检索项 检索词
  土壤学报  2024, Vol. 61 Issue (3): 862-877  DOI: 10.11766/trxb202208210462
0

引用本文  

施宇森, 王杉杉, 方伟, 等. 基于Meta分析研究毛竹入侵致土壤pH提升及养分和微生物群落结构的变化. 土壤学报, 2024, 61(3): 862-877.
SHI Yusen, WANG Shanshan, FANG Wei, et al. Bamboo Invades Surrounding Forest Increased Soil pH, Changed Soil Chemical Nutrient and Microbial Community : A Meta-Analysis. Acta Pedologica Sinica, 2024, 61(3): 862-877.

基金项目

国家自然科学基金项目(31570602)资助

通讯作者Corresponding author

徐秋芳, E-mail:xuqiufang@zafu.edu.cn

作者简介

施宇森(1997—),男,浙江杭州人,硕士研究生,主要从事土壤学研究。E- mail:sys1115419805@163.com
基于Meta分析研究毛竹入侵致土壤pH提升及养分和微生物群落结构的变化
施宇森, 王杉杉, 方伟, 郑梦琦, 江秉鸿, 邵帅, 马晓敏, 徐秋芳    
浙江省森林生态系统碳循环与固碳减排重点实验室, 浙江农林大学环境与资源学院, 杭州 311300
摘要:诸多研究发现毛竹入侵周围林分提高土壤pH,但未见统计性描述报道。为此,本研究将通过大数据分析证实此现象的普遍性以及探究伴随的土壤养分和微生物变化。本研究收录包含毛竹入侵有关土壤pH变化的42篇文献总计101组数据,采用整合分析方法(Meta-analysis)进行深入探讨。在研究土壤养分变化时,本文还结合了团队采集的12个毛竹入侵带的样地数据总计92个样品18组数据进行分析。结果表明,在所有的数据组中,84.9%的土壤在经过毛竹入侵后其pH有不同幅度的提升,说明毛竹入侵周围林分普遍提高土壤pH;土壤pH增加幅度随入侵阶段、毛竹纯林时间增加而增加,随土层深度增加而降低;入侵针叶林致土壤pH增加的幅度高于阔叶林。入侵的毛竹纯林与原生林相比,总体上显著降低(P < 0.05)了土壤全氮(–15.9%)、硝态氮(–21.7%)、全碳(–2.0%),却增加(P < 0.05)了土壤有效磷(+54.9%)、铵态氮(+14.7%)和碱解氮(+8.2%)。对27篇包含微生物数据的文献进行整合分析,结果表明毛竹入侵改变了微生物群落结构,增加(P < 0.05)了放线菌门相对丰度(+25.86%),而降低(P < 0.05)了酸杆菌门(–15.49%)、浮霉菌门(–26.66%)、拟杆菌门(–22.58%)的相对丰度。本研究通过Meta分析证明毛竹入侵周围林分提高土壤pH为普遍自然现象,结合土壤硝态氮和铵态氮指标的变化推测了导致土壤pH提升的可能机制,毛竹入侵提高了土壤细菌和真菌多样性,表明入侵对土壤微生物具有正反馈效应。
关键词Meta分析    毛竹入侵    土壤pH    土壤养分    土壤微生物群落    
Bamboo Invades Surrounding Forest Increased Soil pH, Changed Soil Chemical Nutrient and Microbial Community : A Meta-Analysis
SHI Yusen, WANG Shanshan, FANG Wei, ZHENG Mengqi, JIANG Binghong, SHAO Shuai, MA Xiaomin, XU Qiufang    
Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
Abstract: 【Objective】In the past decades, the surface area of land covered by bamboo (Phyllostachys edulis) in China has rapidly increased. Many studies on bamboo forests have highlighted that bamboo invasion is associated with an increase in the soil pH. The objective of this study was to verify the mechanism by which bamboo invasion increased soil pH as well as to explore the accompanying soil nutrients and microbial properties change trend.【Method】A meta-analysis was conducted to test whether the invasions of bamboo into the adjacent forests lead to an increase in soil pH. The changes in soil nutrients and microbial community after the bamboo invasion were also analyzed. In this meta-analysis, 101 sets of data from 42 studies were collected. Besides data from references, 18 sets of data from 12 plots of bamboo invasion zones from experimental plots were also used to analyze soil pH and nutrient change.【Result】Overall, the results showed that in all the data sets, 84.9% of the soil pH increased by different amplitude after the bamboo invasion. The magnitude of soil pH increased with invasion time but decreased with soil depth. Also, the increase of soil pH in a coniferous forest(CF)was higher than that in a broadleaf forest (BL). The invasive pure bamboo forest (BB) decreased soil total nitrogen (–15.9%, P < 0.05), nitrate nitrogen (–21.7%, P < 0.05), total organic carbon (–2.0%, P < 0.05), but increased soil available phosphorus (+54.9%, P < 0.05), ammonia nitrogen (+14.7%, P < 0.05) and alkali-hydrolyzable nitrogen (+8.2%, P < 0.05)compared with the original forest. In addition, the bamboo invasion also changed soil microbial community structure and the relative abundance of Actinomycetes was increased (+25.86%, P < 0.05), while that of Acidobacteria (–15.49%, P < 0.05), planctomycetes (–26.66%, P < 0.05) and Bacteroidetes (–22.58%, P < 0.05)was decreased. Based on the meta-analysis results, the ammonia nitrogen was increased while nitrate nitrogen decreased after the bamboo invasion. It could be inferred that the process of ammonification (NH3+H+$ {\text{NH}}_4^ + $) was improved while nitrification ($ {\text{NH}}_4^ + $+2O2$ {\text{NO}}_3^ - $+H2O+2H+) was suppressed. Therefore, the possible mechanism of soil pH increase was attributed to the reduction of the accumulation of soil protons released during nitirifcation.【Conclusion】Bamboo invasion into adjacent forests increased soil pH, altered soil chemical properties and microbial community. The effect of bamboo invasion on soil pH is a common phenomenon and the possible mechanism for increasing pH may be related to changes in soil ammonia nitrogen and nitrate nitrogen concentrations.
Key words: Meta-analysis    Bamboo invasion    Soil pH    Soil nutrients    Soil microbial community    

毛竹(Phyllostachys edulis)是禾本科竹亚科刚竹属的克隆性植物,其强大的竹鞭系统能快速生长并入侵至周围林分进行无性繁殖,由于其强大的空间和光照竞争能力从而排斥其他树种,入侵后不久即可形成纯林[1]。目前本课题组在研究毛竹扩张后土壤生态变化过程中发现有趣的现象:毛竹向周围林地入侵后土壤pH会明显上升,在毛竹入侵初期的混交带就体现出该变化,在完全替代原有林地后表现得更加明显。但由于研究环境不同,各独立研究之间的数据也有差异:毛竹入侵杉木林时土壤pH提升了22.9%[2],但入侵阔叶林时pH反而有下降的趋势[3];毛竹林不同土层深度的pH差异也很大,研究[4]表明竹林10~20 cm的土壤pH为4.67,而40~55 cm的土壤pH却达5.20。为了定量描述毛竹入侵对土壤pH的影响,有必要采用大数据分析以揭示毛竹入侵对土壤pH的影响规律。

土壤pH变化具有级联效应,土壤pH浮动可能会带动土壤养分系列变化,包括但不局限于微生物主导的土壤氮素周转[5]、土壤磷的溶解度[6]、土壤速效钾的含量[7]及土壤有机质[8]等。同时,土壤微生物指标也会因pH的变化而改变,毛竹入侵杉木林后土壤微生物活性和群落结构会发生显著变化[9];入侵亚热带阔叶林会提升微生物的C:N和C:P[10];入侵阔叶林可能还会增加自养细菌的丰富度和活跃度,增加阔叶林CO2的固定能力[11]。因此,有必要同时对毛竹入侵伴随的土壤养分、生物学性质的影响进行分析,并与pH变化关联。

全球土壤酸化是普遍现象,无论是自然界氮硫沉降[12]、酸雨侵蚀[13],还是人为施肥[14]、农作物连作[15],均会使土壤逐渐酸化,由此对森林、农田等生态系统造成诸多消极影响,例如,不利于森林物种生存[16]、降低土壤呼吸、降低根系生物量和微生物生物量碳氮[12]、增加作物对重金属离子的累积[17]等。因此,在全球土壤酸化大背景下,能够使土壤pH提升的自然过程和人为措施均值得关注。基于大数据分析揭示毛竹入侵提升土壤pH的可能机理,对深入了解毛竹入侵的生态过程有重要意义,同时为缓解土壤酸化提供生物防治的全新思路。

Meta分析是一种将不同研究问题的相同研究结果综合分析得出结论的方法,早在1998年就被应用于生态学研究中[18],区别于传统综述文章,这种方法涵盖范围更广、数据更具体,能够更好地评估研究生态学问题。现阶段Meta分析方法仍具有一定的积极意义和生产指导作用[19-20]。本Meta分析除了收集已发表的文献数据外,同时在浙江省采集毛竹入侵带土壤样品,分析土壤pH和养分指标,以增加样本数量,期望解决三个科学问题:(1)毛竹入侵周边林分致土壤pH提高是否具有普遍性?土壤pH变化与毛竹入侵阶段、被入侵林分、毛竹纯林时间、土层深度是否有联系?(2)毛竹入侵如何影响土壤养分和微生物性质?(3)毛竹入侵导致土壤pH变化的可能机制有哪些?

1 材料与方法 1.1 数据来源与筛选

通过中国知网(http://www.cnki.net)和Web of Science搜索了有关毛竹入侵的期刊文章,搜索词为(毛竹林、土壤、扩张、入侵)。本Meta分析包含的研究必须符合以下标准:(1)所研究对象鲜有人为干扰;(2)林分之间地理位置相近,土壤母质一致;(3)可以清楚地获得样本量(n)、平均值(mean)和标准误差(sd)。

本研究共收录了42篇符合要求的文献,101组数据,详情见附表 1。文献中提取的土壤理化数据包含:pH、有效氮、有效磷、速效钾、总有机碳、全氮、硝态氮、铵态氮。并以入侵阶段、毛竹纯林时间、被入侵林分、土层深度将数据分类讨论分析。被入侵林分分为:(1)针叶林(coniferous forest,CF),包含:日本柳杉(Cryptomeria japonica)、杉木(Cunninghamia lanceolata)、红桧(Chamaecyparis formosensis Matsum)、马尾松(Pinus massoniana Lamb)、雪松(Cedrus deodara)、扁柏(Chamaecyparis);(2)阔叶林(broad-leaf forest,BL),包含:苦槠(Castanopsis sclerophylla)、麻栎(Quercus acutissima Carr)、枫香(Liquidambar formosana Hance)、板栗(Castanea mollissima Blume)、青冈(Quercus glauca)、木荷(Schima superba)。此外,不同文献对于土壤深度的划分情况不同,本研究统一将土层分类划分为0~10 cm、0~20 cm、20~40 cm、40 cm以上四种深度以便于统计。如果有按季节采样分析的数据,选择一年内总体的平均值作为代表数据。各养分指标测定方法需是公认的、准确的,参考《土壤农业化学分析方法》[21]

本研究选择微生物生物量碳、微生物生物量氮、微生物生物量磷、磷脂脂肪酸(PLFA)以及真菌、细菌的香农指数和chao1指数来评估毛竹林入侵后土壤微生物的变化。此外,由于土壤中细菌数量远大于其他微生物,本文还着重分析了五种土壤细菌优势门的相对丰度变化,分别为:变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)、放线菌门(Actinobacteria)、拟杆菌门(Bacteroidetes)和浮霉菌门(Planctomycetes)。

1.2 Meta分析方法

本研究主要摘录的文献数据有平均值(means,m)、标准差(standard deviations,sd)和样本数量(sample sizes,n)。当文献图中未直接标明数据时,通过软件Plot Digitizer(v.2.6.8)来读取图中各点的数据。仅提供标准误差(standard errors,se)的,可以通过下式进行转换:

$ {\text{sd}} = \sqrt {{\text{se}}} $ (1)

若无sd与se时,则默认选择均值的百分之十作为sd[22]。根据Hedges等[23]的统计学描述,将效应值(ln RR)作为评价某项研究对实验组和对照组的影响效应:

$ \ln {\text{RR = }}\ln \left( {\frac{{{m_1}}}{{{m_2}}}} \right) = \ln {m_1} - \ln {m_2} $ (2)

效应值对应的方差(v)为:

$ v = \frac{{{\text{sd}}_1^2}}{{{n_1}m_1^2}} + \frac{{{\text{sd}}_2^2}}{{{n_2}m_2^2}} $ (3)

式中,m1m2、sd1和sd2n1n2分别是实验组和对照组的均值、标准差和样本数量。

特别说明,毛竹入侵是一种变化缓慢、时间跨度大的自然扩展过程,入侵带一般存在毛竹纯林、竹阔(针)混交林、原生纯林三种类型的林分,因此不同分类情况下所要求的对照组与实验组不尽相同。本文选择用毛竹纯林和混交林分别与未被入侵的原生林分作对比,以此来表示毛竹完全入侵、毛竹正在入侵对土壤的影响,具体对照组与实验组如表 1所示。

表 1 数据分析对象的情况描述 Table 1 Description of the data analysis object

每个观测值的权重(w)为方差(v)的倒数:

$ w = \frac{1}{v} $ (4)

同一篇文献中含有多个观测样点,其总数为N。本研究认为这些观测值之间并不相互独立,因此将同一文献中每个观测点重新赋予权重(w′):

$ w' = \frac{w}{N} $ (5)

每篇文章中单个样点对应的效应值ln RR′为:

$ \ln {\text{RR'}} = w' \times {\text{RR'}} $ (6)

总体平均效应值(RR++)为:

$ {\text{R}}{{\text{R}}_{ + + }} = \frac{{\sum\nolimits_i {\frac{{{w_i}}}{{{N_i}}}\ln {\text{R}}{{\text{R}}_i}} }}{{\sum\nolimits_i {\frac{{{w_i}}}{{{N_i}}}} }} $ (7)

式中,wiNi、ln RRi表示第i个观测值的权重、观测样点数和效应值。

使用软件METAWIN(v.2.1)利用固定效应模型(fixed effect model,FEM)计算各个平均效应值RR++的95%置信区间,若其95%置信区间的下限大于0,则认为毛竹入侵显著增加了该研究指标;反之则认为毛竹入侵显著降低了该研究指标。为了更好地理解与解释效应关系,本研究将平均效应值(RR++)与其相应的置信区间上下限进行对数转换,用响应百分比(PC,percentage of change)来表示:

$ \text{PC} = ({{\text{e}}^{{\text{R}}{{\text{R}}_{{\text{ + + }}}}}} - 1) \times 100\% $ (8)
1.3 自测数据信息

2021年10月,在浙江省北、中、南部不同地点寻找具有明显“毛竹-混交林-原生林”分布的鲜有人为干扰的毛竹入侵带,沿着毛竹入侵方向在每种林分中设置3个样地(10 m×10 m),共设12个样地。在每个样地内根据五点取样法采集0~20 cm表层土样,混合后装入塑封袋运至实验室。风干后过2 mm筛除去样品中的石块、动植物残体,存入新塑封袋储存,用于后续实验。某些地区的混交林土壤难以采集,则仅选择了毛竹与原生林土壤。本研究共计采集来自6个不同地点、12条入侵带的土壤,总计28个样点、90个样品。分析得到土壤pH、碱解氮(AN)、有效磷(AP)、速效钾(AK)、铵态氮($ {\text{NH}}_4^ + $-N)、硝态氮($ {\text{NO}}_3^ - $-N)数据,测定方法参考《土壤农业化学分析方法》[21]。采样点及养分结果如表 2所示。

表 2 样地土壤化学性质 Table 2 Soil chemistry properties of sample plots
1.4 结合自测数据的Meta分析

有学者将自测的数据与文献数据结合进行Meta分析[24],目的是为了提升分析结果的严谨性和准确性,是对Meta分析的进一步加强和改进。本研究也采用这种结合的方法,将表 2中所得的自测数据按实验组与对照组分类合计为18组,与文献数据结合进行分析,总计得到土壤pH数据119组,铵态氮31组,硝态氮31组,碱解氮39组,土壤有效磷48组,土壤速效钾49组。Meta分析方法如1.2所述。

2 结果 2.1 毛竹入侵对土壤pH的影响

基于文献和实测数据(表 2)的119组pH数据的Meta分析结果表明,毛竹入侵致土壤pH升高的样点数占84.9%,入侵阶段、入侵林分、毛竹纯林时间、土层深度等变量均影响土壤pH提高的幅度(图 1)。

注:四种分类情况分别为:入侵阶段、入侵林分、毛竹纯林时间、土层深度。*表示该亚组总和的效应。未加*且未标注林分对比的组别,其林分对比默认为原生纯林vs.毛竹纯林。括号内数字表示观测样本数量。图中圆点代表平均响应百分比,实心点(●)表示该值显著变化,空心点(○)表示不显著。下同。  Note: The four parts are as follows: stages of invasion, different stands, times of bamboo, and soil depths. Adding * means the effect of the sum of this subgroup. For the group without * and without marked stand contrast, the default stand contrast is original forest vs. bamboo forest. The number in parentheses indicates the number of observed samples. ● means a significant change in the value. ○ means no significant change in the value. The same as below. 图 1 不同维度分析毛竹入侵对土壤pH的影响 Fig. 1 Effects of bamboo invasion on soil pH in a different dimension

图 1,基于入侵阶段的分析表明,与原生纯林相比,毛竹纯林土壤pH提升幅度(10.5%)高于混交林(5.5%),两者平均显著提高7.8%(P < 0.05)。基于入侵林分的分析表明,与原生纯林相比,毛竹入侵针叶林后土壤pH的提升幅度(+11.0%)明显高于入侵阔叶林类林分(+1.2%)。基于毛竹纯林时间的分析表明,毛竹纯林时间0~20年区间,土壤pH较原生纯林提升6.0%,低于20~40年提升的13.3%。基于土层深度的分析表明,与原生纯林相比,毛竹入侵对0~10 cm、0~20 cm土层土壤pH提升幅度较大(+8.2%、+11.3%),大于20~40 cm的土层(+4.3%),超过40 cm土层土壤由于文献数据量较小,且变异性较大,故未能得到明确的定量变化结果。

2.2 毛竹入侵对土壤养分的影响

基于文献和实测数据(表 2)的Meta分析结果表明,毛竹入侵原生林分后土壤养分发生了明显变化。土壤全氮、铵态氮、硝态氮和有效磷在入侵阶段、入侵林分分类下的分析结果(图 2),表现为共同上升或下降,具有一致规律。土壤全氮和硝态氮表现为显著下降(P < 0.05),平均分别下降15.9%和21.7%,毛竹完全入侵后下降幅度最大,其中毛竹林完全入侵针叶林时土壤全氮下降高达40%,而毛竹完全入侵阔叶林时土壤硝态氮下降达30.4%;毛竹入侵导致土壤铵态氮和有效磷显著(P < 0.05)增加,平均分别提升14.7%和54.9%,当入侵林分为阔叶林时,铵态氮和有效磷的提升幅度分别达15.7%和137.5%。土壤碱解氮和全碳在入侵阶段、入侵林分分类下的分析结果有(图 2)所差异,土壤碱解氮含量除入侵林分为针叶林时显著(P < 0.05)下降(–10.6%)外,其他分类情况下土壤碱解氮含量均表现为显著(P < 0.05)上升。毛竹入侵致土壤总有机碳含量平均下降2%,但入侵林分为阔叶林时显著增加4.2%。毛竹入侵对土壤速效钾的影响较为复杂,将入侵阶段、入侵林分分类情况下一起分析时无显著变化,然而,基于入侵阶段的分析表明,混交林土壤速效钾较原生林显著下降23.6%(P < 0.05)(图 2)。

注:TN:土壤全氮;TOC:总有机碳。  Note: TN: soil total nitrogen; TOC: soil total organic carbon. 图 2 毛竹入侵的不同阶段和不同林分对土壤养分的影响 Fig. 2 Effects of different stages and different stands of bamboo invasion on soil nutrients
2.3 毛竹入侵对微生物群落的影响

数据分析表明,毛竹入侵原生林分后土壤微生物群落发生明显变化(图 3)。其中混交林相比原生林土壤真菌香农指数整体增加13.55%(P < 0.05),但毛竹完全入侵形成纯林后有所回落(+5.23%);毛竹入侵后土壤细菌香农指数整体显著增加(P < 0.05),毛竹纯林相比原生林显著增加1.95%(P < 0.05),但混交林与原生林相比并未显著增加。比较毛竹林与原生林土壤优势细菌门的结果发现,毛竹纯林土壤酸杆菌门(-15.5%)、浮霉菌门(-26.7%)、拟杆菌门(-22.58%)的相对丰度显著(P < 0.05)降低,而放线菌门显著增加25.86%(P < 0.05),变形菌门未见显著变化。此外,基于表征不同类别土壤微生物生物量的磷脂肪酸(PLFA)数据分析(图 3c)表明,毛竹纯林土壤除真菌(+14.9%)与放线菌(+7.82%)显著(P < 0.05)高于原生林外,微生物总生物量、细菌、革兰氏阳性菌、革兰氏阴性菌以及丛枝菌根真菌(AMF)等则无显著变化。基于氯仿熏蒸法的土壤微生物生物量碳的分析结果表明,与原生林相比,毛竹入侵显著降低(P < 0.05)土壤微生物生物量碳(-23.6%)和微生物生物量氮(-32.8%),而微生物生物量磷未见显著变化。

注:AMF:丛枝菌根真菌;PLFA:磷脂脂肪酸法;MBC:微生物生物量碳;MBN:微生物生物量氮;MBP:微生物生物量磷:G+:革兰氏阳性菌;G-:革兰氏阴性菌。  Note: AMF: arbuscular mycorrhizal fungi; PLFA: phospholipid fatty acid; MBC: Microbial biomass carbon; MBN: microbial biomass nitrogen; MBP: microbial biomass phosphorus; G+: gram-positive bacterium; G-: gram-negative bacterium. 图 3 毛竹入侵对微生物指标(a.真菌与细菌的香农指数和Chao1指数,b.五种优势细菌门相对丰度,c.微生物生物量碳、微生物生物量氮、微生物生物量磷与PLFA)的影响 Fig. 3 Effects of bamboo invasion on microbial indices(a. Shannon index and Chao1 index for fungi and bacteria, b. Relative abundances of five dominant bacterial phyla, c. Microbial biomass carbon, microbial biomass nitrogen, microbial biomass phosphorus and PLFA)
3 讨论 3.1 毛竹入侵影响土壤养分的可能机制

土壤氮素中98%为有机态氮,微生物水解矿化释放出铵态氮[25]。毛竹入侵原生林后全氮下降而碱解氮、铵态氮上升(图 2),表明毛竹具有较强的矿化有机氮作用,致全氮含量下降,而矿化产生的大量氨(NH3),质子化(NH3+H+$ {\text{NH}}_4^ + $)后形成铵态氮。在通气良好的土壤中铵态氮极易在微生物作用下发生硝化作用转变成硝态氮[26]。虽然毛竹林土壤存在丰富的铵态氮底物,但硝化作用可能并不强,所以硝态氮低于原生林。毛竹林硝化作用($ {\text{NH}}_4^ + $+2O2$ {\text{NO}}_3^ - $+H2O+2H+)低于原生林[27-28]的结果支撑以上推测。此外,土壤pH与AOA(氨氧化古菌)丰度呈反比[29]、毛竹林土壤AOA丰度低于原生林的结果[30]进一步证明毛竹林土壤硝化作用较弱。毛竹林土壤硝化作用弱还可能与毛竹的喜铵习性[31]有关,毛竹直接吸收铵态氮,不需要微生物将铵态氮转变为硝态氮,久而久之土壤中硝化作用相关微生物繁殖少;此外,毛竹庞大的地下鞭根系统对土壤氧气的消耗不利于好氧的硝化微生物活动。

毛竹入侵改变了土壤总有机碳含量(图 2),这可能与土壤碳循环的改变有关。土壤总有机碳积累与否取决于有机碳的输入(植物源碳)和输出(微生物分解释放二氧化碳)平衡。毛竹入侵后有机碳的输入和输出均发生了改变。在亚热带地区常绿阔叶林土壤有机质一般高于其他林分,毛竹入侵阔叶林后土壤总有机碳显著增加,但入侵针叶林则显著下降(图 2)。从有机碳输入端分析,毛竹入侵不同林分生物量的增加量差别不明显,所以导致土壤TOC差异的原因可能是微生物分解的输出端。毛竹入侵后导致微生物生物量碳(MBC)和微生物生物量氮(MBN)总体下降(图 3c),然而,将MBC按照入侵林分(阔叶林、针叶林)分类的Meta分析(图略)发现,入侵阔叶林致土壤MBC显著下降(–26.7%,P<0.05),入侵针叶则以土壤MBC显著增加(+9.74%,P<0.05)。该数据分析很好地解释了入侵阔叶林后土壤微生物分解强度下降、TOC增加,而入侵针叶林则正好相反的结果。混交林土壤总有机碳含量低于原生林的原因可能是毛竹入侵形成混交林时提高土壤微生物活性,从而促进有机质降解。例如:城市森林中混种多果桉(B. polycarpa)与水杉(M. glyptostroboides)可促进微生物对养分的释放作用[32];阔叶林与针叶林凋落物混合后,微生物的分解速率明显提升[33];混合林分重新造林后,相比于单一树种更能提升土壤微生物生物量和土壤基础呼吸速率[34]

毛竹入侵后土壤有效磷总体显著增加(图 2)。一方面,基于土壤化学过程的分析,在酸性条件下,磷主要被铁铝化合物所吸附固定,较高的土壤pH使OH与H2PO4发生交换,提高土壤中磷的有效性。另一方面,基于土壤微生物化学的过程分析,土壤pH提升可能刺激土壤中某些溶磷菌活性[35],加速释放土壤有效磷。入侵阔叶林后土壤有效磷增幅极显著高于入侵针叶林,但从入侵前后两者土壤pH的变化差异无法解释,可能是阔叶林土壤中全磷含量高于针叶林[36],其中的有机磷或无机磷被活化所致。

3.2 毛竹入侵影响微生物群落的可能机制

诸多研究证明土壤pH可直接和间接影响土壤微生物[37]。本研究数据分析表明,放线菌门相对丰度(高通量结果)以及放线菌门PLFA含量显著增加,而酸杆菌门、浮霉菌门、拟杆菌门的丰度显著下降(图 3)。放线菌门细菌偏好碱性环境,毛竹入侵致土壤pH升高有利于放线菌门细菌繁殖。此外,作为最优势细菌门之一,偏好酸性土壤[37]的酸杆菌门,在毛竹入侵提升土壤pH后其生存空间被抑制,也为放线菌门留出更大的生存空间。严淑娴等[38]进一步分析放线菌门的优势物种后发现毛竹林土壤中Frankiales(属放线菌门)的相对丰度显著(P < 0.05)高于阔叶林与杉木林,而Frankiales是被证实具有强烈固氮能力的菌种,能与大多数乔木和灌木形成共生固氮系统[39],毛竹林土壤的这种固氮能力也可能是其土壤铵态氮高的原因之一。此外,本研究结果还表明毛竹入侵后细菌的香农多样性指数有显著提升(图 3a),这可能与毛竹入侵导致土壤pH提升有关,因为大量研究证明,土壤细菌香农多样性指数随着土壤pH升高呈线性增加[40]

真菌喜酸性环境,土壤真菌的多样性与生物量一般随着pH的降低而增加[41]。但本研究毛竹入侵前后土壤真菌变化的数据分析结果表明,毛竹入侵后土壤pH提升并未致土壤真菌的多样性及PLFA下降,反而混交林土壤真菌多样性显著高于原生林(图 3a);从有机输入的数量和质量对土壤真菌的影响分析,毛竹庞大的地下鞭根系统为真菌提供了大量材料,激发土壤真菌的大量繁殖,土壤真菌的多样性增加,如在中纬度地区,植物入侵增加土壤真菌的周转率从而提高真菌β多样性[42]。至于真菌生物量增加(图 3c)的原因可从以下几个方面解释,一是土壤中某些特定真菌门有响应pH升高的能力,有研究发现毛竹土壤pH较高并且担子菌门丰度显著高于阔叶和杉木[38];Tedersoo等[43]发现担子菌门的丰度随着土壤pH的提升而增加;改变土地利用情况后,土壤pH提升时子囊菌门的丰度也相应提升[44];全球尺度的统计分析表明,在pH3~5范围内,子囊菌门相对丰度随着土壤pH升高而增加,pH5~7则下降,而壶菌门的相对丰度则是pH3~7范围内直线增加[45]。二是真菌的重要分支AMF(丛枝菌根真菌)对pH的积极响应,虽然毛竹入侵后原始植物物种减少,导致仅定殖竹根的AMF保留,基于乘客假设(passenger hypothesis)的原理,毛竹依然会刺激根鞭中AMF生物量的增加[46];类似研究证明,在提升土壤pH后AMF的定殖量和生物量显著增加,并提高土壤磷的有效性[47]。本研究数据分析表明,毛竹入侵后土壤AMF的PLFA变化不显著(图 3c),可能是因为样本数不足导致。

3.3 土壤pH升高可能的机制

毛竹入侵原生林分显著提升土壤pH的普遍性得到证实(图 1),并且此现象具有随着时间推移而加剧的正效应。毛竹根系主要分布在0~20 cm土层[48],因而对此区间的土壤pH提升幅度最大。此外,本研究发现毛竹入侵针叶林后土壤pH的提升幅度明显高于入侵阔叶林类林分(图 1),可能是原生针叶林土壤平均pH 4.31低于阔叶林pH 4.40导致。虽然土壤pH升高的现象占总体比值为84.9%,但仍然有15.1%未呈现上升结果,推测是因为这些点位毛竹林存在时间较短,毛竹提升土壤pH累加效应尚不明显。

植物改变土壤pH的案例很多,植物吸收阳离子[49]时会泌出氢离子而使根际土壤酸化;若植物残体中有机阴离子与质子的比值较大,土壤pH随该比值线性增加[50]。氮素循环过程也会影响土壤pH,微生物的氨化作用消耗质子致土壤pH上升,而其硝化作用释放质子致土壤pH降低[51]。因此,推测毛竹入侵后土壤pH的变化可能是通过改变土壤特定离子浓度所致。基于本研究Meta分析中几种氮素的变化结果(图 2),土壤中氮相关的特定离子浓度发生变化,在所有研究情况下土壤硝态氮显著下降,而铵态氮显著上升,因此推测:(1)毛竹入侵可能增强NH3+H+$ {\text{NH}}_4^ + $氨化反应,消耗质子从而提升土壤pH;(2)毛竹入侵可能减弱$ {\text{NH}}_4^ + $2O2$ {\text{NO}}_3^ - $+H2O+2H+硝化反应,质子累积速率也相应下降,土壤pH上升。

4 结论

本研究数据分析结果证明毛竹林入侵周围原生林分提高土壤pH的科学性和普遍性,并且随着入侵阶段、时间的增加而加剧,并对根系分布层(0~20 cm)影响最大。毛竹入侵总体上使土壤总有机碳、硝态氮含量下降,但铵态氮和有效磷含量提升。毛竹入侵提高了土壤细菌和真菌多样性,表明对土壤微生物的正反馈作用。

附表1
1 Meta分析文献收录表 AppendixTable1 Meta-analysis literature inclusion table
参考文献
[1]
Xu Q F, Liang C F, Chen J H, et al. Rapid bamboo invasion(expansion) and its effects on biodiversity and soil processes[J]. Global Ecology and Conservation, 2020, 21: 10. (0)
[2]
Wang H C, Tian G L, Chiu C Y. Invasion of moso bamboo into a Japanese cedar plantation affects the chemical composition and humification of soil organic matter[J]. Scientific Reports, 2016, 6: 32211. DOI:10.1038/srep32211 (0)
[3]
Gogoi A, Ahirwal J, Sahoo U K. Evaluation of ecosystem carbon storage in major forest types of Eastern Himalaya: Implications for carbon sink management[J]. Journal of Environmental Management, 2022, 302: 11. (0)
[4]
Chang E H, Chen C P, Tian G L, et al. Replacement of natural hardwood forest with planted bamboo and cedar in a humid subtropical mountain affects soil microbial community[J]. Applied Soil Ecology, 2018, 124: 146-154. DOI:10.1016/j.apsoil.2017.11.006 (0)
[5]
Wang L F, Du H C, Han Z Q, et al. Nitrous oxide emissions from black soils with different pH[J]. Journal of Environmental Sciences, 2013, 25(6): 1071-1076. DOI:10.1016/S1001-0742(12)60129-6 (0)
[6]
Penn C J, Camberato J J. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants[J]. Agriculture-Basel, 2019, 9(6): 18. (0)
[7]
Reza S K, Baruah U, Sarkar D, et al. Spatial variability of soil properties using geostatistical method: A case study of lower Brahmaputra Plains, India[J]. Arabian Journal of Geosciences, 2016, 9(6): 8. (0)
[8]
Dai W, Li Y H, Fu W J, et al. Spatial variability of soil nutrients in forest areas: A case study from subtropical china[J]. Journal of Plant Nutrition and Soil Science, 2018, 181(6): 827-835. DOI:10.1002/jpln.201800134 (0)
[9]
Chang E H, Chiu C Y. Changes in soil microbial community structure and activity in a cedar plantation invaded by moso bamboo[J]. Applied Soil Ecology, 2015, 91: 1-7. DOI:10.1016/j.apsoil.2015.02.001 (0)
[10]
Zhao Y Z, Liang C F, Shao S, et al. Linkages of litter and soil C: N: P stoichiometry with soil microbial resource limitation and community structure in a subtropical broadleaf forest invaded by moso bamboo[J]. Plant and Soil, 2021, 465(1/2): 473-490. (0)
[11]
Li Y C, Liang X, Tang C X, et al. Moso bamboo invasion into broadleaf forests is associated with greater abundance and activity of soil autotrophic bacteria[J]. Plant and Soil, 2018, 428(1-2): 163-177. DOI:10.1007/s11104-018-3648-z (0)
[12]
Meng C, Tian D S, Zeng H, et al. Global soil acidification impacts on belowground processes[J]. Environmental Research Letters, 2019, 14(7): 10. (0)
[13]
Wen X J, Duan C Q, Zhang D C. Effect of simulated acid rain on soil acidification and rare earth elements leaching loss in soils of rare earth mining area in southern Jiangxi Province of China[J]. Environmental Earth Sciences, 2013, 69(3): 843-853. DOI:10.1007/s12665-012-1969-4 (0)
[14]
Dal Molin S J, Ernani P R, Gerber J M. Soil acidification and nitrogen release following application of nitrogen fertilizers[J]. Communications in Soil Science and Plant Analysis, 2020, 51(20): 2551-2558. DOI:10.1080/00103624.2020.1845347 (0)
[15]
Hu Q L, Tan L, Yang X X, et al. The divergence of bacterial communities among continuous cropping, rotational cropping and new planting potato soils[J]. International Journal of Agriculture and Biology, 2020, 23(4): 721-729. (0)
[16]
de Schrijver A, de Frenne P, Staelens J, et al. Tree species traits cause divergence in soil acidification during four decades of postagricultural forest development[J]. Global Change Biology, 2012, 18(3): 1127-1140. DOI:10.1111/j.1365-2486.2011.02572.x (0)
[17]
Mao C, Song Y, Chen L, et al. Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice[J]. Catena, 2019, 175: 339-348. DOI:10.1016/j.catena.2018.12.029 (0)
[18]
Peng S L, Tang X Y. Meta-analysis and its application in ecology (In Chinese)[J]. Chinese Journal of Ecology, 1998, 17(5): 74-79. DOI:10.3321/j.issn:1000-4890.1998.05.015 [彭少麟, 唐小焱. Meta分析及其在生态学上的应用[J]. 生态学杂志, 1998, 17(5): 74-79.] (0)
[19]
Dong L, Shi X Z, Xu S X, et al. Effects of different managment measures on the organic carbon of farmland soil profile in China based on meta-analysis (In Chinese)[J]. Soils, 2021, 53(6): 1290-1298. [董丽, 史学正, 徐胜祥, 等. 基于meta分析研究不同管理措施对中国农田土壤剖面有机碳的影响[J]. 土壤, 2021, 53(6): 1290-1298.] (0)
[20]
Cao Y F, Shen Z Z, Liu S S, et al. Evaluation of effect of Trichoderma contrilling fusarium wilt disease and its influencing factors with meta-analysis in China (In Chinese)[J]. Acta Pedologica Sinica, 2019, 56(3): 716-727. [操一凡, 沈宗专, 刘珊珊, 等. Meta分析评估中国木霉对枯萎病防控效果及其影响因素[J]. 土壤学报, 2019, 56(3): 716-727.] (0)
[21]
Lu R K. Analytical methods for soil and agrochemistry (In Chinese). Beijing: China Agricultural Science and Technology Press, 2000. [鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.] (0)
[22]
Zhou Z H, Wang C K, Zheng M H, et al. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition[J]. Soil Biology and Biochemistry, 2017, 115: 433-441. DOI:10.1016/j.soilbio.2017.09.015 (0)
[23]
Hedges L V, Gurevitch J, Curtis P S. The meta-analysis of response ratios in experimental ecology[J]. Ecology, 1999, 80(4): 1150-1156. DOI:10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 (0)
[24]
Vetter D, Rücker G, Storch I. A meta-analysis of tropical forest edge effects on bird nest predation risk: Edge effects in avian nest predation[J]. Biological Conservation, 2013, 159: 382-395. DOI:10.1016/j.biocon.2012.12.023 (0)
[25]
Bai J, Gao H, Xiao R, et al. A review of soil nitrogen mineralization as affected by water and salt in coastal wetlands: Issues and methods[J]. Clean-Soil Air Water, 2012, 40(10): 1099-1105. DOI:10.1002/clen.201200055 (0)
[26]
Ke X B, Lu W, Conrad R. High oxygen concentration increases the abundance and activity of bacterial rather than archaeal nitrifiers in rice field soil[J]. Microbial Ecology, 2015, 70(4): 961-970. DOI:10.1007/s00248-015-0633-4 (0)
[27]
Li Z Z, Zhang L, Deng B L, et al. Effects of moso bamboo(Phyllostachys edulis) invasions on soil nitrogen cycles depend on invasion stage and warming[J]. Environmental Science and Pollution Research, 2017, 24(32): 24989-24999. DOI:10.1007/s11356-017-0186-9 (0)
[28]
Song Q N, Ouyang M, Yang Q P, et al. Degradation of litter quality and decline of soil nitrogen mineralization after moso bamboo(Phyllostachys pubscens)expansion to neighboring broadleaved forest in subtropical China[J]. Plant and Soil, 2016, 404(1/2): 113-124. (0)
[29]
Stempfhuber B, Engel M, Fischer D, et al. pH as a driver for ammonia-oxidizing archaea in forest soils[J]. Microbial Ecology, 2015, 69(4): 879-883. DOI:10.1007/s00248-014-0548-5 (0)
[30]
Zhou Y. The effects of moso bamboo invasion on nitrogen cycle related microbial community structure and abundance[D]. Hangzhou: Zhejiang A & F University, 2018.[周燕. 毛竹入侵对土壤氮循环主要微生物群落结构和丰度的影响[D]. 杭州: 浙江农林大学, 2018.] (0)
[31]
Zou N, Shi W M, Hou L H, et al. Superior growth, N uptake and tolerance in the giant bamboo Phyllostachys edulis over the broad-leaved tree Castanopsis fargesii at elevated may underlie community succession and favor the expansion of bamboo[J]. Tree Physiology, 2020, 40(11): 1606-1622. DOI:10.1093/treephys/tpaa086 (0)
[32]
Zhang W W, Liu W, He S W, et al. Mixed plantations of Metasequoia glyptostroboides and Bischofia polycarpa change soil fungal and archaeal communities and enhance soil phosphorus availability in Shanghai, China[J]. Ecology and Evolution, 2021, 11(12): 7239-7249. DOI:10.1002/ece3.7532 (0)
[33]
Niu X Y, Sun X M, Chen D S, et al. Mixing litter from Larix kaempferi(lamb.)carr. and broad-leaved trees enhances decomposition by different mechanisms in temperate and subtropical alpine regions of China[J]. Plant and Soil, 2020, 452(1/2): 43-60. (0)
[34]
do Couto G M, Eisenhauer N, de Oliveira E B, et al. Response of soil microbial biomass and activity in early restored lands in the northeastern Brazilian Atlantic Forest[J]. Restoration Ecology, 2016, 24(5): 609-616. DOI:10.1111/rec.12356 (0)
[35]
Beheshti M, Etesami H, Alikhani H A. Interaction study of biochar with phosphate-solubilizing bacterium on phosphorus availability in calcareous soil[J]. Archives of Agronomy and Soil Science, 2017, 63(11): 1572-1581. DOI:10.1080/03650340.2017.1295138 (0)
[36]
Wang Z M, Fu S C, Zhu H B, et al. Study on the nitrogen and phosphorus distribution law in the soil in riparian vegetation buffer zone of Liaohe River in Jilin Province (In Chinese)[J]. Journal of Jilin Forestry Science and Technology, 2022, 51(3): 13-20. [王梓默, 付世萃, 朱红波, 等. 吉林省辽河河岸植被缓冲带土壤氮、磷分布规律研究[J]. 吉林林业科技, 2022, 51(3): 13-20.] (0)
[37]
Olivier H. Redox potential(Eh) and pH as drivers of soil/plant/microorganism systems: A transdisciplinary overview pointing to integrative opportunities for agronomy[J]. Plant and Soil, 2013, 362(1/2): 389-417. (0)
[38]
Yan S X, Liu M, Liu C X, et al. Soil microbial diversity is higher in pure stands of moso bamboo than in pure stands of Chinese fir (In Chinese)[J]. Acta Pedologica Sinica, 2022, 59(6): 1704-1717. [严淑娴, 刘茗, 刘彩霞, 等. 毛竹纯林土壤微生物多样性高于杉木纯林[J]. 土壤学报, 2022, 59(6): 1704-1717.] (0)
[39]
Marschner P. Marschner's mineral nutrition of higher plants . London: Academic Press, 2013. (0)
[40]
Chai X, Yang Y, Wang X, et al. Spatial variation of the soil bacterial community in major apple producing regions of China[J]. Journal of Applied Microbiology, 2021, 130(4): 1294-1306. DOI:10.1111/jam.14878 (0)
[41]
Kawahara A, An G H, Miyakawa S, et al. Nestedness in arbuscular mycorrhizal fungal communities along soil pH gradients in early primary succession: Acid-tolerant fungi are pH generalists[J]. PLoS One, 2016, 11(10): e0165035. DOI:10.1371/journal.pone.0165035 (0)
[42]
Wei C Q, Gao L L, Tang X F, et al. Plant evolution overwhelms geographical origin in shaping rhizosphere fungi across latitudes[J]. Global Change Biology, 2021, 27(16): 3911-3922. DOI:10.1111/gcb.15683 (0)
[43]
Tedersoo L, Bahram M, Põlme S, et al. Global diversity and geography of soil fungi[J]. Science, 2014, 346(6213): 1077-1078. (0)
[44]
Lauber C L, Strickland M S, Bradford M A, et al. The influence of soil properties on the structure of bacterial and fungal communities across land-use types[J]. Soil Biology and Biochemistry, 2008, 40(9): 2407-2415. DOI:10.1016/j.soilbio.2008.05.021 (0)
[45]
Bahram M, Hildebrand F, Forslund S K, et al. Structure and function of the global topsoil microbiome[J]. Nature, 2018, 560(7717): 232-237. (0)
[46]
Qin H, Niu L, Wu Q, et al. Bamboo forest expansion increases soil organic carbon through its effect on soil arbuscular mycorrhizal fungal community and abundance[J]. Plant and Soil, 2017, 420(1/2): 407-421. (0)
[47]
Carrino-Kyker S R, Kluber L A, Petersen S M, et al. Mycorrhizal fungal communities respond to experimental elevation of soil pH and P availability in temperate hardwood forests[J]. FEMS Microbiology Ecology, 2016, 92(3): fiw024. DOI:10.1093/femsec/fiw024 (0)
[48]
Xiong Y L, Zhou Y F, Li P H, et al. Non-destructive detection by ground penetrating radar of growth characteristics and spatial structure of rhizomes in moso bamboo forest (In Chinese)[J]. Scientia Silvae Sinicae, 2020, 56(12): 19-27. DOI:10.11707/j.1001-7488.20201203 [熊雨露, 周宇峰, 李平衡, 等. 毛竹林竹鞭生长特征和空间结构的探地雷达无损探测[J]. 林业科学, 2020, 56(12): 19-27.] (0)
[49]
Wan Q, Mi Y H, Yang Y Y, et al. Aluminum-enhanced proton release associated with plasma membrane H+-adenosine triphosphatase activity and excess cation uptake in tea(Camellia sinensis)plant roots[J]. Pedosphere, 2018, 28(5): 804-813. DOI:10.1016/S1002-0160(17)60460-0 (0)
[50]
Rukshana F, Butterly C R, Xu J M, et al. Organic anion-to-acid ratio influences pH change of soils differing in initial pH[J]. Journal of Soils and Sediments, 2014, 14(2): 407-414. DOI:10.1007/s11368-013-0682-6 (0)
[51]
Xu J M, Tang C, Chen Z L. The role of plant residues in pH change of acid soils differing in initial pH[J]. Soil Biology and Biochemistry, 2006, 38(4): 709-719. DOI:10.1016/j.soilbio.2005.06.022 (0)
[52]
Umemura M, Takenaka C. Changes in chemical characteristics of surface soils in hinoki cypress(Chamaecyparis obtusa)forests induced by the invasion of exotic moso bamboo(Phyllostachys pubescens) in central Japan[J]. Plant Species Biology, 2015, 30(1): 72-79. DOI:10.1111/1442-1984.12038 (0)
[53]
池鑫晨, 宋超, 朱向涛, 等. 毛竹入侵常绿阔叶林对土壤活性有机碳氮的动态影响[J]. 生态学杂志, 2020, 39(7): 2263-2272. (0)
[54]
赵天心, 毛新伟, 程敏, 等. 毛竹种植对土壤细菌和真菌群落结构及多样性的影响[J]. 应用生态学报, 2017, 28(11): 3740-3750. (0)
[55]
廖丽琴. 庐山毛竹扩张对土壤动物群落及地下食物网影响[D]. 南昌: 江西农业大学, 2018. (0)
[56]
李永春, 梁雪, 李永夫, 等. 毛竹入侵阔叶林对土壤真菌群落的影响[J]. 应用生态学报, 2016, 27(2): 585-592. (0)
[57]
张庆晓, 陈珺, 朱向涛, 等. 杉木林土壤温室气体排放对毛竹入侵及采伐的短期响应[J]. 浙江农林大学学报, 2021, 38(4): 703-711. (0)
[58]
李超, 刘苑秋, 王翰琨, 等. 庐山毛竹扩张及模拟氮沉降对土壤N2O和CO2排放的影响[J]. 土壤学报, 2019, 56(1): 146-155. (0)
[59]
Li Y, Li Y, Chang S X, et al. Bamboo invasion of broadleaf forests altered soil fungal community closely linked to changes in soil organic c chemical composition and mineral n production[J]. Plant and Soil, 2017, 418(1-2): 507-521. DOI:10.1007/s11104-017-3313-y (0)
[60]
Bai S B, Conant R T, Zhou G M, et al. Effects of moso bamboo encroachment into native, broad-leaved forests on soil carbon and nitrogen pools[J]. Scientific Reports, 2016, 6: 31480. DOI:10.1038/srep31480 (0)
[61]
Ikegami N, Satake T, Nagayama Y, et al. Changes in silica in litterfall and available silica in the soil of forests invaded by bamboo species(Phyllostachys pubescens and P. bambusoides) in western Japan[J]. Soil Science and Plant Nutrition, 2014, 60(5): 731-739. DOI:10.1080/00380768.2014.942794 (0)
[62]
Wu C S, Mo Q F, Wang H K, et al. Moso bamboo(Phyllostachys edulis(carriere)j. Houzeau) invasion affects soil phosphorus dynamics in adjacent coniferous forests in subtropical China[J]. Annals of Forest Science, 2018, 75(1): 11. DOI:10.1007/s13595-018-0688-8 (0)
[63]
Li W C, Sheng H Y, Liu Y Y, et al. Responses of soil bacterial compositions to concentrations of nitrogen forms in the process of moso bamboo invasion[J]. Ecological Research, 2019, 34(6): 743-752. DOI:10.1111/1440-1703.12052 (0)
[64]
Chen Z H, Li Y C, Chang S X, et al. Linking enhanced soil nitrogen mineralization to increased fungal decomposition capacity with moso bamboo invasion of broadleaf forests[J]. Science of the Total Environment, 2021, 771: 144779. DOI:10.1016/j.scitotenv.2020.144779 (0)
[65]
Lin Y T, Whitman W B, Coleman D C, et al. Cedar and bamboo plantations alter structure and diversity of the soil bacterial community from a hardwood forest in subtropical mountain[J]. Applied Soil Ecology, 2017, 112: 28-33. DOI:10.1016/j.apsoil.2017.01.001 (0)
[66]
Lima R A F, Rother D C, Muler A E, et al. Bamboo overabundance alters forest structure and dynamics in the atlantic forest hotspot[J]. Biological Conservation, 2012, 147(1): 32-39. DOI:10.1016/j.biocon.2012.01.015 (0)
[67]
Liu C X, Zhou Y, Qin H, et al. Moso bamboo invasion has contrasting effects on soil bacterial and fungal abundances, co-occurrence networks and their associations with enzyme activities in three broadleaved forests across subtropical China[J]. Forest Ecology and Management, 2021, 498: 13. (0)
[68]
徐道炜. 戴云山自然保护区毛竹向杉木扩张对林分土壤质量及其凋落物分解的影响[D]. 福州: 福建农林大学, 2018. (0)
[69]
刘鑫铭, 饶惠玲, 丁新新, 等. 不同混交类型对毛竹林土壤有机碳和土壤呼吸的影响[J]. 应用与环境生物学报, 2021, 27(1): 71-80. (0)
[70]
Zhang X, Song Z, McGrouther K, et al. The impact of different forest types on phytolith-occluded carbon accumulation in subtropical forest soils[J]. Journal of Soils and Sediments, 2015, 16(2): 461-466. (0)
[71]
Wang X, Sasaki A, Toda M, et al. Changes in soil microbial community and activity in warm temperate forests invaded by moso bamboo(phyllostachys pubescens)[J]. Journal of Forest Research, 2017, 21(5): 235-243. (0)
[72]
Tanaka S, Shbahai Y, ToRii A, et al. Comparison of nutrient dynamics of throughfall and soil solution under bamboo(Phyllostachys pubescens) and Japanese cypress(Chamaecyparis obtusa)stands[J]. Japanese Society of Pedology, 2011, 55: 16-29. (0)
[73]
Fukushima K, Usui N, Ogawa R, et al. Impacts of moso bamboo(Phyllostachys pubescens) invasion on dry matter and carbon and nitrogen stocks in a broad-leaved secondary forest located in Kyoto, western Japan[J]. Plant Species Biology, 2015, 30(2): 81-95. DOI:10.1111/1442-1984.12066 (0)
[74]
Wu J S, Jiang P K, Chang S X, et al. Dissolved soil organic carbon and nitrogen were affected by conversion of native forests to plantations in subtropical china[J]. Canadian Journal of Soil Science, 2010, 90(1): 27-36. DOI:10.4141/CJSS09030 (0)
[75]
Cai X, Lin Z, Penttinen P, et al. Effects of conversion from a natural evergreen broadleaf forest to a moso bamboo plantation on the soil nutrient pools, microbial biomass and enzyme activities in a subtropical area[J]. Forest Ecology and Management, 2018, 422: 161-171. DOI:10.1016/j.foreco.2018.04.022 (0)
[76]
Tian X K, Wang M Y, Meng P, et al. Native bamboo invasions into subtropical forests alter microbial communities in litter and soil[J]. Forests, 2020, 11(3): 14. (0)
[77]
Liu X S, Siemann E, Cui C, et al. Moso bamboo(Phyllostachys edulis) invasion effects on litter, soil and microbialPLFA characteristics depend on sites and invaded forests[J]. Plant and Soil, 2019, 438(1/2): 85-99. (0)
[78]
Guo X P, Chen H Y H, Meng M J, et al. Effects of land use change on the composition of soil microbial communities in a managed subtropical forest[J]. Forest Ecology and Management, 2016, 373: 93-99. DOI:10.1016/j.foreco.2016.03.048 (0)
[79]
刘宝, 吴文峰, 林思祖, 等. 中亚热带4种林分类型土壤微生物生物量碳氮特征及季节变化[J]. 应用生态学报, 2019, 30(6): 1901-1910. (0)
[80]
杜满义, 范少辉, 刘广路, 等. 土地利用方式转变对赣中地区土壤活性有机碳的影响[J]. 应用生态学报, 2013, 24(10): 2897-2904. (0)
[81]
Yang C, Ni H, Zhong Z, et al. Changes in soil carbon pools and components induced by replacing secondary evergreen broadleaf forest with moso bamboo plantations in subtropical China[J]. Catena, 2019, 180: 309-319. DOI:10.1016/j.catena.2019.02.024 (0)
[82]
Wang H Z, Zhang T X, Wei G, et al. Survival of Escherichia coli O157: H7 in soils under different land use types[J]. Environmental Science and Pollution Research, 2014, 21(1): 518-524. DOI:10.1007/s11356-013-1938-9 (0)
[83]
Meng M, Lin J, Guo X, et al. Impacts of forest conversion on soil bacterial community composition and diversity in subtropical forests[J]. Catena, 2019, 175: 167-173. DOI:10.1016/j.catena.2018.12.017 (0)
[84]
Luan J, Li S, Dong W, et al. Litter decomposition affected by bamboo expansion is modulated by litter‐mixing and microbial composition[J]. Functional Ecology, 2021, 35(11): 2562-2574. DOI:10.1111/1365-2435.13911 (0)