2. 中国科学院大学, 北京 100049;
3. 武汉大学水资源与水电工程科学国家重点实验室, 武汉 430072;
4. 中国科学院烟台海岸带研究所, 山东烟台 264003
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. State Key Laboratory of Water Resource and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China;
4. Yantai Institute of Coastal Zone, Chinese Academy of Sciences, Yantai, Shandong 264003, China
我国盐碱地主要分布在北方干旱、半干旱及沿海地区,土地盐碱荒芜、农业生产落后、土地利用率低、植被稀疏、生态环境差,严重制约区域农业和经济发展[1]。据统计我国盐碱土面积约有3 600万公顷,约占国土总面积的3.75%,且受盐碱危害的耕地面积达920万公顷,占全国耕地面积的6.62%[2]。作为重要的后备耕地资源和生态保障区,我国历来高度重视盐碱地的改良和利用工作[3-4]。多年实践证明,以地下水位工程性调控和淡水压盐为核心的灌排水利工程措施是盐碱地改良中最为有效的方法[5-6],但在大面积盐碱地得以改良的同时也造成了大量淡水资源的消耗,目前淡水资源短缺已成为盐碱区农业可持续发展的关键制约因素[7],传统的以淡水灌溉洗盐为主的盐碱地灌排措施改良模式已很难适应当前盐碱区高效生态绿色发展需求。如何突破盐碱区水土资源约束,探索一条低耗水、低投入、生态、高效的盐碱地改良新途径,建立与区域资源禀赋相适应的盐碱地绿色、可持续利用新模式是盐碱区农业和生态产业发展的重要研究方向[8]。
在当前盐碱区淡水资源日益短缺条件下,盐碱地逐渐由高投入高耗水的水利工程性改良模式向以肥沃耕层构建水肥盐一体化综合调控节水改良模式方向发展。近年来,国内外在咸水利用、节水灌溉、耐盐植物资源开发、有机培肥、不同土层界面调控、植物-土壤互作改土等方面系统开展了盐碱地适应性利用方面的研究工作,取得了显著的成效,并逐步形成了以土壤水肥盐综合调控、植物-土壤-环境协调的盐碱地节水改良技术新模式[9-12]。上述模式是在我国著名土壤学家陈恩凤、魏由庆等提出的构建“厚活土层”“淡化肥沃层”等盐碱地改良策略基础上,结合各地盐碱地利用生产实践发展而来。其基本思路是在不减少土体盐贮量的条件下,通过各类培肥、耕作和管理措施培育适宜作物生长的盐碱地肥沃耕层,通过增加耕层有机质和微生物、改善土壤结构、促进盐分淋洗,将植物主要根系层多余盐分调节至根层以下,以实现盐碱地“以肥调水控盐”的目标[13-16]。已有研究表明,盐碱地通过耕作、适度灌溉、施肥、秸秆还田、有机培肥等措施可有效改善土壤结构,调控土壤盐分,实现在地下水浅埋条件下土壤盐分剖面由平均型向底聚型空间格局发展,并能够保证其效果的可持续性[17-21]。因此,开展控盐-保水-保肥的肥沃耕层构建技术与模式研究对盐碱地可持续利用具有重要意义。但目前盐碱地肥沃耕层构建缺乏量化的指标体系,尤其是对于其内在的水肥热盐耦合调控机理及植物的响应机制方面缺少系统的研究,制约了上述技术模式的推广应用。本文对盐碱地改良、肥沃耕层构建技术、土壤水肥盐动态特征、植物对盐碱地肥沃耕层的响应机理等方面的研究进展进行总结,并对其未来研究趋势进行了展望,以期为我国盐碱地可持续开发和利用提供一些参考和启示。
1 盐碱地肥沃耕层构建技术应用与发展现状目前对于盐碱地的改良方式主要通过物理、化学和生物措施调控土壤盐分,结合土壤培肥,为植物正常生长提供适宜的土壤水肥盐条件[22-23]。我国在盐碱地改良方面做了大量的工作,取得了瞩目的成就,并形成了成熟的技术模式,尤其是我国黄淮海平原地区的井灌井排,排、灌、蓄、补综合运用,雨水、地面水、土壤水和地下水的统一调控,均极大地加速了干旱、洪涝、盐碱的综合治理,显著促进了盐碱地产能扩增。上述技术模式充分证明水是改良盐碱地的首要的基础物质[1,24],以“淡水压盐”为核心的灌排水利工程措施依然是目前盐碱地改良中最为有效的方法。一方面通过淡水灌溉压盐,消减土壤盐分;另一方面通过排水措施调控地下水至临界水位以下,防止返盐[5-6]。在此基础上结合耕作、培肥等技术措施,提高土壤肥力水平,促进作物增产,因此充足的淡水资源是盐碱地改良的关键[25]。而盐碱区普遍伴随地下水位浅且矿化度高、蒸发量大且降雨量小等水文和气候特点[26-27],且淡水资源的日益短缺也是盐碱区普遍面临的问题,传统以地下水位工程性调控和淡水洗盐为主的盐碱地改良措施在区域上的局限性日益凸显,尤其在滨海盐碱区,如果地下水位调控不当,还存在海水倒灌的风险。大量研究指出盐碱地的改良应依据区域气候特点和水资源条件,选取适宜的作物和改良措施,以保证其在区域上的可持续性[1,8]。因此,在当前盐碱区水土资源约束条件下,亟需探索一条低能耗、绿色、生态可持续的盐碱地改良利用模式。
在盐碱区水资源约束下,以农艺措施为核心的土壤水肥盐优化调控和肥沃耕层构建日益成为目前盐碱地改良的主要研究方向。早在20世纪70年代,我国著名土壤学家陈恩凤等[14-15]就指出以水、肥为中心的综合措施是改良盐碱地的正确途径,并提出了在盐碱地培育“厚活土层”概念,指出盐碱土有机质的增加,能够改善土壤结构、减少地面蒸发、促进盐分淋洗、抑制盐分上升、促进土壤微生物活性,进而实现对盐碱土壤水肥盐优化调控;魏由庆等[16]通过多年的盐碱地土壤培肥研究,提出了“淡化肥沃层”的概念,指出通过定向培育良好的水肥盐耕层环境,可在不减少区域土体盐贮量的条件下,实现对土壤剖面盐分的时空优化调控,确保作物正常生长,并针对淡化肥沃层的构建提出了具体的土壤培肥措施。其中土壤有机质作为土壤肥力要素的基本参数,显著影响了土壤缓冲性能和供水供肥能力,是盐碱地肥沃耕层构建的关键指标参数[28-29]。近年来针对盐碱地有机质快速提升,大量研究通过厩肥施用、秸秆还田、生物菌肥、生物质炭和绿肥作物种植等措施开展了耕层培肥改土的工作,并取得了显著的效果[30-34]。不同培肥措施对土壤有机质提升效率存在差异,且土壤有机质增长量与施肥量呈非线性正相关关系[16],已有研究表明应根据土壤类型和有机物料特性等实施优化的培肥措施,以促进盐碱地有机质快速转化[35]。通过盐碱地耕层土壤培肥和有机质提升,土壤物理结构显著改善,对土体水分蒸发盐分表聚的抑制作用增强,水分入渗淋盐效率显著提高[31]。在苏北盐碱区地区开展的研究结果显示,当土壤有机质1.5%左右、耕层厚度为20 cm时,直径 > 0.25 mm团聚体含量能够达到25%以上、容重低于1.25 g·cm–3、总孔隙度大于55%,对耕层土壤盐分的调节效果显著,并提高了土壤肥力和作物产量[28-29]。除耕层土壤培肥调控土壤盐分外,近年来,针对盐碱地肥沃耕层构建下不同界面的运移调控开展了大量研究,通过地膜、砂石、水泥硬壳、秸秆等材料进行地表覆盖,减少蒸发和抑制土壤盐分表聚,同时通过表层土壤水分蒸发、水汽凝结、回流入渗等过程,显著缓解了耕层土壤盐分的累积[36-41];通过翻耕、粉垄、深松、中耕、秸秆深埋和砂层填埋等措施切断土壤毛管,加深耕作层深度和改善耕层土壤结构,减少深层土壤盐分上行和表聚,提高了土壤的蓄水保墒能力[42-44],显著促进了耕层土壤水盐的优化调控;结合膜下滴灌、喷灌、畦灌、渗灌等节水灌溉和咸水利用方式,调控了根区土壤盐分,提高了水分利用效率和作物产量[45-47]。近年来,有研究针对滨海重盐碱地改良和高矿化度咸水的利用,通过咸水冬季结冰灌溉[26,48-49]、咸水灌溉覆盖抑盐等措施[50-52],结合土壤培肥,实现了重盐碱地耕层脱盐、控盐和作物的生长,在地下水浅埋区的滨海盐碱地耕层脱盐条件下作物的根系主要分布0~20 cm的土层,且生长良好。上述研究结果表明,在盐碱地肥沃耕层的构建基础上,通过不同界面的水盐调控措施,显著消减了土壤盐分,并保证作物生长。
综上,盐碱地肥沃耕层构建是一个多种措施综合应用的过程,通过节水灌溉、咸水利用等措施淋洗耕层土壤盐分并补充水分,利用精细耕作、地表覆盖、深层隔盐等界面调控技术措施,实现耕层土壤盐分定向阻控,结合秸秆还田、肥料有机无机配施、绿肥作物种植、地表作物或植物种植模式配套等农艺措施,能有效提高耕层土壤肥力和水盐优化调控能力,且效果显著。但如前所述,土壤有机质作为盐碱地肥沃耕层构建的关键指标参数[28-29],其稳步快速提升的技术指标体系仍然是当前盐碱地肥沃耕层构建的难点,同时肥沃耕层构建下其内在的水肥盐调控过程及其与作物生长耦合关系的研究不深入,也导致当前盐碱地肥沃耕层构建的指标体系尚未建立。同时我国盐碱地分布广、面积大,不同盐碱区域气候特点、水土资源条件和农业生产模式上存在巨大差异,肥沃耕层构建的关键指标在区域上也存在差异,迫切需要开展针对不同盐碱区以耕层有机质快速提升为核心的标准化盐碱地肥沃耕层构建技术指标研发,优化集成耕层节水控盐、界面调控、培肥提质等肥沃耕层构建模式,开展土壤水肥盐调控机制研究,为不同盐碱区盐碱地肥沃耕层构建节水改良提供理论依据和技术支撑。
2 盐碱地肥沃耕层构建下土壤水肥盐运移传输机理盐碱地肥沃耕层的构建实际上建立了异质性的土体剖面结构,显著改变了土壤水热盐的传输过程,进而实现对水盐的调节作用[29,53]。上述土体剖面结构在表观上主要呈现为上疏松-下紧实的剖面特征,由于在土壤理化特性上的垂向剖面差异,显著影响了土壤水分的入渗、蒸发以及整个土体内部的土壤水热盐耦合迁移过程。已有研究表明,盐碱土在土壤培肥条件下,耕作土壤和深层土壤在理化性状的差异主要表现在土壤容重显著降低,孔隙度、大粒径土壤团聚体比例、大孔隙比率、毛管孔隙度等显著提高,使土壤饱和导水率、饱和含水量、水力传导度、水分入渗率、田间持水量和有效水含量等土壤水动力参数显著增大,土壤热导率显著降低[54-58],并促进了优先流的产生[59]。而肥沃耕层构建下异质性土体剖面在土壤物理结构特性、热特性和水动力特性等的差异,影响了土体与外界环境以及土体内部的水势梯度、温度梯度[60],改变了整个地下水-土壤-植物-大气系统中水盐运移过程和热量交换[61]。目前,国内外关于非均质土体剖面水热盐运移方面的研究主要针对层状土壤开展。据研究,非均质土壤水盐运移过程不同于均质土,由于层状土壤质地的不均匀性使土水势在界面处发生突变,土层温度梯度、水力梯度和传导度均发生改变,水分在界面处的传输方式随之也发生变化[60-61]。此外,各土层的性质、厚度以及相互排列状况均显著影响了水盐的迁移过程,其中上粗下细土体层状结构能够对入渗水流起到明显的阻水和减渗作用,并且入渗水量和盐分淋洗取决于土层之间的粒度差异。蒸发条件下,当盐碱地有疏松表层或盐结皮存在时,表层土壤的热导率显著降低,延缓了土壤水分蒸发进程,同时地表与地下水位之间的蒸发面也随疏松表层的加深呈下移趋势[62]。此外,土体内部水分运动也非全部以液态形式向上层土壤运移,在蒸发面以下的土体中,水分传输主要通过毛管以液态形式向上传输,而在此界面以上,由于土壤温度梯度大、热导率低,土壤水发生相态转换以汽态水向上传输[63],而地下水和深层土壤中所携带的盐分也主要集聚于该水汽转化界面处。在上述研究的基础上,近年来大量研究通过在盐碱地添加不同材料、厚度和深度的隔层,并对不同隔层处理的水分入渗特征和蒸发盐分运移过程进行了系统分析,建立了不同盐碱区隔层保水抑盐的技术指标,也成为盐碱地有效的节水改良模式之一[36,38]。但在盐碱地肥沃耕层构建下,耕层和深层土壤在性质上的差异,必然会改变水分入渗、蒸发和再分布等关键过程,同时对土壤热量传输和盐分运移产生影响,因此加强上述关键过程水热盐规律的研究,对于进一步深入了解盐碱土异质性土体剖面对土壤水热盐传输的影响机制具有重要意义。
此外,为阐明上述界面调控条件下土壤水盐的运动规律及其与肥力的耦合关系,目前已发展了大量的数值模拟模型开展土壤水肥盐的耦合模拟,并应用于指导生产实际,包括Hydrus-1D/2D/3D、SWAP、LEACHM、DRAINMOD等[64]。上述模型对于界面的影响基本上都是将边界条件设为水势、通量或者混合边界进行简化处理参与Richards方程为控制方程的水盐运动模拟,如吴旭春[64]、虎胆·吐马尔白和苏里坦[65]将秸秆隔层作为一种匀质分层土壤以Richards方程为基础反演了秸秆隔层的水分运动参数;Milly[66]将土壤隔层作为对水汽具有一定阻力的阻挡层建立了质能平衡和水汽相变的非等温水、汽、热耦合运移模型(PDV模型);Nassar和Horton[67]将溶质吸力引入,建立了水分梯度、温度梯度、溶质梯度作用下的水汽输送、热量传递和溶质运移以及盐析作用的一维水汽热盐耦合模型。上述模型对不同剖面结构下的土壤水肥盐动态过程进行了系统性的模拟和分析,为定量化研究土壤水肥盐耦合迁移提供了借鉴。但上述模型不能很好地描述界面本身的复杂过程及其与肥-盐二元土体不同土体结构间的互馈机制,如秸秆深埋、地表覆盖、咸水灌溉等不同界面调控下的水肥盐耦合迁移过程和调控,在肥沃耕层构建、不同界面调控途径及其对内在的土壤水肥盐耦合作用机制方面研究仍然需要进一步深入开展。
3 植物对盐碱地肥盐异质性土壤的响应规律自然条件下,受土壤结构和气候影响,土壤盐分在土体中呈异质性分布,存在着时空分布差异。植物对于土壤异质性盐碱胁迫具有特有的适应机制,其中,根系对土壤盐分响应最为敏感,其形态分布和生理表现是植物对盐胁迫重要的响应特征[68-69]。国内外针对盐胁迫条件下植物根系形态特征、生长动态及生理特性方面开展了大量的研究工作。总体而言,盐胁迫条件下,植物根系具有趋利避害的特性[70]。根系具有较强的可塑性,适度盐胁迫下,植物根系长度、表面积、体积均有不同程度增加,通过扩大吸收面积补偿盐胁迫对水分吸收的影响[71]。此外,植物根系在盐分异质性土壤中也有其特殊的适应机制[72-74],通过在土壤低盐区大量增殖补偿高盐区的胁迫,同时通过高盐区盐分的吸收调节低盐区的根系生长[75-76]。杨婷等[77]研究发现,小麦根系在局部盐胁迫下低盐区根系总量是高盐区的2倍以上,而总根系量则没有降低。自然条件下通过局部构建淡化土壤根层,可促进植物根系生长,实现重盐碱地作物种植[78]。此外,根系的生长也受土壤盐分季节动态的影响,如在滨海盐碱地,8月份盐分最低时的细根生物量最大[79-83]。土壤盐分异质性分布也影响了植物对水分的吸收,据研究,植物吸水主要来源于土壤低盐区,仅有9%~30%来源于高盐区[84]。而自然条件下,土壤盐分空间分布的差异也导致水势梯度的差异,促使水分由低盐区向高盐区传输,这也导致植物水分吸收的土壤水分再分配,影响了土壤水分的吸收,造成植物生理干旱[85]。有研究表明,盐胁迫条件下,水分在植物体内的运输主要受高盐区盐分的影响,同时,叶片的气孔导度、蒸腾速率和植株的生物量均显著降低[86],并且气孔的关闭不仅由于水分匮缺,也可能是根系受到盐胁迫后分泌产生的脱落酸(ABA)运输到气孔,导致气孔关闭[76]。此外,根区盐分差异分布诱导盐离子的区隔化分布,地下部根系的Na+增多,而地上部(叶和枝)Na+显著减少,使离子毒害减轻;在细胞水平上高盐一侧通过激素信号转导,引起冠层叶片细胞内的盐分向液泡转移,进一步减轻了盐离子毒害[78,82]。目前,植物对盐碱地土壤养分适应机制方面的研究尚显欠缺,主要集中于植物根系在盐碱地中的向肥性方面的研究[86-87],且不同植物根系对土壤养分空间异质性的响应差异较大。据研究,棉花根系在水肥充足的盐碱土中根长密度、根表面积、根体积和平均直径均显著降低[9,80]。盐碱地肥沃耕层构建形成的垂向盐异质性土壤剖面结构,由于不同土层水肥盐空间性差异,改变了植物的地下和地上部分的生长特征。目前,对于植物在上述异质性肥盐土体结构中的根系、地上植株等的生长特征及生理特性开展了相关研究工作。但是对于盐碱地肥沃耕层构建下不同作物生产的环境承载力、适生高效水肥管理和界面调控措施等研究相对不足,需要对不同盐碱地肥沃耕层构建模式的植物根系的吸水特性、耗水规律和需肥特性等开展系统性的研究。
4 总结与展望淡水资源短缺是制约盐碱区现代农业发展和生态环境改善主要因素,而传统的以淡水压盐为主的盐碱地改良措施已很难适应当前盐碱区高效生态绿色发展需求。通过对盐碱地改良利用、肥沃耕层构建土壤水肥盐耦合调控和植物对肥盐异质性土壤的适应机理等进行回顾和分析可以看出,如何突破水土资源约束,统筹植物根层水-肥-盐一体化综合调控日益成为盐碱地改良重要研究方向。通过有机培肥、界面调控、水肥管理等措施构建肥沃耕层,定向培育的根系层土壤结构和肥力可以实现盐分下移,同时又能保证浅层地下水以水汽转换的方式促使水分在根层的凝结、抑制盐分上移,为作物生长提供适宜的水肥盐环境,是低耗水、低投入、生态、高效、可持续的水肥盐一体化综合调控治理盐碱地的新模式。特别是随着现代技术、装备和生产条件的改善,为盐碱地肥沃耕层构建技术模式的大规模应用创造了优势条件,但是目前仍然存在一些关键科学问题需要进一步深入研究。具体体现在以下4个方面:
1)盐碱地肥沃耕层构建的指标体系与土壤水-肥-盐耦合调控机制
盐碱地肥沃耕层构建水肥盐综合调控是一复杂的过程,与盐碱区特点、土壤水盐条件、肥力特征及地下水关系密切。前期的研究主要集中在肥力提升方面,如通过秸秆还田、有机肥施用、绿肥种植、耕作、覆盖等措施使盐碱地土壤有机质迅速提升,进而建立保肥、保水和控盐的疏松肥沃耕层,但肥沃耕层的关键指标如耕层培育方式、耕层肥力特征、耕层厚度、与地下水的关系等关键指标缺乏;此外,在盐碱地土壤水肥盐调控机理方面研究也多是在均质土体开展,难以在以肥沃耕层构建的异质性剖面土体应用,迫切需要明确盐碱地肥沃耕层构建的主控因子及关键指标,研究不同盐碱地肥沃耕层构建方式下土壤水-肥-盐耦合调控机制,发展适合盐碱地肥沃耕层构建下界面调控的水肥盐耦合模型,建立盐碱地肥沃耕层土壤水肥盐综合调控的数值模型及定量化表征工具,以期为盐碱地肥沃耕层构建节水改良提供理论指导,同时也为盐碱地肥沃耕层构建技术模式推广应用提供技术支撑。
2)植物对盐碱地肥沃耕层构建的异质性土体水-肥-盐响应机制
盐碱地肥沃耕层构建目标是建立减少盐分胁迫、满足植物生长对水肥需求的肥沃耕层,实现地下咸水浅埋条件下盐碱地质量和产能协同提升。目前围绕植物对异质性盐胁迫的生理生态响应已开展诸多研究,但当前与盐碱地肥沃耕层构建下相匹配的适生耐盐作物品种缺乏,迫切需要加强适生优质的耐盐作物品种的筛选和选育工作;此外,相关耐盐植物配套的种植技术研发也相对不足,尤其在盐碱地肥沃耕层构建作物种植模式的植物-土壤-微生物互作改土机理、植物生理生态特征和耗水需肥规律等方面的研究依然存在瓶颈,通过上述的研究,为盐碱地肥沃耕层构建和作物生产在区域上的适用性和可持续性提供理论支撑,同时也为肥沃耕层构建下土壤水肥盐管理提供理论依据。
3)盐碱地肥沃耕层构建下不同植物种植模式的固碳增汇生态效应评估
盐碱地肥沃耕层构建是固碳增汇的主要方式之一,目前围绕肥沃耕层构建方式如养殖废弃物资源化利用、秸秆还田、绿肥种植等方式下对盐碱地有机质提升效果、土壤结构特性变化、水盐动态调控和作物生长等开展了大量的研究,但对于以汇-源-流理论为基础的碳库扩汇定量化分析仍然不足。亟需开展针对不同盐碱地肥沃耕层构建的地上植物光合呼吸和土壤有机无机碳变化过程,建立碳收支动态模型,为盐碱地肥沃耕层构建固碳增汇效应评估提供支撑。
4)盐碱地肥沃耕层构建的技术、产品和装备研发
当前盐碱地肥沃耕层构建多是沿用传统的培肥耕作方式,如秸秆还田、增施有机肥、深耕等,迫切需要加强基于盐碱地肥沃耕层肥力特征的定向化耕作、肥力快速提升、植物改土、抑盐控盐、微生物制剂、多水源利用等技术和产品的研发,研制低耗高效改土装备,为盐碱地肥沃耕层构建技术的推广和大规模应用提供支持。
[1] |
Wang Z Q, Zhu S Q, Yu R P, et al. Salt-affected soils of China (In Chinese). Beijing: Science Press, 1993. [王遵亲, 祝寿泉, 俞仁培, 等 . 中国盐渍土[M]. 北京: 科学出版社, 1993.]
( ![]() |
[2] |
Yang J S, Yao R J. Management and efficient agricultural utilization of salt-affected soil in China (In Chinese)[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(Z1): 162-170. [杨劲松, 姚荣江. 我国盐碱地的治理与农业高效利用[J]. 中国科学院院刊, 2015, 30(Z1): 162-170.]
( ![]() |
[3] |
Wang J L, Huang X J, Zhong T Y, et al. Review on sustainable utilization of salt-affected land (In Chinese)[J]. Acta Geographica Sinica, 2011, 66(5): 673-684. [王佳丽, 黄贤金, 钟太洋, 等. 盐碱地可持续利用研究综述[J]. 地理学报, 2011, 66(5): 673-684.]
( ![]() |
[4] |
Liu X J. Reclamation and utilization of saline soils in water-scarce regions of Bohai Sea (In Chinese)[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1521-1527. [刘小京. 环渤海缺水区盐碱地改良利用技术研究[J]. 中国生态农业学报, 2018, 26(10): 1521-1527.]
( ![]() |
[5] |
Guo K, Liu X J. Dynamics of meltwater quality and quantity during saline ice melting and its effects on the infiltration and desalination of coastal saline soils[J]. Agricultural Water Management, 2014, 139: 1-6. DOI:10.1016/j.agwat.2014.03.007
( ![]() |
[6] |
Sastre-Conde I, Lobo M C, Beltrán-Hernández R I, et al. Remediation of saline soils by a two-step process: Washing and amendment with sludge[J]. Geoderma, 2015, 247/248: 140-150. DOI:10.1016/j.geoderma.2014.12.002
( ![]() |
[7] |
Huang G H. The safety use of treated waste water for irrigation in agriculture (In Chinese)[J]. Journal of Agricultural Science and Technology, 2007, 9(1): 26-35. DOI:10.3969/j.issn.1008-0864.2007.01.005 [黄冠华. 再生水农业灌溉安全的有关问题研究[J]. 中国农业科技导报, 2007, 9(1): 26-35.]
( ![]() |
[8] |
Oster J D. Irrigation with poor quality water a review[J]. Agricultural Water Management, 1994, 25(3): 271-297. DOI:10.1016/0378-3774(94)90064-7
( ![]() |
[9] |
Min W, Hou Z A, Ye J, et al. Effects of water salinity and nitrogen rate on cotton root spatial distribution under drip irrigation with saline water (In Chinese)[J]. Cotton Science, 2014, 26(1): 58-65. DOI:10.3969/j.issn.1002-7807.2014.01.008 [闵伟, 侯振安, 冶军, 等. 灌溉水盐度和施氮量对棉花根系分布影响研究[J]. 棉花学报, 2014, 26(1): 58-65.]
( ![]() |
[10] |
Qiao H L, Liu X J, Li W Q, et al. Effect of deep straw mulching on soil water and salt movement and wheat growth (In Chinese)[J]. Chinese Journal of Soil Science, 2006, 37(5): 885-889. DOI:10.3321/j.issn:0564-3945.2006.05.012 [乔海龙, 刘小京, 李伟强, 等. 深层秸秆覆盖对土壤水盐运移及小麦生长的影响[J]. 土壤通报, 2006, 37(5): 885-889.]
( ![]() |
[11] |
Zhao Q L, Liu Q H, Xin C Y, et al. Effects of increasing organic and biological fertilizers on new reclaimed soil fertility and rice yield in the Yellow River Delta (In Chinese)[J]. Shandong Agricultural Sciences, 2019, 51(1): 110-114. [赵庆雷, 刘奇华, 信彩云, 等. 增施有机肥和生物肥对黄河三角洲新垦土壤肥力及稻谷产量的影响[J]. 山东农业科学, 2019, 51(1): 110-114.]
( ![]() |
[12] |
Wang L Y, Xiao H, Cheng W J, et al. Effects of different fertilization mode on crops yield and soil fertility in coastal saline soil (In Chinese)[J]. Acta Agriculturae Boreali-Sinica, 2016, 31(5): 222-227. [王立艳, 肖辉, 程文娟, 等. 滨海盐碱地不同培肥方式对作物产量及土壤肥力的影响[J]. 华北农学报, 2016, 31(5): 222-227.]
( ![]() |
[13] |
Chen E F. Practice and understanding of saline alkali land improvement (In Chinese)[J]. Soils, 1977, 9(4): 181—186, 208. [陈恩凤. 盐碱地改良的实践与认识[J]. 土壤, 1977, 9(4): 181—186, 208.]
( ![]() |
[14] |
Chen E F, Wang R R, Wang C Y. Saline alkali soil improvement and prospect in China (In Chinese)[J]. Chinese Journal of Soil Science, 1979, 10(1): 1-4. [陈恩凤, 王汝镛, 王春裕. 我国盐碱土改良研究的进展与展望[J]. 土壤通报, 1979, 10(1): 1-4.]
( ![]() |
[15] |
Chen E F, Wang R R. Effect of organic matter on improving saline alkali soil (In Chinese)[J]. Chinese Journal of Soil Science, 1984, 15(5): 193-196. [陈恩凤, 王汝镛. 有机质改良盐碱土的作用[J]. 土壤通报, 1984, 15(5): 193-196.]
( ![]() |
[16] |
Wei Y Q, Yan H J, Zhang R, et al. Study on the measurements and mechanism of "desalinized fertile layers" cultivation of saline soil in monsoon region of Huang-Huai-Hai Plain (In Chinese)[J]. Soil and Fertile, 1992(5): 28-31. [魏由庆, 严慧峻, 张锐, 等. 黄淮海平原季风区盐渍土培育"淡化肥沃层"措施与机理的研究[J]. 土壤肥料, 1992(5): 28-31.]
( ![]() |
[17] |
Yao R J, Yang J S, Liu G M, et al. Spatial variability of soil salinity in characteristic field of the Yellow River Delta (In Chinese)[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(6): 61-66. DOI:10.3321/j.issn:1002-6819.2006.06.012 [姚荣江, 杨劲松, 刘广明, 等. 黄河三角洲地区典型地块土壤盐分空间变异特征研究[J]. 农业工程学报, 2006, 22(6): 61-66.]
( ![]() |
[18] |
Yao R J, Yang J S. Analysis on salinity characteristics and profile types of saline soils in the Yellow River Delta (In Chinese)[J]. Journal of Arid Land Resources and Environment, 2007, 21(11): 106-112. DOI:10.3969/j.issn.1003-7578.2007.11.022 [姚荣江, 杨劲松. 黄河三角洲地区土壤盐渍化特征及其剖面类型分析[J]. 干旱区资源与环境, 2007, 21(11): 106-112.]
( ![]() |
[19] |
Yao R J, Yang J S. Quantitative analysis of spatial distribution pattern of soil salt accumulation in plough layer and shallow groundwater in the Yellow River Delta (In Chinese)[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(8): 45-51. DOI:10.3321/j.issn:1002-6819.2007.08.008 [姚荣江, 杨劲松. 黄河三角洲地区浅层地下水与耕层土壤积盐空间分异规律定量分析[J]. 农业工程学报, 2007, 23(8): 45-51.]
( ![]() |
[20] |
Wang Q J, Deng M J, Ning S R, et al. Reality and problems of controlling soil water and salt in farmland (In Chinese)[J]. Advances in Water Science, 2021, 32(1): 139-147. [王全九, 邓铭江, 宁松瑞, 等. 农田水盐调控现实与面临问题[J]. 水科学进展, 2021, 32(1): 139-147.]
( ![]() |
[21] |
Wang R T, Lu Z H, Sun J K, et al. Effect of soil ameliorants on coastal saline-alkali soil in the Yellow River Delta (In Chinese)[J]. Journal of Soil and Water Conservation, 2012, 26(4): 239-244. [王睿彤, 陆兆华, 孙景宽, 等. 土壤改良剂对黄河三角洲滨海盐碱土的改良效应[J]. 水土保持学报, 2012, 26(4): 239-244.]
( ![]() |
[22] |
Yang J S. Development and prospect of the research on salt-affected soils in China (In Chinese)[J]. Acta Pedologica Sinica, 2008, 45(5): 837-845. DOI:10.3321/j.issn:0564-3929.2008.05.010 [杨劲松. 中国盐渍土研究的发展历程与展望[J]. 土壤学报, 2008, 45(5): 837-845.]
( ![]() |
[23] |
Li J G, Pu L J, Han M F, et al. Soil salinization research in China: Advances and prospects[J]. Journal of Geographical Sciences, 2014, 24(5): 943-960. DOI:10.1007/s11442-014-1130-2
( ![]() |
[24] |
Wang C Y. The discussion on ecological amelioration of salt-effected soil under growing rice condition (In Chinese)[J]. Chinese Journal of Soil Science, 2002, 33(2): 94-95. DOI:10.3321/j.issn:0564-3945.2002.02.004 [王春裕. 论盐渍土之种稻生态改良[J]. 土壤通报, 2002, 33(2): 94-95.]
( ![]() |
[25] |
Guo G, Araya K, Jia H, et al. Improvement of salt-affected soils, Part 1: interception of capillarity[J]. Biosystems Engineering, 2006, 94(1): 139-150. DOI:10.1016/j.biosystemseng.2006.01.012
( ![]() |
[26] |
Li Z G, Liu X J, Zhang X M, et al. Infiltration of melting saline ice water in soil columns: Consequences on soil moisture and salt content[J]. Agricultural Water Management, 2008, 95(4): 498-502. DOI:10.1016/j.agwat.2007.12.001
( ![]() |
[27] |
Tedeschi A, Dell'Aquila R. Effects of irrigation with saline waters, at different concentrations, on soil physical and chemical characteristics[J]. Agricultural Water Management, 2005, 77(1/2/3): 308-322.
( ![]() |
[28] |
Yan H J, Wei Y Q, Ma W P, et al. The reclamation effect of "desalinized fertile layers" cultivation on saline soils (In Chinese)[J]. Soil and Fertile, 1992(3): 5-8. [严慧峻, 魏由庆, 马卫萍, 等. 培育"淡化肥沃层"对盐渍土改良效果的影响[J]. 土壤肥料, 1992(3): 5-8.]
( ![]() |
[29] |
Yan H J, Wei Y Q, Liu J F, et al. Study on establishment and function of desalinized fertile layers in waterlogged and salt affected soil (In Chinese)[J]. Acta Pedologica Sinica, 1994, 31(4): 413-421. [严慧峻, 魏由庆, 刘继芳, 等. 洼涝盐渍土"淡化肥沃层"的培育与功能的研究[J]. 土壤学报, 1994, 31(4): 413-421.]
( ![]() |
[30] |
Zhang R, Yan H J, Wei Y Q, et al. Effect of organic fertile on saline soil reclamation (In Chinese)[J]. Soil and Fertile, 1997(4): 11-14. [张锐, 严慧峻, 魏由庆, 等. 有机肥在改良盐渍土中的作用[J]. 土壤肥料, 1997(4): 11-14.]
( ![]() |
[31] |
Shan X Z, Wei Y Q, Yan H J, et al. Simulation research of different organic matter contents in topsoil layer on the water and salt movements (In Chinese)[J]. Soil and Fertile, 1996(5): 1-5. [单秀枝, 魏由庆, 严慧峻, 等. 表土有机质含量对水盐运动影响的模拟研究[J]. 土壤肥料, 1996(5): 1-5.]
( ![]() |
[32] |
Hou H H, Wang C T, Wang X D, et al. A study of improvement effects by biological measurements in the yellow river Delta saline-alkali soil (In Chinese)[J]. China Rural Water and Hydropower, 2014(7): 1-6. DOI:10.3969/j.issn.1007-2284.2014.07.001 [侯贺贺, 王春堂, 王晓迪, 等. 黄河三角洲盐碱地生物措施改良效果研究[J]. 中国农村水利水电, 2014(7): 1-6.]
( ![]() |
[33] |
Wang Q M, Jing Y P, Li Y J, et al. Effect of different fertilizer regime on the improvement of saline-alkali soil in Hetao Irrigation District (In Chinese)[J]. Soil and Fertilizer Sciences in China, 2020(5): 124-131. [王庆蒙, 景宇鹏, 李跃进, 等. 不同培肥措施对河套灌区盐碱地改良效果[J]. 中国土壤与肥料, 2020(5): 124-131.]
( ![]() |
[34] |
Luo J, Sheng J D, Wang Y X, et al. Effects of different organic fertilizers on soil salinity, nutrients and cotton yield on salt-affected land (In Chinese)[J]. Research of Soil and Water Conservation, 2016, 23(3): 48-53. [罗佳, 盛建东, 王永旭, 等. 不同有机肥对盐渍化耕地土壤盐分、养分及棉花产量的影响[J]. 水土保持研究, 2016, 23(3): 48-53.]
( ![]() |
[35] |
Li L, Wang J, Zhu Z M, et al. Effects of nitrogen fertilizer reduction combined with organic fertilizer/straw on soil fertility index and maize yield in saline-alkali land (In Chinese)[J]. Chinese Journal of Soil Science, 2020, 51(4): 928-935. [李磊, 王晶, 朱志明, 等. 氮肥减施与有机肥/秸秆配施对盐碱地土壤肥力指标及玉米产量的影响[J]. 土壤通报, 2020, 51(4): 928-935.]
( ![]() |
[36] |
Zhao Y G, Wang J, Li Y Y, et al. Reducing evaporation from phreatic water and soil resalinization by using straw interlayer and plastic mulch (In Chinese)[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(23): 109-117. DOI:10.3969/j.issn.1002-6819.2013.23.015 [赵永敢, 王婧, 李玉义, 等. 秸秆隔层与地覆膜盖有效抑制潜水蒸发和土壤返盐[J]. 农业工程学报, 2013, 29(23): 109-117.]
( ![]() |
[37] |
Mao X S. A Study of the effects of concret mulching on movement of soil water and salt in salinized region (In Chinese)[J]. Chinese Journal of Agrometeorology, 1998, 19(1): 26-29. [毛学森. 水泥硬壳覆盖对盐渍土水盐运动及作物生长发育的影响[J]. 中国农业气象, 1998, 19(1): 26-29.]
( ![]() |
[38] |
Zhao Y G, Li Y Y, Wang J, et al. Buried straw layer plus plastic mulching reduces soil salinity and increases sunflower yield in saline soils[J]. Soil and Tillage Research, 2016, 155: 363-370. DOI:10.1016/j.still.2015.08.019
( ![]() |
[39] |
Anikwe M A N, Mbahb C N, Ezeaku P I, et al. Tillage and plastic mulch effects on soil properties and growth and yield of cocoyam(Colocasia esculenta)on an ultisol in southeastern Nigeria[J]. Soil and Tillage Research, 2007, 93(2): 264-272. DOI:10.1016/j.still.2006.04.007
( ![]() |
[40] |
Pang H C, Li Y Y, Yang J S, et al. Effect of brackish water irrigation and straw mulching on soil salinity and crop yields under monsoonal climatic conditions[J]. Agricultural Water Management, 2010, 97(12): 1971-1977. DOI:10.1016/j.agwat.2009.08.020
( ![]() |
[41] |
Bezborodov G A, Shadmanov D K, Mirhashimov R T, et al. Mulching and water quality effects on soil salinity and sodicity dynamics and cotton productivity in Central Asia[J]. Agriculture, Ecosystems & Environment, 2010, 138(1/2): 95-102.
( ![]() |
[42] |
Schwartz R C, Baumhardt R L, Evett S R. Tillage effects on soil water redistribution and bare soil evaporation throughout a season[J]. Soil and Tillage Research, 2010, 110(2): 221-229. DOI:10.1016/j.still.2010.07.015
( ![]() |
[43] |
Wei B H, Shen Z Y, Zhou J, et al. Study on effect and mechanism of improving saline-alkali soil by fenlong tillage (In Chinese)[J]. Soils, 2020, 52(4): 699-703. [韦本辉, 申章佑, 周佳, 等. 粉垄耕作改良盐碱地效果及机理[J]. 土壤, 2020, 52(4): 699-703.]
( ![]() |
[44] |
Hasigerile, Qu Z Y, Wang F. Water-heat-salt effects of applying desulphurization gypsum and biochar on saline-alkali soil under smashing ridge tillage (In Chinese)[J]. Water Saving Irrigation, 2019(9): 19—22, 28. DOI:10.3969/j.issn.1007-4929.2019.09.005 [哈斯格日乐, 屈忠义, 王凡. 粉垄耕作下施加脱硫石膏和生物炭对盐渍土壤水热盐的影响研究[J]. 节水灌溉, 2019(9): 19—22, 28.]
( ![]() |
[45] |
Ren D Y, Hao Y Y, Xu X, et al. Modeling and assessing field irrigation water use in a canal system of Hetao, upper Yellow River basin: Application to maize, sunflower and watermelon[J]. Journal of Hydrology, 2016, 532: 122-139. DOI:10.1016/j.jhydrol.2015.11.040
( ![]() |
[46] |
Han D M, Zhou T T. Soil water movement in the unsaturated zone of an inland arid region: Mulched drip irrigation experiment[J]. Journal of Hydrology, 2018, 559: 13-29. DOI:10.1016/j.jhydrol.2018.02.012
( ![]() |
[47] |
Rameshwaran P, Tepe A, Yazar A, et al. Effects of drip-irrigation regimes with saline water on pepper productivity and soil salinity under greenhouse conditions[J]. Scientia Horticulturae, 2016, 199: 114-123. DOI:10.1016/j.scienta.2015.12.007
( ![]() |
[48] |
Guo K, Zhang X M, Liu X J. Effect of timing of plastic film mulching on water and salt movements in coastal saline soil under freezing saline water irrigation (In Chinese)[J]. Acta Pedologica Sinica, 2014, 51(6): 1202-1212. [郭凯, 张秀梅, 刘小京. 咸水结冰灌溉下覆膜时间对滨海盐土水盐运移的影响[J]. 土壤学报, 2014, 51(6): 1202-1212.]
( ![]() |
[49] |
Guo K, Liu X J. Infiltration of meltwater from frozen saline water located on the soil can result in reclamation of a coastal saline soil[J]. Irrigation Science, 2015, 33(6): 441-452. DOI:10.1007/s00271-015-0480-6
( ![]() |
[50] |
Wang X B, Zhao Q S, Hu Y J, et al. An alternative water source and combined agronomic practices for cotton irrigation in coastal saline soils[J]. Irrigation Science, 2012, 30(3): 221-232. DOI:10.1007/s00271-011-0277-1
( ![]() |
[51] |
Liu H M, Guo K, Li X G, et al. Effect of plastic film mulch on soil moisture and salt dynamics under saline water irrigation in coastal saline soils (In Chinese)[J]. Chinese Journal of Eco-Agriculture, 2017, 25(12): 1761-1769. [刘海曼, 郭凯, 李晓光, 等. 地膜覆盖对春季咸水灌溉条件下滨海盐渍土水盐动态的影响[J]. 中国生态农业学报, 2017, 25(12): 1761-1769.]
( ![]() |
[52] |
Liu W Q, Yu H J, Xu X Y. Quantitative analysis of the spatial distribution patterns of top soil salinity and organic matter in southern coastal area of the Laizhou Bay (In Chinese)[J]. Marine Science Bulletin, 2014, 33(3): 277-282. [刘文全, 于洪军, 徐兴永. 莱州湾南岸表层土壤含盐量与有机质空间分布的定量研究[J]. 海洋通报, 2014, 33(3): 277-282.]
( ![]() |
[53] |
Franzluebbers A J. Water infiltration and soil structure related to organic matter and its stratification with depth[J]. Soil and Tillage Research, 2002, 66(2): 197-205. DOI:10.1016/S0167-1987(02)00027-2
( ![]() |
[54] |
Govaerts B, Fuentes M, Mezzalama M, et al. Infiltration, soil moisture, root rot and nematode populations after 12 years of different tillage, residue and crop rotation managements[J]. Soil and Tillage Research, 2007, 94(1): 209-219. DOI:10.1016/j.still.2006.07.013
( ![]() |
[55] |
David R, Dimitrios P. Diffusion and cation exchange during the reclamation of saline-structured soils[J]. Geoderma, 2002, 107(3/4): 271-279.
( ![]() |
[56] |
de Almeida W S, Panachuki E, de Oliveira P T S, et al. Effect of soil tillage and vegetal cover on soil water infiltration[J]. Soil and Tillage Research, 2018, 175: 130-138. DOI:10.1016/j.still.2017.07.009
( ![]() |
[57] |
Ingrid Hincapié, Peter F, Germann. Impact of initial and boundary conditions on preferential flow[J]. Journal of Contaminant Hydrology, 2009, 104: 67-73. DOI:10.1016/j.jconhyd.2008.10.001
( ![]() |
[58] |
Gran M, Carrer J, Massana J, et al. Dynamics of water vapor flux and water separation processes during evaporation from a salty dry soil[J]. Journal of Hydrology, 2011, 396(3/4): 215-220.
( ![]() |
[59] |
Kader M A, Senge M, Mojid M A, et al. Recent advances in mulching materials and methods for modifying soil environment[J]. Soil and Tillage Research, 2017, 168: 155-166.
( ![]() |
[60] |
Mahdavi S M, Neyshabouri M R, Fujimaki H. Water vapour transport in a soil column in the presence of an osmotic gradient[J]. Geoderma, 2018, 315: 199-207.
( ![]() |
[61] |
Gowing J W, Konukcu F, Rose D A. Evaporative flux from a shallow watertable: The influence of a vapour–liquid phase transition[J]. Journal of hydrology, 2006, 321(1/2/3/4): 77-89.
( ![]() |
[62] |
Banimahd S A, Zand-Parsa S. Simulation of evaporation, coupled liquid water, water vapor and heat transport through the soil medium[J]. Agricultural Water Management, 2013, 130: 168-177.
( ![]() |
[63] |
Rewald B, Raveh E, Gendler T, et al. Phenotypic plasticity and water flux rates of Citrus root orders under salinity[J]. Journal of Experimental Botany, 2012, 63: 2717-2727.
( ![]() |
[64] |
Wu X C. Study of field experiment of soil water movement under the condition of straw mulching of different depth of crops[D]. Urumqi: Xinjiang Agricultural University, 2007.[吴旭春. 作物在不同位置秸秆覆盖条件下土壤水分运动田间试验研究[D]. 乌鲁木齐: 新疆农业大学, 2007.]
( ![]() |
[65] |
Hudan T, Sultan. Inverse estimation for soil and straw hydraulic parameters from lysimeters (In Chinese)[J]. Journal of Irrigation and Drainage, 2009, 28(1): 68-70. [虎胆·吐马尔白, 苏里坦. 反演分析土壤-秸秆水分运动参数[J]. 灌溉排水学报, 2009, 28(1): 68-70.]
( ![]() |
[66] |
Milly P C D. Linear analysis of thermal effects on evaporation from soil[J]. Water Resources Research, 1984, 20(8): 1075-1085.
( ![]() |
[67] |
Nassar I N, Horton R. Water transport in unsaturated nonisothermal salty soil: I. Experimental results[J]. Soil Science Society of America Journal, 1989, 53(5): 1323-1329.
( ![]() |
[68] |
Gao R R, Zhao R H, Du X M, et al. Characteristics of root systems of two halophytes for adaptability to salinity (In Chinese)[J]. Scientia Silvae Sinicae, 2010, 46(7): 176-182. [高瑞如, 赵瑞华, 杜新民, 等. 2种盐生植物根系的适盐特性[J]. 林业科学, 2010, 46(7): 176-182.]
( ![]() |
[69] |
Hodge A, Berta G, Doussan C, et al. Plant root growth, architecture and function[J]. Plant and Soil, 2009, 321: 153-187.
( ![]() |
[70] |
Wang Q C, Cheng Y Q. Response of fine roots to soil nutrient spatial heterogeneity (In Chinese)[J]. Chinese Journal of Applied Ecology, 2004, 15(6): 1063-1068. [王庆成, 程云环. 土壤养分空间异质性与植物根系的觅食反应[J]. 应用生态学报, 2004, 15(6): 1063-1068.]
( ![]() |
[71] |
Shu H M, Guo S Q, Gong Y Y, et al. The influence of salt stress on crop root and its genetic improvement (In Chinese)[J]. Molecular Plant Breeding, 2013, 11(5): 657-662. [束红梅, 郭书巧, 巩元勇, 等. 盐胁迫对作物根系的影响及基因工程改良[J]. 分子植物育种, 2013, 11(5): 657-662.]
( ![]() |
[72] |
Hartle R T, Fernandez G C J, Nowak R S. Horizontal and vertical zones of influence for root systems of four Mojave Desert shrubs[J]. Journal of Arid Environments, 2006, 64(4): 586-603.
( ![]() |
[73] |
Cresswell H P, Kirkegaard J A. Subsoil amelioration by plant roots-the process and the evidence[J]. Australian Journal of Soil Research, 1995, 33: 221-239.
( ![]() |
[74] |
Bazihizina N, Barrett-Lennard E G, Colmer T D. Plant growth and physiology under heterogeneous salinity[J]. Plant and Soil, 2012, 354: 1-19.
( ![]() |
[75] |
Feng X H, An P, Guo K, et al. Growth, root compensation and ion distribution in Lycium chinense under heterogeneous salinity stress[J]. Scientia Horticulturae, 2017, 226: 24-32.
( ![]() |
[76] |
Kong X Q, Luo Z, Dong H Z, et al. Effects of non-uniform root zone salinity on water use, Na+ recirculation, and Na+ and H+ flux in cotton[J]. Journal of Experimental Botany, 2012, 63(5): 2105-2116.
( ![]() |
[77] |
Yang T, Xie Z X, Yu Q, et al. Effects of partial root salt stress on seedling growth and photosynthetic characteristics of winter wheat (In Chinese)[J]. Chinese Journal of Eco-Agriculture, 2014, 22(9): 1074-1078. [杨婷, 谢志霞, 喻琼, 等. 局部根系盐胁迫对冬小麦生长和光合特征的影响[J]. 中国生态农业学报, 2014, 22(9): 1074-1078.]
( ![]() |
[78] |
Dong H Z, Kong X Q, Luo Z, et al. Unequal salt distribution in the root zone increases growth and yield of cotton[J]. European Journal of Agronomy, 2010, 33(4): 285-292.
( ![]() |
[79] |
Kong X Q, Luo Z, Dong H Z, et al. Non-uniform salinity in the root zone alleviates salt damage by increasing sodium, water and nutrient transport genes expression in cotton[J]. Scientific Reports, 2017, 7: 2813-2879.
( ![]() |
[80] |
Reef R, Markham H L, Santini N S, et al. The response of the mangrove Avicennia marina to heterogeneous salinity measured using a split-root approach[J]. Plant and Soil, 2015, 393: 297-305.
( ![]() |
[81] |
Jiang H, Bai Y Y, Du H Y, et al. The spatial and seasonal variation characteristics of fine roots in different plant configuration modes in new reclamation saline soil of humid climate in China[J]. Ecological Engineering, 2016, 86: 231-238.
( ![]() |
[82] |
Homaee M, Schmidhalter U. Water integration by plants root under non-uniform soil salinity[J]. Irrigation Science, 2008, 27: 83-95.
( ![]() |
[83] |
Hao G Y, Jones T J, Luton C, et al. Hydraulic redistribution in dwarf Rhizophora mangle trees driven by interstitial soil water salinity gradients: impacts on hydraulic architecture and gas exchange[J]. Tree Physiology, 2009, 29: 697-705.
( ![]() |
[84] |
Lycoskoufis I H, Savvas D, Mavrogianopoulos G. Growth, gas exchange, and nutrient status in pepper(Capsicum annuum L.)grown in recirculating nutrient solution as affected by salinity imposed to half of the root system[J]. Scientia Horticulturae, 2005, 106(2): 147-161.
( ![]() |
[85] |
McNickle G G, Cahill, Jr. J F. Plant root growth and the marginal value theorem[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(12): 4747-4751.
( ![]() |
[86] |
Mommer L, van Ruijven J, Jansen C, et al. Interactive effects of nutrient heterogeneity and competition: Implications for root foraging theory?[J]. Functional Ecology, 2012, 26(1): 66-73.
( ![]() |
[87] |
Panuccio M R, Logotet B, De Lorenzo F, et al. Root plasticity improves salt tolerance in different genotypes of lentil(Lens culinaris)[J]. Ecological Questions, 2010, 14(1): 95-97.
( ![]() |