东北黑土地是我国重要的商品粮生产基地,2020年东北三省玉米播种面积和总产量分别占全国的30.2%和32.3%[1]。秸秆作为玉米生产的主要副产品,通过不同方式还田可改善土壤物理结构,影响土壤水、肥、气、热状况,对提高作物产量及减少肥料用量具有积极作用[2],是黑土地保护的一项重要措施。我国氮肥施用量约占全球的30%,而目前氮肥利用率仅为30%~35%,远低于欧美等国(普遍高于40%)[3]。农田中盈余氮肥通过径流、氨挥发和反硝化等方式流失,不仅造成资源浪费,还导致一系列环境污染问题,严重制约农业绿色发展。明确肥料氮在农田系统中的去向并合理施肥,既能提高氮肥利用效率,降低氮素的损失,又可维持土壤肥力[4]。氮素在土壤中的转化受土壤质地、结构、水热状况以及农田管理措施等多种因素影响。大量研究表明,秸秆还田能够增加土壤表层全氮,并为作物提供更多的有效氮,进而提高了土壤肥力和作物产量[5]。而秸秆还田配合适量的氮肥施用不仅可降低土壤碳氮比,还可改善土壤性状、培肥土壤[6],是一种有效的农田管理措施。研究[7]表明,在减量施氮的情况下配合秸秆还田能够保证作物稳产,并显著提高氮肥利用效率,减少氮损失。而梁斌等[8]研究表明,秸秆还田导致大部分肥料氮素被土壤固持,从而降低了氮肥的当季利用效率和作物产量,可见秸秆还田的效果与还田年限密切相关。
关于肥料氮在土壤-作物系统中的去向国内外已有大量报道,例如,Quan等[9]对我国北方23个15N示踪试验总结发现,玉米生产体系中肥料氮的当季平均利用、残留和损失率分别为34%、35%和31%,并且指出与华北地区相比,东北地区具有较高的氮肥利用率和较低的损失率。其原因可能是东北地区土壤有机质较高,土壤保肥能力较强,有利于氮素在土壤中的持留,进而减少了氮的损失[10]。乔云发等[11]在东北风沙土上的研究表明,肥料氮的当季平均利用、残留和损失率分别为31%、42%和27%,并且与传统耕作相比,秸秆覆盖还田下肥料氮素利用率显著提高15.8%,损失率减少24.3%。刘沥阳[12]在东北棕壤上的研究表明,肥料氮在玉米季的利用率、0~40 cm残留率和损失率分别为33.4%~51.1%、41.8%~59.1%和4.2%~13.0%,其氮肥利用率、残留率显著高于风沙土[11]。可见,土壤类型是影响氮素去向的重要因素之一。土壤中残留的肥料氮仍可被后季作物继续利用,研究表明,肥料氮在黄土高原覆膜玉米上的多年累积利用效率达47.6%~60.8%[13],在黑土玉米上的3年累积利用率可达61.1%[14]。Smith和Chalk[15]总结了前人研究,表明第二季作物对残留肥料氮的利用率不足10%,随后不断降低。
目前,东北玉米秸秆直接还田主要以免耕覆盖和深翻还田为主,免耕覆盖还田可有效防止土壤侵蚀,减少地表水分蒸发和径流,提高土壤蓄水能力[16]。秸秆深翻还田可降低土壤容重,增加孔隙度,翻入土壤深层的秸秆腐解后可提供大量养分,增加土壤有机质和土壤肥力[17]。不同还田方式对土壤水肥气热的影响不同,进而导致土壤氮素行为的差异,那么在黑土玉米田不同秸秆还田方式下肥料氮素的去向如何?其残留效应对秸秆还田方式有何响应?目前尚鲜有报道。因此,本研究通过大田试验与微区试验相结合,采用15N示踪方法,研究不同秸秆还田方式下连续两季作物对肥料氮的吸收利用、肥料氮在土壤中的残留及损失情况,以期为秸秆还田下的氮肥管理提供科学依据。
1 材料与方法 1.1 试验区概况试验于2020—2021年在吉林省梨树县中国农业大学吉林梨树实验站(43°16′N,124°26′E)进行,研究区域属温带半湿润大陆性季风气候,年平均降水量为614 mm,年平均温度6.8℃。供试土壤为薄层黑土,试验田耕层土壤基本理化性状为:pH 6.1、有机质18.9 g·kg–1、全氮1.27 g·kg–1、碱解氮84.0 mg·kg–1、有效磷23.9 mg·kg–1、速效钾183.0 mg·kg–1。
1.2 试验设计试验设置两种不同秸秆还田方式,即秸秆深翻还田(DTS)和免耕覆盖还田(NTS)以及无秸秆还田对照处理(CK);每种还田方式下设置两个施氮水平,即施氮量180 kg·hm–2(N1)和270 kg·hm–2(N2)。每个处理重复3次,共18个小区,小区面积144 m2(7.2 m×20 m)。氮肥为尿素(含N 46%),采用基追比1︰2的方式施入,磷肥为过磷酸钙(P2O516%),钾肥为氯化钾(K2O60%),施用量均为90 kg·hm–2,作为基肥在播前一次性施入。种植的玉米品种为良玉99,种植密度为每公顷65 000株。试验地区为雨养农业,无灌溉。玉米于每年5月中旬播种,10月初收获。
为监测肥料氮素去向,在每个小区内设置微区,开展15N示踪试验,微区由镀锌铁皮制成,面积为0.6 m2(1 m×0.6 m),埋入深度为0.45 m,每个微区种植4株玉米。微区内施用丰度10.11%的15N标记尿素,施用方式、用量与大区相同,第二季作物施用等量的未标记氮肥。
1.3 测定项目及方法玉米成熟后在每个微区内紧贴地面采集4株15N标记植株,将其分离为茎秆、叶片、籽粒、苞叶、穗轴五部分。将各部分植株样品置于105℃烘箱内杀青30 min,然后置于70℃的烘箱中烘干至恒重,测定其质量。每一部分取适量样品用行星球磨机(XGB04型,格瑞德曼,长春市海涵仪器有限公司)磨碎,过0.15 mm筛,用于测定样品中全氮含量与15N丰度。在每个微区选取3个点,用直径为4 cm土钻采集0-100 cm土壤样品,每20 cm一层,并将3个点的土壤样品混合为1个样品。取样后,将取样孔用性质相同的土壤填充、压实,以保证填充后的土壤容重接近原土壤,此过程注意防止上层15N对下层土壤的污染,最后用标杆对取样位置进行标记。土壤样品风干后,研磨过0.15 mm筛,用于测定全氮和15N丰度。植物和土壤中的全氮含量和15N丰度分别采用凯氏定氮仪(KDY-9820型,KETUO,北京市通润源机电技术有限责任公司)和同位素质谱仪(MAT-253,Thermo Fisher,美国)测定。
1.4 计算方法与数据分析植株吸氮量/(kg·hm–2)=植株干物质重/(kg·hm–2)×植株中氮浓度/(g·kg–1)/1000
植株或土壤中氮素来源于肥料氮的比例Ndff:
Ndff/%=(测试样品中15N丰度–15N自然丰度)/(肥料中15N丰度–15N自然丰度)×100
植株氮素来自土壤氮的比例Ndfs/%=1–Ndffp
式中,Ndffp为植株中氮素来源于肥料氮的比例。
土壤各层来自15N肥料氮的量/(kg·hm–2)=土层厚度/cm×土壤容重/(g·cm–3)×氮浓度/(g·kg–1)×Ndffs×100
式中,Ndffs为土壤中氮素来源于肥料氮的比例。
肥料氮利用率/%=作物肥料氮吸收量/(kg·hm–2)/肥料氮施用量/(kg·hm–2)× 100
肥料氮残留率/%=土壤中肥料氮残留量/(kg·hm–2)/肥料氮施用量/(kg·hm–2)× 100
氮素总损失率/% =1–肥料氮利用率/% –肥料氮残留率/%
数据处理采用DPS软件双因素方差分析(ANOVA),处理间差异采用最小显著极差法(LSD)进行比较,P < 0.05。文中用Origin2021软件进行绘图。
2 结果与讨论 2.1 植株氮来源及肥料氮在植株各器官的分布2020—2021年各处理玉米籽粒产量分别为10 395~12 527 kg·hm–2和10 808~12 519 kg·hm–2(表 1)。2020年NTS较DTS产量显著提高15.2%,而2021年各处理间无显著差异。成熟期玉米地上部总吸氮量为160.1~228.7 kg·hm–2(2020)和163.5~222.6 kg·hm–2(2021),与CK相比,NTS处理玉米成熟期的吸氮量显著提高22.4%(2020)和28.8%(2021)。这可能是因为免耕覆盖减少了土壤扰动,抑制水分蒸发,提高土壤蓄水保水能力[18],有利于玉米对氮素的吸收。与N1相比,N2处理显著提高成熟期吸氮量,这与冯国忠等[19]研究一致,在一定范围内植株吸氮量随着施氮量的增加而显著增加。
![]() |
表 1 不同秸秆还田方式和施氮量下植株氮来源于15N标记尿素(Ndffp)和土壤(Ndfs)比例 Table 1 Ratio of nitrogen source from 15N labeled urea(Ndffp)and soil(Ndfs)under different straw returning methods and nitrogen application rate |
成熟期植株中氮有38.0%~46.8%来源于当季15N标记肥料,有53.2%~62.0%来源于土壤,说明土壤仍然是作物吸收氮素的主要来源。在N1水平下,与CK相比,NTS显著提高了当季植株氮来源于肥料氮的比例,而在N2水平下,结果则相反。说明秸秆覆盖配合适量的氮肥有助于植株对肥料氮的吸收[20],而过量施氮则削弱了秸秆覆盖的效应[21]。在第二季玉米收获后(2021),与CK和NTS相比,DTS显著提高了N2水平下的植株氮来源于残留肥料氮的比例。这说明秸秆深翻还田有利于土壤对盈余氮素的保持[22],进而增加其被后季作物吸收利用的机会。
就不同氮肥用量而言,与N1相比,N2处理显著增加当季植株氮来源于肥料氮的比例,并且显著提高了第二季秸秆覆盖和深翻还田处理下植株氮来源于残留肥料氮的比例。
如图 1所示,15N标记氮肥在植株各器官中的分布比例由高到低依次为:籽粒、叶片、茎秆、穗轴、苞叶,其中,籽粒吸收肥料氮量占地上部肥料氮吸收总量的59.8%~68.5%(2020年)和59.3%~79.6%(2021年)。
![]() |
注:N1:施氮量180 kg·hm–2,N2:施氮量270 kg·hm–2,CK:无秸秆还田,DTS:深翻还田,NTS:免耕覆盖还田。下同。 Note: N1:Nitrogen application rate 180 kg·hm–2, N2:Nitrogen application rate 270 kg·hm–2, CK: No straw returning, DTS: Straw returning with deep plowing, NTS: Straw mulching with no-tillage. The same below. 图 1 不同秸秆还田方式下当季施入的15N标记氮肥在两季作物植株各器官的分布 Fig. 1 Distribution of 15N labeled nitrogen fertilizer applied in different straw returning methods in different organs of crop plants in two seasons |
当季玉米收获后0~100 cm土层15N总残留量为75.4~107.3 kg·hm–2,占15N总施入量的32.8%~51.4%,且主要分布于0~40 cm土层(占总残留量的76.2%~87.5%);第二季玉米收获后,仍有28.0~55.2 kg·hm–2肥料氮残留在0~100 cm土层,占15N总施入量的10.4%~26.4%,且残留肥料氮主要分布于0~20 cm土层(图 2)。
![]() |
注:同一土层不同小写字母表示在相同施氮量下不同秸秆还田方式间差异显著(P < 0.05)。 Note: The different lowercase letters on the same soil layer indicated that there were significant differences between different straw-returning methods under the same nitrogen application rate(P < 0.05). 图 2 两季玉米收获后土壤中残留15N肥料在0~100 cm土层的分布 Fig. 2 Distribution of residual 15N fertilizer in 0-100 cm soil layer after maize harvest |
与CK、NTS相比,DTS处理显著提高了0~100 cm土层肥料氮残留量,增幅分别达17.9%、20.7%(当季)和69.0%、48.7%(第二季)。这可能是由于秸秆深翻增加了土壤微生物和酶的活性,进而促进了土壤对氮素的生物固持作用[23]。
就不同施氮量而言,N1和N2处理下肥料氮当季在0~100 cm土层的平均残留率分别为45.4%和35.8%,第二季分别为21.8%和14.2%。与N1相比,N2处理显著降低了肥料氮在0~100 cm土层的残留率,但由于N2处理较高的施氮量,其总残留量显著提高。这与刘新宇等[24]研究一致,肥料氮在土壤中的残留量随施氮量的增加而显著增加。有研究[25]表明,土壤氮素的残留虽然可有效补充土壤氮库,但同时也增加了氮素损失的风险[26]。
2.3 不同秸秆还田方式和施氮量下肥料氮在两季作物系统中的去向作物吸收、土壤残留和损失是氮肥进入土壤-作物系统后的三个基本去向。本研究中不同秸秆还田方式和施氮量下的肥料氮当季利用率、土壤残留率和损失率分别为32.4%~43.9%、32.8%~51.4%和13.2%~32.7%(表 2)。与CK处理相比,在N1水平下,NTS处理显著提高肥料氮当季利用率29.5%,其损失率显著降低45.0%,这与张恒恒[27]研究一致,主要是由于秸秆覆盖还田可减少土壤水分蒸发,改善土壤微生物活性,增强微生物固氮作用,减少氮素的直接损失,更好地协调作物需氮与土壤供氮,从而提高了肥料氮的利用率[28];而在N2下,CK和NTS两处理在氮肥利用率上则无显著差异,这可能是由于在较高的施氮量下,土壤氮素盈余增加,导致氮素损失加剧[29],从而削弱了秸秆覆盖还田的效应。DTS处理与CK相比,肥料氮土壤残留率显著提高了18.6%(N1、N2平均值),并使其损失率显著降低38.1%,而对氮肥利用率无显著影响。而Chen等[23]研究表明秸秆深翻还田显著提高肥料利用率,与本研究结果不一致,可能是由于在本研究中第一年采用秸秆深翻还田措施,导致大部分肥料氮素被土壤固持,进而影响了当季的利用效率[8]。
![]() |
表 2 不同秸秆还田方式和施氮量下15N标记氮肥在两季作物中的去向 Table 2 Fate of 15N-labeled nitrogen fertilizer applied in the current season under different straw returning methods and nitrogen application rates in the two-season crop system |
当季残留在土壤中的肥料氮可在不同程度上被后季作物继续利用,是扩充土壤氮库、提高土壤供氮能力的重要来源,其有效性受作物、施肥、土壤肥力和气候等多种因素的影响,因此,需足够重视所施用肥料的残留效应在氮素养分资源管理中的重要作用。本研究中,当季残留肥料氮有24.3%~37.8%被第二季玉米吸收利用,有31.6%~53.3%继续残留在0~100 cm土层,又有11.8%~41.9%损失至环境中。王少杰[13]在黄土高原覆膜玉米上的研究表明,第二季作物对残留肥料氮的利用率平均为24.1%~32.3%,与本研究结果相当。后季作物对肥料氮的利用率较低可能是因为大部分残留氮被微生物等固持于有机氮中,不易被作物吸收[30]。与CK处理相比,在N2水平下,DTS处理下残留肥料氮利用率显著提高25.1%,而在N1水平下两处理间则无显著差异。对于黏质土壤,秸秆深翻还田后微生物的分解过程显著改善了土壤深层的肥力属性[31],其产生的后效能够促进作物生长,提高作物对氮肥的利用率[32]。NTS处理与CK相比,残留肥料氮利用率显著提高了33.5%,其损失率显著降低42.4%(N1、N2平均值)。这与Gao等[33]研究一致,其原因可能是秸秆覆盖增加了土壤微生物种群数量和微生物生物量碳或微生物生物量氮,从而促进作物对氮素吸收[32]。与CK处理相比,在N1水平下,NTS处理使残留肥料氮在第二季中的土壤残留率显著提高38.8%。Lu等[14]表明秸秆覆盖还田将残留肥料中的氮转化为土壤中的有机氮,显著增加了残留氮素在土壤中的持留。
当季标记15N肥料在两季作物中累积利用率、残留率和损失率为40.9%~58.8%、10.4%~26.4%和18.4%~47.3%。盆栽条件下的研究[14]表明,施入黑土的肥料氮三季累积利用率达61.1%,土壤残留15.8%,其余23.1%损失。Sebilo等[34]利用15N示踪法得出,作物对肥料氮的当季利用率约45%,经30年连续种植后,累积61%~65%的肥料氮被作物吸收利用,仍有12%~15%的肥料氮残留于土壤中,累积20%~27%的肥料氮损失。在N1水平下,与DTS相比,NTS处理使肥料氮利用率显著提高21.2%,而在N2水平下,DTS处理与NTS相比其损失率显著降低26.6%。这是由于DTS处理显著提高了肥料氮的土壤残留率,这与Ning等[35]研究结果相似,秸秆深翻还田更有利于土壤对肥料氮的保持。
不同施用量下肥料氮在土壤中的残留率、损失率具有显著差异。与N1相比,N2显著降低肥料氮的当季和累积土壤残留率,却增加了其损失率。同一秸秆还田方式下,残留率随施氮量的增加而降低,损失率呈相反趋势。潘圣刚等[36]研究表明,在0~240 kg·hm–2的范围内,随着氮肥的增加氮素的吸收利用率和土壤残留率均降低,而损失率显著增加。巨晓棠等[37]研究表明,与施氮量为360 kg·hm–2相比,施氮量为120 kg·hm–2时残留率提高24.4%,损失率则降低45%,与本研究结果(表 2)一致,表明随着施氮量的增加,肥料氮残留率反而降低。
3 结论黑土玉米农田不同秸秆还田方式下肥料氮的当季和累积利用效率分别达32.4%~43.9%、40.9%~ 58.8%,秸秆覆盖还田配施适量氮肥有利于提高肥料氮的当季和累积利用效率,而秸秆深翻还田则显著增加了肥料氮在土壤中的残留率,有利于土壤对肥料氮的保持,特别是在高氮用量情况下,增加氮肥被下季作物利用的机会,两种还田方式均能显著减少肥料氮的损失。
[1] |
National Bureau of Statistics. China statistical yearbook (In Chinese). Beijing: China Statistics Press, 2021. [国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2021.]
( ![]() |
[2] |
Yan J, Han X Z, Zou W X, et al. Effects of long-term straw returning and fertilization on soil fertility and maize yield in black soil (In Chinese)[J]. Soils and Crops, 2022, 11(2): 139-149. [严君, 韩晓增, 邹文秀, 等. 长期秸秆还田和施肥对黑土肥力及玉米产量的影响[J]. 土壤与作物, 2022, 11(2): 139-149.]
( ![]() |
[3] |
Lassaletta L, Billen G, Garnier J, et al. Nitrogen use in the global food system: Past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand[J]. Environmental Research Letters, 2016, 11(9): 095007. DOI:10.1088/1748-9326/11/9/095007
( ![]() |
[4] |
Duan Y H, Xu M G, Gao S D, et al. Long-term incorporation of manure with chemical fertilizers reduced total nitrogen loss in rain-fed cropping systems[J]. Scientific Reports, 2016, 6: 33611. DOI:10.1038/srep33611
( ![]() |
[5] |
Zhang P, Wei T, Li Y, et al. Effects of straw incorporation on the stratification of the soil organic C, total N and C: N ratio in a semiarid region of China[J]. Soil and Tillage Research, 2015, 153: 28-35. DOI:10.1016/j.still.2015.04.008
( ![]() |
[6] |
Wu P N, Wang Y L, Hou X Q, et al. Effects of straw returning with nitrogen fertilizer on maize yield and soil physical properties under drip-irrigation in Yanghuang irrigation area in Ningxia (In Chinese)[J]. Soils, 2020, 52(3): 470-475. [吴鹏年, 王艳丽, 侯贤清, 等. 秸秆还田配施氮肥对宁夏扬黄灌区滴灌玉米产量及土壤物理性状的影响[J]. 土壤, 2020, 52(3): 470-475.]
( ![]() |
[7] |
Wang J H, Li T L, Huang L, et al. Effects of straw returning instead of fertilizer on wheat yield and water and fertilizer utilization in loess dryland (In Chinese)[J]. Journal of Soil and Water Conservation, 2022, 36(3): 236—243, 251. [王嘉豪, 李廷亮, 黄璐, 等. 秸秆还田替代化肥对黄土旱塬小麦产量及水肥利用的影响[J]. 水土保持学报, 2022, 36(3): 236—243, 251.]
( ![]() |
[8] |
Liang B, Zhao W, Yang X Y, et al. Nitrogen retention and supply after addition of N fertilizer and its combination with straw in the soils with different fertilities (In Chinese)[J]. Scientia Agricultura Sinica, 2012, 45(9): 1750-1757. [梁斌, 赵伟, 杨学云, 等. 氮肥及其与秸秆配施在不同肥力土壤的固持及供应[J]. 中国农业科学, 2012, 45(9): 1750-1757.]
( ![]() |
[9] |
Quan Z, Li S L, Zhang X, et al. Fertilizer nitrogen use efficiency and fates in maize cropping systems across China: Field 15N tracer studies[J]. Soil and Tillage Research, 2020, 197: 104498. DOI:10.1016/j.still.2019.104498
( ![]() |
[10] |
Quan Z, Li S L, Zhu F F, et al. Fates of 15N-labeled fertilizer in a black soil-maize system and the response to straw incorporation in Northeast China[J]. Journal of Soils and Sediments, 2018, 18(4): 1441-1452. DOI:10.1007/s11368-017-1857-3
( ![]() |
[11] |
Qiao Y F, Miao S J, Lu X C. Effects of different tillage patterns on maize yield and nitrogen utilization efficiency in aeolian sandy soil of northeast China (In Chinese)[J]. Journal of Soil and Water Conservation, 2019, 33(5): 205-210. [乔云发, 苗淑杰, 陆欣春. 不同耕作模式对东北风沙土区玉米产量及氮素利用率的影响[J]. 水土保持学报, 2019, 33(5): 205-210.]
( ![]() |
[12] |
Liu L Y. Study on balance and residual efficiency of fertilizer nitrogen in brown soil under long-term fertilization and rotation[D]. Shenyang: Shenyang Agricultural University, 2019.[刘沥阳. 长期轮作施肥棕壤肥料氮平衡及后效研究[D]. 沈阳: 沈阳农业大学, 2019.]
( ![]() |
[13] |
Wang S J. Effects of nitrogen splits application to dry-land mulching maize on fate of nitrogen and gaseous nitrogen losses in the loess plateau[D]. Beijing: Graduate Institute of Chinese Academy of Sciences (Soil and Water Conservation and Ecological Environment Research Center of Ministry of Education), 2016.[王少杰. 黄土高原旱作覆膜玉米不同时期施氮效果及气态氮损失[D]. 北京: 中国科学院研究生院(教育部水土保持与生态环境研究中心), 2016.]
( ![]() |
[14] |
Lu C Y, Chen H H, Teng Z Z, et al. Effects of N fertilization and maize straw on the dynamics of soil organic N and amino acid N derived from fertilizer N as indicated by 15N labeling[J]. Geoderma, 2018, 321: 118-126. DOI:10.1016/j.geoderma.2018.02.014
( ![]() |
[15] |
Smith C J, Chalk P M. The residual value of fertiliser N in crop sequences: An appraisal of 60 years of research using 15N tracer[J]. Field Crops Research, 2018, 217: 66-74. DOI:10.1016/j.fcr.2017.12.006
( ![]() |
[16] |
Yang Y. Effects of conservation tillage on soil, water, nutrient use and crop yield in dryland[D]. Yangling, Shaanxi: Northwest A & F University, 2021.[杨玥. 旱地保护性耕作对土壤水肥特征与作物产量的影响[D]. 陕西杨凌: 西北农林科技大学, 2021.]
( ![]() |
[17] |
Cai H G, Yuan J C, Yan X G, et al. Characteristics of soil physical property and mineral nitrogen under different soil fertility managements (In Chinese)[J]. Chinese Journal of Soil Science, 2017, 48(2): 445-453. [蔡红光, 袁静超, 闫孝贡, 等. 不同培肥措施对土壤物理性状及无机氮的影响[J]. 土壤通报, 2017, 48(2): 445-453.]
( ![]() |
[18] |
Zheng F J, Wang X, Li S P, et al. Synergistic effects of soil moisture, aggregate stability and organic carbon distribution on wheat yield under no-tillage practice (In Chinese)[J]. Scientia Agricultura Sinica, 2021, 54(3): 596-607. [郑凤君, 王雪, 李生平, 等. 免耕覆盖下土壤水分、团聚体稳定性及其有机碳分布对小麦产量的协同效应[J]. 中国农业科学, 2021, 54(3): 596-607.]
( ![]() |
[19] |
Feng G Z, Wang Y, Yan L, et al. Effect of soil type and nitrogen application rate on yield of monocropping spring maize and nitrogen balance in crop field (In Chinese)[J]. Acta Pedologica Sinica, 2017, 54(2): 444-455. [冯国忠, 王寅, 焉莉, 等. 土壤类型和施氮量对连作春玉米产量及氮素平衡的影响[J]. 土壤学报, 2017, 54(2): 444-455.]
( ![]() |
[20] |
Zheng L H, Pei J B, Jin X X, et al. Impact of plastic film mulching and fertilizers on the distribution of straw-derived nitrogen in a soil-plant system based on 15 N–labeling[J]. Geoderma, 2018, 317: 15-22. DOI:10.1016/j.geoderma.2017.12.020
( ![]() |
[21] |
Yan F J, Sun Y J, Ma J, et al. Effects of straw mulching and nitrogen application on nitrogen utilization, yield and quality of hybrid rice// The Crop Science Society of China. Proceedings of 2014 National Youth Crop Cultivation and Physiology Symposium[C]. Yangzhou, Jiangsu, 2014: 8.[严奉君, 孙永健, 马均, 等. 秸秆覆盖与氮肥运筹对杂交稻氮素利用、产量及米质的影响// 中国作物学会. 2014年全国青年作物栽培与生理学术研讨会论文集[C]. 江苏扬州, 2014: 8.]
( ![]() |
[22] |
Wang B B, Xu X P, Hou Y P, et al. Optimum nitrogen application rate for maize under continuous straw returning in black soil of central Northeast China (In Chinese)[J]. Journal of Huazhong Agricultural University, 2022, 41(2): 71-79. [王博博, 徐新朋, 侯云鹏, 等. 东北中部黑土连续秸秆还田下玉米适宜氮肥用量研究[J]. 华中农业大学学报, 2022, 41(2): 71-79.]
( ![]() |
[23] |
Chen J, Zheng M J, Pang D W, et al. Straw return and appropriate tillage method improve grain yield and nitrogen efficiency of winter wheat[J]. Journal of Integrative Agriculture, 2017, 16(8): 1708-1719. DOI:10.1016/S2095-3119(16)61589-7
( ![]() |
[24] |
Liu X Y, Ju X T, Zhang L J, et al. Effects of different N rates on fate of N fertilizer and balance of soil N of winter wheat (In Chinese)[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 296-303. [刘新宇, 巨晓棠, 张丽娟, 等. 不同施氮水平对冬小麦季化肥氮去向及土壤氮素平衡的影响[J]. 植物营养与肥料学报, 2010, 16(2): 296-303.]
( ![]() |
[25] |
Lu X S, Yu D S, Xu Z C, et al. Study on comprehensive quantitative relationship of soil fertility quality and nitrogen application rate with wheat nitrogen use efficiency (In Chinese)[J]. Acta Pedologica Sinica, 2019, 56(2): 487-494. [陆晓松, 于东升, 徐志超, 等. 土壤肥力质量与施氮量对小麦氮肥利用效率的综合定量关系研究[J]. 土壤学报, 2019, 56(2): 487-494.]
( ![]() |
[26] |
Xia M J. Residual fertilizer nitrogen in dryland of Loess Plateau and its fate during summer fallow[D]. Yangling, Shaanxi: Northwest A & F University, 2019.[夏梦洁. 黄土高原旱地残留肥料氮及夏季休闲期间的去向[D]. 陕西杨凌: 西北农林科技大学, 2019.]
( ![]() |
[27] |
Zhang H H. Study on soil nitrogen storage and fertilizer nitrogen fate under no-tillage in northern dryland[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016.[张恒恒. 北方旱地免耕下土壤氮储量及肥料氮去向研究[D]. 北京: 中国农业科学院, 2016.]
( ![]() |
[28] |
Liu C, Wang Y K, Zhan J W, et al. The study of influence of straw mulch amount to soil moisture evaporation in farmland (In Chinese)[J]. Chinese Agricultural Science Bulletin, 2008, 24(5): 448-451. [刘超, 汪有科, 湛景武, 等. 秸秆覆盖量对农田土面蒸发的影响[J]. 中国农学通报, 2008, 24(5): 448-451.]
( ![]() |
[29] |
Li H X, Gao F, Ren B Z, et al. Effects of straw incorporation and nitrogen application rate on winter wheat yield and nitrogen utilization (In Chinese)[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(7): 1260-1270. [李红星, 高飞, 任佰朝, 等. 夏玉米秸秆还田量和施氮量对冬小麦产量和氮素利用的影响[J]. 植物营养与肥料学报, 2022, 28(7): 1260-1270.]
( ![]() |
[30] |
Zhao W. Fate and mechanisms of residual fertilizer nitrogen in soils with different fertility[D]. Yangling, Shaanxi: Northwest A & F University, 2014.[赵伟. 不同肥力土壤残留肥料氮去向及其机理的研究[D]. 陕西杨凌: 西北农林科技大学, 2014.]
( ![]() |
[31] |
Zou W X, Han X Z, Lu X C, et al. Responses of soil organic matter and nutrients contents to corn stalk incorporated into different soil depths (In Chinese)[J]. Soils and Crops, 2018, 7(2): 139-147. [邹文秀, 韩晓增, 陆欣春, 等. 玉米秸秆混合还田深度对土壤有机质及养分含量的影响[J]. 土壤与作物, 2018, 7(2): 139-147.]
( ![]() |
[32] |
Gao J. Effects of straw returning combined with nitrogen fertilizer on nitrogen use efficiency and yield of maize[D]. Harbin: Northeast Agricultural University, 2019.[高杰. 秸秆还田配施氮肥对玉米氮肥利用率及产量的影响[D]. 哈尔滨: 东北农业大学, 2019.]
( ![]() |
[33] |
Gao H J, Chen X W, Liang A Z, et al. Combined effects of straw returning and nitrogen fertilizer application on crop yield and nitrogen utilization in the chernozem of northeast China[J]. Applied Ecology and Environmental Research, 2022, 20(1): 893-903. DOI:10.15666/aeer/2001_893903
( ![]() |
[34] |
Sebilo M, Mayer B, Nicolardot B, et al. Long-term fate of nitrate fertilizer in agricultural soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(45): 18185-18189.
( ![]() |
[35] |
Ning X L, Wang X H, Guan Z Y, et al. Effects of different patterns of maize-straw application on soil microorganisms, enzyme activities, and grain yield[J]. Bioengineered, 2021, 12(1): 3684-3698. DOI:10.1080/21655979.2021.1931639
( ![]() |
[36] |
Pan S G, Huang S Q, Zhai J, et al. Effects of nitrogen rate and its basal to dressing ratio on uptake, translocation of nitrogen and yield in rice (In Chinese)[J]. Soils, 2012, 44(1): 23-29. [潘圣刚, 黄胜奇, 翟晶, 等. 氮肥用量与运筹对水稻氮素吸收转运及产量的影响[J]. 土壤, 2012, 44(1): 23-29.]
( ![]() |
[37] |
Ju X T, Pan J R, Liu X J, et al. Study on the fate of nitrogen fertilizer in winter wheat/summer maize rotation system in Beijing suburban (In Chinese)[J]. Plant Nutrition and Fertilizer Science, 2003, 9(3): 264-270. DOI:10.3321/j.issn:1008-505X.2003.03.002 [巨晓棠, 潘家荣, 刘学军, 等. 北京郊区冬小麦/夏玉米轮作体系中氮肥去向研究[J]. 植物营养与肥料学报, 2003, 9(3): 264-270.]
( ![]() |