的温带大陆干旱性气候,具有土壤母质含盐、地下水矿化度高和淡水资源稀缺等特点。在此背景下,膜下滴灌技术因其在农艺、节水和经济方面的优势在干旱缺水地区(如新疆)得到了推广和应用,在提高了水肥利用效率的同时,也改变了农田水盐运移模式[5-8],其主要特点是:(1)空间特定的位置供水,作物根系生长被限制在土壤湿润体内部淡盐区[9];(2)有限水量不能满足土壤盐分淋洗需求导致盐分在湿润区边缘聚集[10],形成侧向排盐,滴灌期结束时往往形成膜下脱盐,膜间积盐的现象。有学者指出滴灌水带入盐分无法排出土体对节水灌溉农业的可持续发展是一个潜在危机[11-12]。因此,含盐灌溉水条件下需要一种高效低成本的措施,将灌溉水盐分推出根区来实现农田盐分灌排平衡,以期缓解土壤次生盐渍化危机。
我国盐碱地治理和利用的研究经历了从大灌无排、大灌大排、滴灌无排到综合调控四个阶段[13],前人通过实践、研究已经形成和发展了不同类型和功能的盐碱地治理和盐渍化调控措施,包括水利措施、化学措施、农艺措施和生物措施[13-14]。其中水利措施主要针对地下水位较浅和重度盐碱化农田[15-16],通过“淡水压盐”淋洗排出土壤中盐分,如近年来兴起的“咸水结冰灌溉”手段[17],但其受诸多因素的影响如地下水埋深、水质和土壤理化性质等,因此水利措施还须根据实际情况结合其他调控措共同改良;化学措施主要是通过添加可溶性化学物质来改良和增进土壤结构和养分功效,如施加富含Ca2+、Mg2+元素的石膏[18-19]等,但施加的化学物质若选择不当极易引发土壤二次污染;农艺措施主要通过耕作方式[20]、地面覆盖方式[21-22]、施肥管理[23]等来控制盐分向根区积累,但人工和物料成本较高;生物措施主要是通过种植盐生植物来减少土壤含盐量,改善土壤理化性质、增加土壤微生物数量,同时提升土壤养分,达到改良盐碱土的目的[24-26],有学者据此提出“干排盐”和“植物聚盐”的综合调控思路,即利用盐生植物吸盐特性通过蒸散作用将盐渍区旁低洼荒地所承接的周围多余灌溉水或高盐分地下水产生的盐分聚集到地表吸收来保证周边区域土壤的盐分平衡[27-28]。此外,具有改土能力的盐生植物在粮食、蔬菜、水果、医药、动物饲料、生物燃料、绿化和海岸保护等方面也有潜在的经济价值[29-31]。因此生物措施凭借其节水、经济和可持续发展的特点,已经在西北盐渍化区域开展了相关试验研究。
滴灌条件下种植盐生植物,在植物吸盐和灌溉淋洗的双重作用下,必然会涉及到根际土壤水盐状况的改变,目前关于农田不同生境条件下盐生植物根系水盐吸收和土壤水盐运移的相互作用规律等尚不清楚,而以往相关研究大多聚焦于淡土植物(又称甜土植物)。本文结合西北干旱区膜下滴灌农田水盐运移的特点,主要从盐生植物耐盐机制及其生长发育对盐分的响应、盐生植物排盐与盐碱土改良的互馈效应以及种植盐生植物对土壤水盐动态的影响等方面对生物排盐的研究进展以及今后需要开展的研究方向进行比较系统的梳理,同时指出目前西北干旱区农田生物排盐研究方面存在的不足,并对今后需要开展的研究工作进行展望,以期为干旱区农业制定合理高效综合排盐制度提供决策依据,对于实现农田盐分平衡、缓解土壤次生盐渍化危机和土壤可持续利用具有重要意义。
1 盐生植物的耐盐机理及其生长发育对盐分的响应 1.1 盐生植物的耐盐机理1980年,Greenway和Munns[32]在定义盐生植物时对环境盐分含量进行了量化,认为能在3.3× 105 Pa(相当于70 mmol·L–1单价盐)以上的渗透压水中正常生长并完成生活史的植物均为盐生植物;适当的盐度范围可以促进盐生植物的营养和生殖生长,而超过99%的淡土植物会在这个盐度范围内无法存活[33-34],其主要原因在于两者在应对盐分时采用不同的离子运输和稳态机制[35]。已有研究表明盐生植物在渗透调节过程中很大程度更依赖于无机离子(Na+、Cl–、K+)来维持盐胁迫下的渗透压和膨压稳定,并能够将大量的Na+通过液泡区隔化[36],而淡土植物主要通过合成可溶性物质进行渗透调节[37]。盐生植物种类占世界陆地植物的1%~2%,中国共有盐生植物423种,其中新疆占320种[38]。不同类型盐生植物在应对盐胁迫下的生长调节各异,其耐盐上限也不一致。根据其对土壤盐分吸收运移的方式可分为真盐生植物(通过在细胞、组织或器官中积累高浓度的盐分)、泌盐盐生植物(通过叶腺调节体内盐分水平)和假盐生植物(根系具有超滤作用),其耐盐机理主要包括以下途径(图 1):
![]() |
图 1 盐生植物耐盐机理示意图 Fig. 1 Schematic diagram of salt tolerance mechanism of halophytes |
(1)渗透调节。所有的盐生植物均必须通过调节渗透势来维持细胞膨压的稳定[39]。在蒸发较为强烈的盐渍土环境下,由于植物根际盐分的不断积累,导致根土界面根系吸水细胞外渗透势减少,胞内水势大于胞外水势,植物无法正常吸水。为了维持正常生理代谢,植物通过渗透调节来减少胞内水势,参与渗透调节的无机离子主要包括Na+、K+和Cl–等。(2)拒盐。相比之下,拒盐机制主要依赖于根部的水分过滤来减少盐分进入植物体内,最后通过在细胞内区隔Na+和Cl–来避免损伤[40]。如芦苇能够阻止盐分进入茎部,因此单位干重叶片中Na+含量远低于根部[41]。(3)离子区隔化。盐生植物和淡土植物均存在离子内部隔离的现象,盐生植物主要通过液泡膜上的Na+/H+反转运体的跨膜运输实现Na+的液泡隔离,是一种由电化学梯度所驱动的行为[42-43],而淡土植物则通过将少量盐分离子转移到老化组织中来保护幼嫩组织[44],两者的区隔化行为均需能量的供应。也有学者研究得出盐生植物可以以主动或被动吸收的方式通过不同部位在细胞内累积或外排Na+和Cl–,使细胞质中的Na+和Cl–浓度保持在细胞可忍受范围内,从而避免离子毒害[40, 45-46]。
1.2 盐生植物生长发育对盐分的响应盐分主要通过渗透阶段和离子毒害阶段显示其对植物生长发育的影响[47-48]。当盐浓度开始在根部积累时,渗透调节就开始发生,一般持续时间为几分钟至几小时[36];相比之下,离子胁迫则在更长的时间尺度上发展,几天或者一周以上[49-50]。渗透阶段以类似于水分胁迫的方式影响植物的蒸腾和根系水分吸收[51],在较高盐度条件下,盐生植物会发展出不同的策略来应对和适应盐分胁迫,如类似于旱生植物应对水分胁迫所呈现出的小叶片和肉质化等特征;当外界盐分浓度超过植物自身盐分存储阈值时,盐离子在植物组织中过量积累,最终通过毒性作用对细胞造成损伤,影响其他重要元素或化合物的吸收,破坏植物营养平衡[36, 52]。盐胁迫条件下,盐生植物因其特殊的调节方式可以在较海水还高的矿化度条件下完成其生命周期,而淡土植物只能在较低盐度的土壤中生长,微量的盐分均足以对其生长发育造成影响。由于盐生植物和淡土植物对盐分胁迫的敏感性不同,二者相对产量对盐度的响应差异也较大(图 2)。
![]() |
注:S,敏感;MS,适度敏感;MT,适度耐盐;T,耐盐;HAL,盐生植物;NPG,无植物生长。Note:S,sensitive;MS,moderately sensitive;MT,moderately tolerant;T,tolerant;HAL,halophyte;NPG,no plant growth. 图 2 FAO对盐生植物和淡土植物耐盐性的划分[53-54] Fig. 2 FAO classification of salt tolerance between halophytes and glycophytes[53-54] |
抑制植物生长发育是盐分胁迫对植物最直接和最明显的效应。通常盐胁迫对植物生长发育的影响主要表现在盐分浓度和盐分类型,不同的植物类型对不同条件下盐分胁迫的响应不同[55]。当存在盐分胁迫时,出于自我保护机制,大多数淡土植物均会避免吸收盐分,因此盐分会在根区不断积累,进一步造成水分胁迫,而盐生植物能够将盐分离子(如Na+和Cl–)通过液泡区隔化,通过降低胞内水势来应对盐分胁迫。对于大部分淡土植物而言,在一定盐度范围内存在一个最优值,超过这个盐度阈值后,生物量会随盐分浓度的增高而减小;对于盐生植物而言,较低和较高的盐分浓度均会抑制其生长,但两者中间存在一个中间浓度盐分使得生物量达到最优值,而现有研究对这一现象的解释仍并不是完全清楚[37]。根系是土壤-植物-大气连续体中水分和溶质运移的枢纽,其在土壤中的分布格局及生长状况能够反映出植物的生态适应对策[56]。对于淡土植物,如棉花和小麦等传统作物,田间滴灌条件下其根系密度往往在滴头下方湿润区达到最大[57];当采用微咸水灌溉时,随着灌溉年限的增加,土壤相同空间位置的根系密度较淡水灌溉条件下小[58]。盐生植物和淡土植物因其对盐分胁迫的响应机制存在差异,因此根系在土壤中的生长和分布状况也不相同;Song[59]和González-Orenga等[60]通过室内模拟和野外采样得出土壤水盐状况对盐生植物根系的形态、长度和大小影响较为强烈,表现为高盐度抑制,低盐度促进,弋良朋等[61]、Yang等[62]和Redelstein等[63]在对盐生植物的室内控制试验中也得到类似结论;Wang等[64]采用根垫法对温室内不同盐度处理下的碱蓬和甜菜根系特征统计比较得出两者对盐胁迫的根系形态反应不同,碱蓬的根长和根表面积随随着处理盐度呈现非单调关系,而甜菜呈现单调下降趋势。因此,在应对土壤盐分胁迫时,盐生植物较淡土植物更能适应盐渍化土壤环境。
2 盐生植物排盐与盐碱土改良的互馈效应 2.1 盐生植物在盐渍土中的生物排盐效应已有大量研究表明种植盐生植物可以有效去除土壤中的盐分。从改良盐渍土的角度而言,这些盐生植物主要是通过收割地上部分实现土壤中盐分的转移,因此盐生植物的耐盐机制与改良盐碱土的原理是相辅相成的。Karakaş等[65]通过在不同盐渍化程度土壤的盆栽中种植苏打猪毛菜和马齿苋研究发现,两种盐生植物叶片中Na+和Cl–含量随着土壤盐渍化程度的增加而增加,在重度盐渍土(14.1 dS·m–1)处理中叶片Na+含量分别为81.0 g·kg–1和35.2 g·kg–1,苏打猪毛菜和马齿苋对钠离子的吸收范围的理论值分别为709 kg·hm–2和286 kg·hm–2;Yucel等[66]研究得出盐角草从非放牧地积累了426~475 kg·hm–2,而放牧地仅为182~237 kg·hm–2,因此他们认为盐角草在能带走土壤中盐分的同时也为动物提供了充足的盐。Zhao[67]通过盆栽实验得出种植盐地碱蓬能够降低土壤中Na+含量的同时,也能够完全带走由灌溉水带入的Na+,并且结合田间试验给出植物对钠离子的吸收范围的理论值为3 090~3 860 kg·hm–2。
目前盐生植物改良盐渍土田间主要种植模式根据土壤盐碱化的程度可分为单作和间作。对于中度盐渍化土壤一般采用间作套种的方式,对于重度盐渍化土壤通常采用单作种植的方式连续种植若干年盐生植物,直至土壤盐分降至一般作物的耐盐水平。Liang和Shi[68]通过在新疆三年大田实验研究表明,棉花/盐地碱蓬间作系统较传统棉花单作系统和棉花/苜蓿间作系统能够显著降低土壤盐分含量和土壤容重,改善土壤理化性质,提高棉仔产量和灌溉水生产力,三年间无膜覆盖间作区盐地碱蓬的平均移盐能力可达453 kg·hm–2·a–1;Wang等[69]通过在西北干旱区为期三年的盐地碱蓬种植研究中发现,盐地碱蓬对土壤中盐分的平均提取能力可达3 839 kg·hm–2·a–1,可以完全带走由于土壤灌溉水带入的盐分;可以看出不同生境条件下,盐生植物单位面积移盐能力具有较大差异,一方面在于不同盐生植物耐盐程度不同(表 1),一方面在于同一盐生植物在不同生境条件下表现出的移盐能力也不同,通常情况下干物质量与移盐能力呈正比(表 2);在以往关于淡土植物的田间研究中,非生物因素如田间管理制度、地下水位、以及土壤类型等对植物的生长和土壤水盐时空分布均会产生不同程度的影响,盐生植物也不例外。Kafi等[70]通过农场田间实验得出,地肤子的生物量、光合作用和蒸腾速率对灌溉制度(不同矿化度和不同灌溉水量)响应不同,地肤子在灌溉水电导率为20 dS·m–1(中间浓度梯度)所产生干物质量最多;Paraskevopoulou等[71]研究得出当地沿海种植的盐生植物的地上部和根的干重在不同灌溉水量处理下无显著差异,而在不同土壤基质类型条件处理下呈现出显著差异;Talebnejad和Sepaskhah[72]在不同深度和不同矿化度地下水模拟条件下种植藜麦的试验中得出,非充分灌溉下,藜麦从含盐地下水中提取水分(地下水对蒸散比的贡献为18%~66%),同一地下水位条件下,藜麦生长发育情况在不同含盐量地下水处理下存在显著差异;梁飞等[73]通过在新疆某灌溉试验站研究了不同追施氮量对盐地碱蓬生长、离子累积以及盐渍土修复的影响,结果表明追施氮肥能够有效促进盐地碱蓬生长,降低土壤中的Na+,提升对盐渍土的修复能力。
![]() |
表 1 几种常见的盐生植物种类及其在农业系统中的应用 Table 1 Several common halophyte species and their applications in agricultural systems |
![]() |
表 2 部分盐生植物移盐能力 Table 2 Salt removal capacity of some halophytes |
盐生植物通过自身“吸盐”特性在带走土壤中盐分的同时,其根系生长也可调理土壤微环境。雷金银等[74]指出逆境中生活的植物其发达的根系是植物对盐渍化土壤进行改良的重要器官,不少研究表明盐生植物在改善土壤理化性质、增加土壤微生物数量以及提升土壤养分方面具有显著效果。
土壤容重和土壤孔隙度是评价土壤松紧程度和宜耕状况的重要物理性指标。王升等[75]研究得出膜下滴灌棉田间作盐生植物可显著改善土壤物理性状,种植盐地碱蓬和盐角草的地块土壤容重较种植前分别下降20.12%和13.77%,土壤孔隙度分别增加35.54%和23.27%,类似结论在Liang和Shi[68]、王苗等[76]、胡发成[77]的研究中也可发现。也有学者通过对野生盐地碱蓬地与裸地的入渗率进行对比分析得出:在相同入渗时间内,盐地碱蓬地块的土壤累积入渗率、初始入渗率及稳定入渗率分别为裸地的3.6倍、2.5倍、3.0倍[78];因此盐生植物在通过根系改善土壤结构和容重的同时,也提高了土壤入渗率,从而增强了土壤盐分的淋洗效率。土壤阳离子交换量是土壤重要的化学性质之一,直接反映了土壤的保肥、供肥性能和缓冲能力,也是进行土壤分类的重要标准。但若阳离子交换方向控制不当,则会对土壤和植物产生危害。如当土壤中含有大量Na+时会与土壤胶体吸附的Ca2+、Mg2+发生交换,胶体上吸附的交换性Na+水解呈强碱反应,这也是碱化土的重要特征,同时对植物危害也最为严重;而土壤中有益阳离子浓度的增加和Na+的减少可以控制阳离子交换方向来减少钠害。有研究表明种植盐生植物后土壤中Na+、Cl–、SO42–等离子含量显著降低,一方面由于盐生植物的吸盐效应,另一方面是由于种植盐生植物可以通过改善土壤物理性状加强土壤盐分向深处淋洗,这也是种植盐生植物后土壤pH呈下降趋势的原因之一。而土壤pH对微生物生命活动有很大影响,每种微生物均有其最适宜的pH和一定的pH适应范围,因此适宜的土壤pH有利于维持微生物物种丰富度、促进微生物生命活动从而分泌有机物、释放活性物质等,对于增加土壤养分、提高土壤肥力具有重要意义。有学者通过研究得出种植盐地碱蓬后土壤中微生物总数量较种植前增加了近8倍,表层0~20 cm土壤中有机质、碱解氮和有效磷显著增加[79-81];此外由于种植前后土壤盐分含量显著下降,根际土壤的优势微生物种群的盐耐受性明显下降,耐盐性较低的微生物种群成为优势种群[82]。
3 种植盐生植物对土壤水盐动态的影响 3.1 滴灌条件下种植盐生植物对土壤水盐时空分布的影响盐生植物的生长发育受到土壤水盐状况的强烈影响,掌握其生长发育过程中排盐能力和根系生长导致的土壤微环境的改变与土壤水盐状况的相互作用规律至关重要。因此盐生植物种植条件下土壤水盐的时空分布规律和变异特征的研究对于制定合理高效的生物排盐制度具有重要的意义。单作模式下,Wang等[69]通过在西北干旱区盐碱地为期三年的盐地碱蓬滴灌种植研究中发现,土壤表层(0~40 cm)盐分在植物吸盐和滴灌淋洗共同作用下较初期显著减少,随着种植年限的增加,盐分呈底聚型分布;赵振勇等[103]通过对比两种盐生植物种植区和非盐生植物种植区0~60 cm土体盐分变化得出,盐生植物可显著降低土体0-60cm盐分含量,同时可促进盐分向土体更深处淋洗(60cm以下)。间作模式下,有学者研究得出,膜下滴灌棉花生育期内间作盐地碱蓬和盐角草的小区其土壤0~100 cm的平均含水量(覆膜宽行中间、窄行中间以及膜间相同土层深度处含水量的算术平均值)和盐分淋洗深度均显著大于对照组,该研究还得出盐地碱蓬和盐角草对不同土层深度的移盐能力影响不同,出现这种情况的原因可能是两种盐生植物在根系生长方面的差别导致[75],类似结论在张艳超等[107]的研究中也可发现。
上述研究表明种植盐生植物后土壤保水效果得到显著提升,表层(0~40 cm)土壤盐分含量下降,盐分的淋洗深度加强,盐分呈底聚型分布,且不同类型盐生植物对不同深度土层水盐改善效果存在差异。盐生植物之所以能够发挥这些作用,不仅是自身吸盐特性导致的水盐分布差异的直接效应,还有土壤微环境的改变导致水盐运动的间接改变;如间作条件下盐生植物可通过植被覆盖有效降低膜间的土壤水分蒸发,间接影响到膜内土壤的水分运移;此外根系生长可通过调理土壤微环境间接影响土壤入渗率,加深淋洗的深度,这也可能是不同类型盐生植物对盐渍土改善效果存在差异的原因之一。
3.2 盐生植物根系水盐吸收规律及其模拟研究根系是土壤-植物-大气连续体(SPAC)中水分和溶质运移的枢纽,对于盐生植物而言,根系水盐吸收规律不仅能够用于SPAC水盐传输机制、能量转换途径分析以及水盐定量模拟等方面,而且也能让人明确土壤水分-植物关系,成为从事栽培、灌溉等农业生产活动的理论基础。间作模式下,史文娟等[108]指出盐生植物和作物共生阶段存在水养竞争问题,会对大田作物的经济产量和水分利用效率造成一定影响,如何保证盐生植物高效排盐的情况下作物产量不受影响,还需对两者的水养竞争机制进行探究;单作模式下,灌溉制度、地下水位、土壤类型、初始含盐量等均会对盐生植物排盐效果产生影响,如何合理配置灌溉水资源实现其对重度盐渍土的高效修复还有待进一步研究。出于对盐生植物生育期耗水、移盐能力等考虑,无论哪种种植模式,探究土壤不同水盐状况下盐生植物根系水盐吸收规律,对于制定合理的灌溉规划、提高排盐效率以及及理解土壤-水、盐-植物-大气之间的关系和过程均具有重要意义。其结果还可结合农田试验参数建立土壤水盐运移模型,对于定向模拟、评价、优化多种不同情景模式下干旱半干旱地区土壤盐渍化情况具有重要意义,但目前这方面的研究很少报道,还有待进一步加强和深入。
作物种植条件下,土壤水分模拟研究主要通过在Richard方程后面嵌入根系吸水源汇项来实现,有关植物根系吸水模型的构建国内外学者已经做了大量的研究[109-113],目前应用最为广泛的是以Feddes等[114-115]提出的宏观根系吸水模型,该类模型的特点是将植株潜在蒸腾在土壤深度上按比例分配到根区,虽机理性差,但模型参数的获得相对容易,且模型大多是经验性的,能够直接应用到野外或田间;而在关于土壤盐分运移模拟的研究中,一般认为土壤中可溶性盐分浓度受到作物吸收的影响可以忽略不计[8, 56, 116-117],因此,过去在模拟作物种植条件下土壤盐分时空分布时,往往忽略对流弥散方程(CDE)中根系吸盐源汇项的构建;而盐生植物能够通过其特殊的渗透调节和离子区隔化等生理调节方式将土壤中的可溶性盐离子(主要是Na+和Cl–)隔离至植物体内或外排,其对土壤中的Na+和Cl–迁移必然产生影响,从而也影响土壤中盐分的迁移。因此在建立盐生植物土壤水盐运移模型时,就必须考虑根系盐分吸收项的建模。根据前述1.1章节表述,某种程度上,盐分对于盐生植物而言是一种养分供给,其吸收过程主要是一种逆电化学式梯度传输溶质的过程,其在土壤中的吸收、转化过程相比氮磷钾等主要营养元素也较为简单,因此盐生植物根系吸盐的量化分析是否可以采用根系对养分吸收的模拟方法还有待进一步试验、验证;Perri等[118]将植物耐盐性加入SPAC模型中,认为盐生植物具有储存渗透调节离子的组织,建立了以植物水势差吸水机制为基础的模型,通过模型模拟得出盐生植物短期内最大蒸腾能力与其自身储存渗透调节离子能力有关,当自身储存渗透调节物质的能力较大时,就可以忍受根际土壤较高的盐分胁迫,但因为忽略生长参数的矫正以及茎干水势通量的变化,该模型仅限于短时间尺度的模拟。Šimůnek和Hopmans[119]首次将根系养分吸收模型与土壤物理和生态学、植物生理学概念联系起来,通过在根区内分配根系养分潜在主动吸收量来定义根区某一点的根系养分主动吸收速率,结合米氏动力学方程建立了植物根系养分实际主动吸收速率模型,并对不同情景模式下植物的养分吸收进行了数值模拟;受限于养分参数阈值方面的挑战,该模型未能得到广泛应用,但该研究提供了生态学-土壤物理学等跨学科方法改进整合所需的科学原理。
4 问题与展望生物排盐技术因其“节水、低投入、可持续、潜在经济价值”等特点在盐渍土修复中发挥了重要作用,在带走土壤盐分、改良盐碱土的同时,也改变了传统滴灌水盐运移规律,为西北干旱区盐渍土修复提供了排盐新思路。滴灌条件下如何将生物排盐和其他治理措施结合使土壤改良效果最佳,是实现干旱半干旱地区土壤健康可持续发展亟需解决的问题之一。这就要求我们在了解不同盐生植物耐盐机制的情况下,还需要进一步认识其种植条件下根系的水盐吸收规律与盐渍土改良的互馈机制。根据已有研究和实际需求,目前亟需展开如下研究:
1)探究西北干旱区滴灌条件下盐生植物生长发育对土壤水盐的响应机制。盐生植物生物量的多少与其排盐能力密不可分,目前关于盐生植物生物量和根系特征的控制研究大多是在温室水培或有限大小的盆栽的试验条件下进行,对大田条件下的研究较少,而两者为植物所提供的生长发育环境完全不同。相对于有限大小的盆栽试验,大田条件下植物的根系可能更长,具有不同的形态特征来更好地适应异质性的环境。如盐地碱蓬,田间最大扎根深度可达50~60 cm。因此选育改良盐渍土的耐盐植物更应该考虑田间不同生境条件下植物生长发育状况、移盐能力对根际带土壤水盐的响应机制,而以往的研究只是初步验证了盐生植物修复盐渍土壤的效果,且缺乏连续的时空动态监测;此外,对大田条件下盐生植物不同阶段根系密度的分布特点和根际土壤带水盐时空变异特征的分析对于研究土-根系统相互作用机制以及土壤-植物系统中根系水盐的吸收至关重要。
2)进一步探究西北干旱区滴灌条件下盐生植物对盐渍土的适应性改良机制。盐生植物在对盐碱土改良时,不仅能显著提升土壤保水效果,降低表层土壤含盐量,还能通过改善根际土壤微环境(理化性质、微生物数量及活性)间接影响盐分离子迁移、提升土壤养分,从而达到改土目的;目前的研究热点主要偏向于盐生植物移盐能力和对土壤的脱盐效果,对于土壤脱盐过程中伴随的根际微环境的改变重视不足,而土壤根际微环境的稳定对于土壤健康可持续发展至关重要,如何确保盐生植物在高效排盐的的同时其根际微环境也得到积极改善,还有待深入研究,这对于实现土壤改良与生物耐盐协同发展均具有重要意义。
3)揭示西北干旱区滴灌条件下盐生植物根系水盐吸收规律,建立盐生植物根系水盐吸收模型。目前,已有根系吸水的模型研究大多是基于淡土作物而展开,关于盐生植物根系水盐吸收的研究还少有报道,一方面受限于盐生植物生长发育和土壤水盐胁迫的相互作用机制不完善,另一方面受限于盐土农业背景下基础建模数据的获取;有关作物的水盐胁迫响应函数以及根分布规律的模型及参数等是否能适应于盐生植物根系吸水的模拟还有待完善和验证;此外,盐生植物区别于淡土作物的吸盐特性是土壤盐分运移模拟中不可或缺的一部分,而关于盐生植物对盐分吸收的定量研究尚不完善;因此关于盐生植物根系水盐吸收项的建模工作还需进一步试验研究,其研究结果可结合农田试验参数建立土壤水盐运移模型,对于定向调控、模拟、评价多种不同情景模式下干旱半干旱地区土壤盐渍化情况具有重要意义。
[1] |
Hassani A, Azapagic A, Shokri N. Predicting long-term dynamics of soil salinity and sodicity on a global scale[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(52): 33017-33027. DOI:10.1073/pnas.2013771117
( ![]() |
[2] |
Yang J S, Yao R J. Management and efficient agricultural utilization of salt-affected soil in china (In Chinese)[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(S): 162-170. [杨劲松, 姚荣江. 我国盐碱地的治理与农业高效利用[J]. 中国科学院院刊, 2015, 30(S): 162-170.]
( ![]() |
[3] |
Li J G, Pu L J, Han M F, et al. Soil salinization research in China: Advances and prospects[J]. Journal of Geographical Sciences, 2014, 24(5): 943-960. DOI:10.1007/s11442-014-1130-2
( ![]() |
[4] |
Zhu W, Yang J S, Yao R J, et al. Soil water and salt transport in medium and heavy saline soils of Yellow River Delta (In Chinese)[J]. Soils, 2021, 53(4): 817-825. DOI:10.13758/j.cnki.tr.2021.04.020 [朱伟, 杨劲松, 姚荣江, 等. 黄河三角洲中重度盐渍土棉田水盐运移规律研究[J]. 土壤, 2021, 53(4): 817-825.]
( ![]() |
[5] |
Wang Q J, Wang W Y, Lü D Q, et al. Water and salt transport features for salt effected soil through drip irrigation under film (In Chinese)[J]. Transactions of the Chinese Society of Agricultural Engineering, 2000, 16(4): 54-57. [王全九, 王文焰, 吕殿青, 等. 膜下滴灌盐碱地水盐运移特征研究[J]. 农业工程学报, 2000, 16(4): 54-57.]
( ![]() |
[6] |
Xu P P, Feng W W, Qian H, et al. Hydrogeochemical characterization and irrigation quality assessment of shallow groundwater in the central-western Guanzhong Basin, China[J]. International Journal of Environmental Research and Public Health, 2019, 16(9): 1492. DOI:10.3390/ijerph16091492
( ![]() |
[7] |
Tian F Q, Wen J, Hu H C, et al. Review on water and salt transport and regulation in drip irrigated fields in arid regions (In Chinese)[J]. Journal of Hydraulic Engineering, 2018, 49(1): 126-135. DOI:10.13243/j.cnki.slxb.20170909 [田富强, 温洁, 胡宏昌, 等. 滴灌条件下干旱区农田水盐运移及调控研究进展与展望[J]. 水利学报, 2018, 49(1): 126-135.]
( ![]() |
[8] |
Zhang Y H, Li X Y, Šimůnek J, et al. Evaluating soil salt dynamics in a field drip-irrigated with brackish water and leached with freshwater during different crop growth stages[J]. Agricultural Water Management, 2021, 244: 106601. DOI:10.1016/j.agwat.2020.106601
( ![]() |
[9] |
Dong H, Kong X Q, Luo Z, et al. Unequal salt distribution in the root zone increases growth and yield of cotton[J]. European Journal of Agronomy, 2010, 33(4): 285-292. DOI:10.1016/j.eja.2010.08.002
( ![]() |
[10] |
Chen M, Kang Y H, Wan S Q, et al. Drip irrigation with saline water for oleic sunflower (Helianthus annuus L.)[J]. Agricultural Water Management, 2009, 96(12): 1766-1772. DOI:10.1016/j.agwat.2009.07.007
( ![]() |
[11] |
Zhou H F, Wu B, Wang Y G, et al. Ecological achievement of Xinjiang production and construction corps and its problems and countermeasures (In Chinese)[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(1): 55-63. DOI:10.16418/j.issn.1000-3045.2017.01.007 [周宏飞, 吴波, 王玉刚, 等. 新疆生产建设兵团农垦生态建设的成就、问题及对策刍议[J]. 中国科学院院刊, 2017, 32(1): 55-63.]
( ![]() |
[12] |
Hudan·T, Zhao Y C, Mahemujiang·A, et al. Study on characteristics of cotton field soil salt accumulation under perennial mulched drip irrigation in northern Xinjiang (In Chinese)[J]. Journal of Irrigation and Drainage, 2016, 35(1): 1-5. [虎胆·吐马尔白, 赵永成, 马合木江·艾合买提, 等. 北疆常年膜下滴灌棉田土壤盐分积累特征研究[J]. 灌溉排水学报, 2016, 35(1): 1-5.]
( ![]() |
[13] |
Wang Q J, Deng M J, Ning S R, et al. Reality and problems of controlling soil water and salt in farmland (In Chinese)[J]. Advances in Water Science, 2021, 32(1): 139-147. DOI:10.14042/j.cnki.32.1309.2021.01.014 [王全九, 邓铭江, 宁松瑞, 等. 农田水盐调控现实与面临问题[J]. 水科学进展, 2021, 32(1): 139-147.]
( ![]() |
[14] |
Yang J S, Yao R J, Wang X P, et al. Research on salt-affected soils in China: History, status quo and prospect (In Chinese)[J]. Acta Pedologica Sinica, 2022, 59(1): 10-27. [杨劲松, 姚荣江, 王相平, 等. 中国盐渍土研究: 历程、现状与展望[J]. 土壤学报, 2022, 59(1): 10-27.]
( ![]() |
[15] |
Li X M, Zhang C L, Huo Z L. Optimizing irrigation and drainage by considering agricultural hydrological process in arid farmland with shallow groundwater[J]. Journal of Hydrology, 2020, 585: 124785. DOI:10.1016/j.jhydrol.2020.124785
( ![]() |
[16] |
Singh A. Salinization of agricultural lands due to poor drainage: A viewpoint[J]. Ecological Indicators, 2018, 95(1): 127-130.
( ![]() |
[17] |
Guo K, Ju Z Q, Feng X H, et al. Advances and expectations of researches on saline soil reclamation by freezing saline water irrigation (In Chinese)[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8): 1016-1024. DOI:10.13930/j.cnki.cjea.160108 [郭凯, 巨兆强, 封晓辉, 等. 咸水结冰灌溉改良盐碱地的研究进展及展望[J]. 中国生态农业学报, 2016, 24(8): 1016-1024.]
( ![]() |
[18] |
Zhao Y G, Wang S J, Li Y, et al. Long-term performance of flue gas desulfurization gypsum in a large-scale application in a saline-alkali wasteland in northwest China[J]. Agriculture, Ecosystems & Environment, 2018, 261: 115-124.
( ![]() |
[19] |
Zhang J H, Bai Y G, Zhang S J, et al. Effect of two kinds of soil ameliorant on saline soil improvement and cotton growth (In Chinese)[J]. Arid Zone Research, 2011, 28(3): 384-388. [张江辉, 白云岗, 张胜江, 等. 两种化学改良剂对盐渍化土壤作用机制及对棉花生长的影响[J]. 干旱区研究, 2011, 28(3): 384-388.]
( ![]() |
[20] |
Qi Z J, Feng H, Zhao Y, et al. Spatial distribution and simulation of soil moisture and salinity under mulched drip irrigation combined with tillage in an arid saline irrigation district, northwest China[J]. Agricultural Water Management, 2018, 201: 219-231. DOI:10.1016/j.agwat.2017.12.032
( ![]() |
[21] |
Tan S, Wang Q J, Xu D, et al. Evaluating effects of four controlling methods in bare strips on soil temperature, water, and salt accumulation under film-mulched drip irrigation[J]. Field Crops Research, 2017, 214: 350-358. DOI:10.1016/j.fcr.2017.09.004
( ![]() |
[22] |
Shao C Q, Zhou H F, Jiang P W. Research progress and problems of different farmland mulch technology and its effect on soil water, salt and heat (In Chinese)[J]. China Rural Water and Hydropower, 2012(12): 17-22. [邵春琴, 周宏飞, 蒋鹏文. 农田不同覆盖技术及其对土壤水热盐影响研究进展与问题[J]. 中国农村水利水电, 2012(12): 17-22.]
( ![]() |
[23] |
Zhang T B, Zhan X Y, He J Q, et al. Salt characteristics and soluble cations redistribution in an impermeable calcareous saline-sodic soil reclaimed with an improved drip irrigation[J]. Agricultural Water Management, 2018, 197: 91-99. DOI:10.1016/j.agwat.2017.11.020
( ![]() |
[24] |
Qadir M, Qureshi R H, Ahmad N. Amelioration of calcareous saline sodic soils through phytoremediation and chemical strategies[J]. Soil Use and Management, 2002, 18(4): 381-385. DOI:10.1079/SUM2002149
( ![]() |
[25] |
Manousaki E, Kalogerakis N. Halophytes present new opportunities in phytoremediation of heavy metals and saline soils[J]. Industrial & Engineering Chemistry Research, 2011, 50(2): 656-660.
( ![]() |
[26] |
Jiang P W, Zhou H F, Shao C Q, et al. Research progress and application prospect of biological salt removal in improvement and utilization of saline soil (In Chinese)[J]. Yellow River, 2013, 35(3): 71-75. [蒋鹏文, 周宏飞, 邵春琴, 等. 生物排盐改良利用盐渍土的研究展望[J]. 人民黄河, 2013, 35(3): 71-75.]
( ![]() |
[27] |
Yang X, Zhu Q, Ma M C, et al. Research on the evaporation capacity and water-salt variation characteristics of different types of saline wasteland (In Chinese)[J]. China Rural Water and Hydropower, 2019(9): 49-53. [杨煦, 朱勤, 马萌辰, 等. 不同类型盐荒地蒸发能力与水盐变化特征研究[J]. 中国农村水利水电, 2019(9): 49-53.]
( ![]() |
[28] |
Wang S L, Zhou H P, Qu X Y, et al. Study on directional salt transport and surface salt draining under mulched drip irrigation in arid areas (In Chinese)[J]. Journal of Hydraulic Engineering, 2013, 44(5): 549-555. [王少丽, 周和平, 瞿兴业, 等. 干旱区膜下滴灌定向排盐和盐分上移地表排模式研究[J]. 水利学报, 2013, 44(5): 549-555.]
( ![]() |
[29] |
van Oosten M J, Maggio A. Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils[J]. Environmental and Experimental Botany, 2015, 111: 135-146. DOI:10.1016/j.envexpbot.2014.11.010
( ![]() |
[30] |
Ksouri R, Ksouri W M, Jallali I, et al. Medicinal halophytes: Potent source of health promoting biomolecules with medical, nutraceutical and food applications[J]. Critical Reviews in Biotechnology, 2012, 32(4): 289-326. DOI:10.3109/07388551.2011.630647
( ![]() |
[31] |
Liu L L, Wang B S. Protection of halophytes and their uses for cultivation of saline-alkali soil in China[J]. Biology, 2021, 10(5): 353. DOI:10.3390/biology10050353
( ![]() |
[32] |
Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes[J]. Annual Review of Plant Physiology, 1980, 31: 149-190. DOI:10.1146/annurev.pp.31.060180.001053
( ![]() |
[33] |
Deng Y Q, Feng Z T, Yuan F, et al. Identification and functional analysis of the autofluorescent substance in Limonium bicolor salt glands[J]. Plant Physiology and Biochemistry, 2015, 97: 20-27. DOI:10.1016/j.plaphy.2015.09.007
( ![]() |
[34] |
Yuan F, Guo J R, Shabala S, et al. Reproductive physiology of halophytes: Current standing[J]. Frontiers in Plant Science, 2019, 9: 1954. DOI:10.3389/fpls.2018.01954
( ![]() |
[35] |
van Zelm E, Zhang Y X, Testerink C. Salt tolerance mechanisms of plants[J]. Annual Review of Plant Biology, 2020, 71: 403-433. DOI:10.1146/annurev-arplant-050718-100005
( ![]() |
[36] |
Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681. DOI:10.1146/annurev.arplant.59.032607.092911
( ![]() |
[37] |
Rozema J, Schat H. Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture[J]. Environmental and Experimental Botany, 2013, 92: 83-95. DOI:10.1016/j.envexpbot.2012.08.004
( ![]() |
[38] |
Xi J B, Zhang F S, Tian C Y. Halophytes in Xinjiang (In Chinese). Beijing: Science Press, 2006. [郗金标, 张福锁, 田长彦. 新疆盐生植物[M]. 北京: 科学出版社, 2006.]
( ![]() |
[39] |
Flowers T J, Colmer T D. Salinity tolerance in halophytes[J]. New Phytologist, 2008, 179(4): 945-963. DOI:10.1111/j.1469-8137.2008.02531.x
( ![]() |
[40] |
Khan M, Aziz I. Salinity tolerance in some mangrove species from Pakistan[J]. Wetlands Ecology and Management, 2001, 9(3): 229-233. DOI:10.1023/A:1011112908069
( ![]() |
[41] |
Aslam R. A critical review on halophytes: Salt tolerant plants[J]. Journal of Medicinal Plants Research, 2011, 5(33): 7108-7118.
( ![]() |
[42] |
Colmer T D, Flowers T J, Munns R. Use of wild relatives to improve salt tolerance in wheat[J]. Journal of Experimental Botany, 2006, 57(5): 1059-1078. DOI:10.1093/jxb/erj124
( ![]() |
[43] |
Meychik N, Nikolaeva Y, Kushunina M. The significance of ion-exchange properties of plant root cell walls for nutrient and water uptake by plants[J]. Plant Physiology and Biochemistry, 2021, 166: 140-147. DOI:10.1016/j.plaphy.2021.05.048
( ![]() |
[44] |
Cheeseman J M. Mechanisms of salinity tolerance in plants[J]. Plant Physiology, 1988, 87(3): 547-550. DOI:10.1104/pp.87.3.547
( ![]() |
[45] |
Demidchik V, Tester M. Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots[J]. Plant Physiology, 2002, 128(2): 379-387. DOI:10.1104/pp.010524
( ![]() |
[46] |
Shabala S, MacKay A. Ion transport in halophytes[M]// Turkan I. Advances in botanical research—Plant responses to drought and salinity stress. Amsterdam: Elsevier, 2011: 151—199.
( ![]() |
[47] |
Munns R. Physiological processes limiting plant growth in saline soils: Some dogmas and hypotheses[J]. Plant, Cell & Environment, 1993, 16(1): 15-24.
( ![]() |
[48] |
Zhu J K. Plant salt tolerance[J]. Trends in Plant Science, 2001, 6(2): 66-71. DOI:10.1016/S1360-1385(00)01838-0
( ![]() |
[49] |
Ball M C, Farquhar G D. Photosynthetic and stomatal responses of two mangrove species, Aegiceras corniculatum and Avicennia marina, to long term salinity and humidity conditions[J]. Plant Physiology, 1984, 74(1): 1-6. DOI:10.1104/pp.74.1.1
( ![]() |
[50] |
Downton W. Growth and osmotic relations of the mangrove Avicennia marina, as influenced by salinity[J]. Functional Plant Biology, 1982, 9(5): 519-528. DOI:10.1071/PP9820519
( ![]() |
[51] |
Munns R. Comparative physiology of salt and water stress[J]. Plant, Cell & Environment, 2002, 25(2): 239-250.
( ![]() |
[52] |
Ali A, Yun D J. Salt stress tolerance; what do we learn from halophytes?[J]. Journal of Plant Biology, 2017, 60(5): 431-439. DOI:10.1007/s12374-017-0133-9
( ![]() |
[53] |
Ayers R S, Westcot D W. Water quality for agriculture . Rome: Food and Agriculture Organization of the United Nations, 1985: 174.
( ![]() |
[54] |
National Research Council. Saline agriculture: Salt-tolerant plants for developing countries . Washington DC: The National Academies Press, 1990.
( ![]() |
[55] |
Zhang H X, Zhang G M, Lü X T, et al. Salt tolerance during seed germination and early seedling stages of 12 halophytes[J]. Plant and Soil, 2015, 388(1/2): 229-241.
( ![]() |
[56] |
Hartle R T, Fernandez G C J, Nowak R S. Horizontal and vertical zones of influence for root systems of four Mojave Desert shrubs[J]. Journal of Arid Environments, 2006, 64(4): 586-603. DOI:10.1016/j.jaridenv.2005.06.021
( ![]() |
[57] |
Ning S R, Chen C, Zhou B B, et al. Evaluation of normalized root length density distribution models[J]. Field Crops Research, 2019, 242: 107604. DOI:10.1016/j.fcr.2019.107604
( ![]() |
[58] |
Chen W L, Jin M G, Ferré T P A, et al. Soil conditions affect cotton root distribution and cotton yield under mulched drip irrigation[J]. Field Crops Research, 2020, 249: 107743. DOI:10.1016/j.fcr.2020.107743
( ![]() |
[59] |
Song J. Root morphology is related to the phenotypic variation in waterlogging tolerance of two populations of Suaeda salsa under salinity[J]. Plant and Soil, 2009, 324(1/2): 231-240.
( ![]() |
[60] |
González-Orenga S, Llinares J V, Hassan M, et al. Physiological and morphological characterisation of Limonium species in their natural habitats: Insights into their abiotic stress responses[J]. Plant and Soil, 2020, 449(1/2): 267-284.
( ![]() |
[61] |
Yi L P, Ma J, Li Y. Effects of salt stress on root characteristics and activity of three desert halophytes at seedling stage (In Chinese)[J]. Science in China: Series D: Earth Sciences, 2006, 36(S2): 86-94. [弋良朋, 马健, 李彦. 盐胁迫对3种荒漠盐生植物苗期根系特征及活力的影响[J]. 中国科学D辑: 地球科学, 2006, 36(S2): 86-94.]
( ![]() |
[62] |
Yang H, Hu J X, Long X H, et al. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke[J]. Scientific Reports, 2016, 6: 20687. DOI:10.1038/srep20687
( ![]() |
[63] |
Redelstein R, Dinter T, Hertel D, et al. Effects of inundation, nutrient availability and plant species diversity on fine root mass and morphology across a saltmarsh flooding gradient[J]. Frontiers in Plant Science, 2018, 9: 98.
( ![]() |
[64] |
Wang S L, Zhao Z Y, Ge S Q, et al. Root morphology and rhizosphere characteristics are related to salt tolerance of Suaeda salsa and beta vulgaris L[J]. Frontiers in Plant Science, 2021, 12: 677767.
( ![]() |
[65] |
Karakaş S, Çullu M A, Dikilitaş M. Comparison of two halophyte species (Salsola soda and Portulaca oleracea) for salt removal potential under different soil salinity conditions[J]. Turkish Journal of Agriculture and Forestry, 2017, 41(3): 183-190.
( ![]() |
[66] |
Yucel C, Farhan M, Khairo A, et al. Evaluating Salicornia as a potential forage crop to remediate high groundwater-table saline soil under continental climates[J]. International Journal of Plant & Soil Science, 2017, 16(6): 1-10.
( ![]() |
[67] |
Zhao K F. Desalinization of saline soils by Suaeda salsa[J]. Plant and Soil, 1991, 135(2): 303-305.
( ![]() |
[68] |
Liang J P, Shi W J. Cotton/halophytes intercropping decreases salt accumulation and improves soil physicochemical properties and crop productivity in saline-alkali soils under mulched drip irrigation: A three-year field experiment[J]. Field Crops Research, 2021, 262: 108027.
( ![]() |
[69] |
Wang L, Wang X, Jiang L, et al. Reclamation of saline soil by planting annual euhalophyte Suaeda salsa with drip irrigation: A three-year field experiment in arid northwestern China[J]. Ecological Engineering, 2021, 159: 106090.
( ![]() |
[70] |
Kafi M, Asadi H, Ganjeali A. Possible utilization of high-salinity waters and application of low amounts of water for production of the halophyte Kochia scoparia as alternative fodder in saline agroecosystems[J]. Agricultural Water Management, 2010, 97(1): 139-147.
( ![]() |
[71] |
Paraskevopoulou A T, Zafeiriou S, Londra P A. Plant growth of Atriplex portulacoides affected by irrigation amount and substrate type in an extensive green roof system[J]. Ecological Engineering, 2021, 165(1): 106223.
( ![]() |
[72] |
Talebnejad R, Sepaskhah A R. Effect of different saline groundwater depths and irrigation water salinities on yield and water use of quinoa in lysimeter[J]. Agricultural Water Management, 2015, 148: 177-188.
( ![]() |
[73] |
Liang F, Tian C Y, Tian M M, et al. Effect of nitrogen topdressing on the growth of Suaeda salsa and the improvement of saline soil (In Chinese)[J]. Acta Prataculturae Sinica, 2013, 22(3): 234-240. [梁飞, 田长彦, 田明明, 等. 追施氮肥对盐地碱蓬生长及其改良盐渍土效果研究[J]. 草业学报, 2013, 22(3): 234-240.]
( ![]() |
[74] |
Lei J Y, Ban N R, Zhang Y H, et al. Effects and partition characteristics of Tamarix ramosissima on nutrients and salt of saline-alkali soils (In Chinese)[J]. Bulletin of Soil and Water Conservation, 2011, 31(2): 73-76. [雷金银, 班乃荣, 张永宏, 等. 柽柳对盐碱土养分与盐分的影响及其区化特征[J]. 水土保持通报, 2011, 31(2): 73-76.]
( ![]() |
[75] |
Wang S, Wang Q J, Zhou B B, et al. Effect of interplanting halophyte in cotton fields with drip irrigation under film to improve saline-alkali soil (In Chinese)[J]. Acta Prataculturae Sinica, 2014, 23(3): 362-367. [王升, 王全九, 周蓓蓓, 等. 膜下滴灌棉田间作盐生植物改良盐碱地效果[J]. 草业学报, 2014, 23(3): 362-367.]
( ![]() |
[76] |
Wang M, Qi S T, Ge M L. Research progress on the biological improvement of the coastal saline soil by halophytes (In Chinese)[J]. Journal of Anhui Agricultural Sciences, 2008, 36(7): 2898-2899. [王苗, 齐树亭, 葛美丽. 盐生植物对滨海盐渍土生物改良的研究进展[J]. 安徽农业科学, 2008, 36(7): 2898-2899.]
( ![]() |
[77] |
Hu F C. Initial research report on soil fertility improvement by planting Medicago sativa (In Chinese)[J]. Pratacultural Science, 2005, 22(8): 47-49. [胡发成. 种植苜蓿改良培肥地力的研究初报[J]. 草业科学, 2005, 22(8): 47-49.]
( ![]() |
[78] |
Yang C, Chen H Y, Li J S, et al. Soil improving effect of Suaeda salsa on heavy coastal saline-alkaline land (In Chinese)[J]. Chinese Journal of Eco-Agriculture, 2019, 27(10): 1578-1586. [杨策, 陈环宇, 李劲松, 等. 盐地碱蓬生长对滨海重盐碱地的改土效应[J]. 中国生态农业学报, 2019, 27(10): 1578-1586.]
( ![]() |
[79] |
Lin X Z, Chen K S, He P Q, et al. The effects of Suaeda salsa L.planting on the soil microflora in coastal saline soil (In Chinese)[J]. Acta Ecologica Sinica, 2006, 26(3): 801-807. [林学政, 陈靠山, 何培青, 等. 种植盐地碱蓬改良滨海盐渍土对土壤微生物区系的影响[J]. 生态学报, 2006, 26(3): 801-807.]
( ![]() |
[80] |
Zou G M, Su D R, Huang M Y, et al. Effect of planting Suaeda salsa on improvement of dredger filled soil (In Chinese)[J]. Pratacultural Science, 2010, 27(4): 51-56. [邹桂梅, 苏德荣, 黄明勇, 等. 人工种植盐地碱蓬改良吹填土的试验研究[J]. 草业科学, 2010, 27(4): 51-56.]
( ![]() |
[81] |
Zhang L B, Xu H L, Zhao G X. Salt tolerance of Suaeda salsa and its soil ameliorating effect on coastal saline soil (In Chinese)[J]. Soils, 2007, 39(2): 310-313. [张立宾, 徐化凌, 赵庚星. 碱蓬的耐盐能力及其对滨海盐渍土的改良效果[J]. 土壤, 2007, 39(2): 310-313.]
( ![]() |
[82] |
Yi L P, Ma J, Li Y. Dynamics of soil enzyme activity in the rhizosphere of desert halophyte (In Chinese)[J]. Chinese Journal of Eco-Agriculture, 2009, 17(3): 500-505. [弋良朋, 马健, 李彦. 荒漠盐生植物根际土壤酶活性的变化[J]. 中国生态农业学报, 2009, 17(3): 500-505.]
( ![]() |
[83] |
Koyro H W. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus(L.)[J]. Environmental and Experimental Botany, 2006, 56(2): 136-146.
( ![]() |
[84] |
Ramani B, Reeck T, Debez A, et al. Aster tripolium L. and Sesuvium portulacastrum L.: Two halophytes, two strategies to survive in saline habitats[J]. Plant Physiology and Biochemistry, 2006, 44(5/6): 395-408.
( ![]() |
[85] |
Devi S, Nandwal A S, Angrish R, et al. Phytoremediation potential of some halophytic species for soil salinity[J]. International Journal of Phytoremediation, 2016, 18(7): 693-696.
( ![]() |
[86] |
Debez A, Saadaoui D, Slama I, et al. Responses of Batis maritima plants challenged with up to two-fold seawater NaCl salinity[J]. Journal of Plant Nutrition and Soil Science, 2010, 173(2): 291-299.
( ![]() |
[87] |
Sai Kachout S. The effect of salinity on the growth of the halophyte Atriplex hortensis(Chenopodiaceae)[J]. Applied Ecology and Environmental Research, 2009, 7(4): 319-332.
( ![]() |
[88] |
Wilson C, Lesch S M, Grieve C M. Growth stage modulates salinity tolerance of New Zealand spinach (Tetragonia tetragonioides, pall.) and red orach (Atriplex hortensis L.)[J]. Annals of Botany, 2000, 85(4): 501-509.
( ![]() |
[89] |
O'Leary J W, Glenn E P, Watson M C. Agricultural production of halophytes irrigated with seawater[J]. Plant and Soil, 1985, 89(1/2/3): 311-321.
( ![]() |
[90] |
Karakaş Dikilitaş S, Dikilitaş M, Tıpırdamaz R. Biochemical and molecular tolerance of Carpobrotus acinaciformis L. halophyte plants exposed to high level of NaCl stress[J]. Harran Tarım ve Gıda Bilimleri Dergisi, 2019, 23(1): 99-107.
( ![]() |
[91] |
de Vos A C, Broekman R, Groot M P, et al. Ecophysiological response of Crambe maritima to airborne and soil-borne salinity[J]. Annals of Botany, 2010, 105(6): 925-937.
( ![]() |
[92] |
Ben Amor N, Ben Hamed K, Debez A, et al. Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity[J]. Plant Science, 2005, 168(4): 889-899.
( ![]() |
[93] |
Hamed K, Debez A, Chibani F, et al. Salt response of Crithmum maritimum, an oleagineous halophyte[J]. Tropical Ecology, 2004, 45(1): 151-159.
( ![]() |
[94] |
de Vos A C. Sustainable Exploitation of Saline Resources: Ecology, ecophysiology and cultivation of potential halophyte crops[D]. Amsterdam: Vrije University Amsterdam, 2011.
( ![]() |
[95] |
Herppich W B, Huyskens-Keil S, Schreiner M. Effects of saline irrigation on growth, physiology and quality of Mesembryanthemum crystallinum L., a rare vegetable crop[J]. Journal of Applied Botany and Food Quality, 2008, 82(1): 47-54.
( ![]() |
[96] |
Agarie S, Shimoda T, Shimizu Y, et al. Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum[J]. Journal of Experimental Botany, 2007, 58(8): 1957-1967.
( ![]() |
[97] |
Karakaş S, Çullu M, Dikilitaş M. In vitro koşullarda halofit bitkilerden Salsola soda ve Portulaca oleracea'nın nacl stresine karşı çimlenme ve gelişim durumları[J]. Harran Tarım ve Gıda Bilimleri Dergisi, 2015, 19(2): 66-74.
( ![]() |
[98] |
Ventura Y, Sagi M. Halophyte crop cultivation: The case for Salicornia and Sarcocornia[J]. Environmental and Experimental Botany, 2013, 92: 144-153.
( ![]() |
[99] |
Tardío J, Pardo-de-santayana M, Morales R. Ethnobotanical review of wild edible plants in Spain[J]. Botanical Journal of the Linnean Society, 2006, 152(1): 27-71.
( ![]() |
[100] |
Dikilitas M, Karakas S. Salts as potential environmental pollutants, their types, effects on plants and approaches for their phytoremediation[M]//Plant adaptation and phytoremediation. Springer, Dordrecht, 2010: 357—381.
( ![]() |
[101] |
Miraj S. A review study of therapeutic effects of Peganum harmala[J]. Der Pharmacia Lettre, 2016, 8(13): 161-166.
( ![]() |
[102] |
Słupski J, Achrem-Achremowicz J, Lisiewska Z, et al. Effect of processing on the amino acid content of New Zealand spinach (Tetragonia tetragonioides Pall. Kuntze)[J]. International Journal of Food Science & Technology, 2010, 45(8): 1682-1688.
( ![]() |
[103] |
Zhao Z Y, Tian C Y, Zhang K, et al. Biological improvement of saline-alkali land and comprehensive utilization of halophyte resources (In Chinese)[J]. High-Technology & Commercialization, 2020(9): 64-66. [赵振勇, 田长彦, 张科, 等. 盐碱地生物改良与盐生植物资源综合利用[J]. 高科技与产业化, 2020(9): 64-66.]
( ![]() |
[104] |
Karakas S, Dikilitas M, Tıpırdamaz R. Phytoremediation of salt-affected soils using halophytes[M]//Grigore M N. Handbook of Halophytes. Cham: Springer International Publishing, 2020: 1—18.
( ![]() |
[105] |
Zhao Z Y, Zhang K, Wang L, et al. Desalination effect of halophytes in heavily salinized soil of Karamay, Xinjiang, China (In Chinese)[J]. Journal of Desert Research, 2013, 33(5): 1420-1425. [赵振勇, 张科, 王雷, 等. 盐生植物对重盐渍土脱盐效果[J]. 中国沙漠, 2013, 33(5): 1420-1425.]
( ![]() |
[106] |
Guo Y, Chen B L, Sheng J D, et al. Salt absorption capacities of several annul halophytes (In Chinese)[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(1): 269-276. [郭洋, 陈波浪, 盛建东, 等. 几种一年生盐生植物的吸盐能力[J]. 植物营养与肥料学报, 2015, 21(1): 269-276.]
( ![]() |
[107] |
Zhang Y C, Shi W J, Ma Y. Effect of halophytes on improving saline-sodic soil of cotton field with drip irrigation under plastic film (In Chinese)[J]. Agricultural Research in the Arid Areas, 2018, 36(6): 26-32. [张艳超, 史文娟, 马媛. 膜下滴灌棉田生物改良盐碱地效果研究[J]. 干旱地区农业研究, 2018, 36(6): 26-32.]
( ![]() |
[108] |
Shi W J, Yang J Q, Ma Y. Review on saline-alkali soil improvement with planting halophyte method in arid region (In Chinese)[J]. Journal of Water Resources and Water Engineering, 2015, 26(5): 229-234. [史文娟, 杨军强, 马媛. 旱区盐碱地盐生植物改良研究动态与分析[J]. 水资源与水工程学报, 2015, 26(5): 229-234.]
( ![]() |
[109] |
de Melo M L A, van Lier Q D J. Revisiting the Feddes reduction function for modeling root water uptake and crop transpiration[J]. Journal of Hydrology, 2021, 603: 126952.
( ![]() |
[110] |
Skaggs T H, van Genuchten M T, Shouse P J, et al. Macroscopic approaches to root water uptake as a function of water and salinity stress[J]. Agricultural Water Management, 2006, 86(1/2): 140-149.
( ![]() |
[111] |
Liu C M. Study on interface processes of water cycle in soil plant atmosphere continuum (In Chinese)[J]. Acta Geographica Sinica, 1997, 52(4): 366-373. [刘昌明. 土壤-植物-大气系统水分运行的界面过程研究[J]. 地理学报, 1997, 52(4): 366-373.]
( ![]() |
[112] |
Shao M A, Huang M B. Hydrodynamics of soil-root system (In Chinese). Xi'an: Shaanxi Science & Technology Press, 2000. [邵明安, 黄明斌. 土—根系统水动力学[M]. 西安: 陕西科学技术出版社, 2000.]
( ![]() |
[113] |
Kang S Z, Liu X M, Xiong Y Z. Research on the model of water uptake by winter wheat root system (In Chinese)[J]. Acta University Agriculturae Boreali-Occidentalis, 1992, 20(2): 5-12. [康绍忠, 刘晓明, 熊运章. 冬小麦根系吸水模式的研究[J]. 西北农业大学学报, 1992, 20(2): 5-12.]
( ![]() |
[114] |
Feddes R A, Bresler E, Neuman S P. Field test of a modified numerical model for water uptake by root systems[J]. Water Resources Research, 1974, 10(6): 1199-1206.
( ![]() |
[115] |
Feddes R A, Kowalik P J, Zaradny H. Simulation of field water use and crop yield . Wagening: Centre for Agricultural Publishing and Documentation, 1978.
( ![]() |
[116] |
宁松瑞. 长期膜下滴灌棉田根系层盐分累积效应模拟[D]. 北京: 中国农业大学, 2015. Ning S R. Numerical simulation on soil salt accumulation in root zone of cotton field under long-term film mulched drip irrigation[D]. Beijing: China Agricultural University, 2015. ( ![]() |
[117] |
齐智娟. 河套灌区盐碱地玉米膜下滴灌土壤水盐热运移规律及模拟研究[D]. 北京: 中国科学院大学, 2016. Qi Z J. Soil water, heat and salt transport and simulation under mulched drip irrigation for corn of saline soil in Hetao irrigation district[D]. Beijing: University of Chinese Academy of Sciences, 2016. ( ![]() |
[118] |
Perri S, Entekhabi D, Molini A. Plant osmoregulation as an emergent water-saving adaptation[J]. Water Resources Research, 2018, 54(4): 2781-2798.
( ![]() |
[119] |
Šimůnek J, Hopmans J W. Modeling compens ated root water and nutrient uptake[J]. Ecological Modelling, 2009, 220(4): 505-521.
( ![]() |