地表臭氧(O3)主要是由氮氧化物(NOx)和挥发性有机物(VOCs)经过一系列复杂的非线性光化学反应生成的,属于二次空气污染物。工业革命以来,随着化石燃料的使用,地表O3浓度显著升高[1],尤其近年来东亚地区地表O3浓度仍呈现出日益上升趋势[2]。O3作为一种强氧化剂,主要通过气孔进入作物叶片内产生氧化胁迫,导致植物生理代谢紊乱,对粮食生产带来负面影响[3]。已有研究表明O3浓度升高降低了植物向地下部分的碳分配,进而导致根际土壤中无机氮和可溶性有机碳含量降低,因此对土壤微生物丰度、群落结构及其介导的物质循环均产生影响。比如,O3浓度升高降低了稻田土中细菌、产甲烷古菌以及线虫生物量以及微生物胞外酶活性[4-5],为应对养分资源受限,细菌和真菌群落的共线性关系变得更复杂[6-7]。但土壤微生物对O3浓度升高的响应因植物种类和熏蒸方式而异,仍有待深入研究。
亚乙基二脲(Ethylenediurea,EDU)是目前已知的抵御O3胁迫最有效的植物保护剂之一[8],可以增加光合色素、提高光合能力并改变抗氧化物质的浓度和抗氧化酶的活性[9]。然而,尽管EDU已在研究中应用了40多年,其保护机制仍不清楚[10]。EDU的主要潜在作用模式包括:1)直接降解叶片表面的O3;2)通过降低气孔导度来降低O3吸收通量;3)通过增加酶促和非酶促抗氧化剂来去除活性氧(ROS);4)作为外源物质破坏激素稳态;5)在缺氮土壤中起氮肥作用,促进作物生长[11]。此外,目前针对EDU施用对农田生态系统影响的相关评估工作鲜有报道,限制了其在农业生产中的广泛应用。已有报道表明环境O3浓度条件下EDU能显著增加水稻根系生物量,降低水稻根系土壤pH及全氮和硝态氮的含量,且降低与硝化作用相关功能基因的丰度[12-13]。因此EDU可能通过影响根系生物量来改变根际微环境,进而影响根际微生物群落。
土壤微生物种类丰富,在营养元素循环、土壤肥力和作物生产力中发挥着重要作用[14]。植物根系优先刺激或抑制根际特定的微生物类群,从而形成了与非根际土有显著差异的、活性更高、物质能量周转更快速的微生物群落[15]。根际微生物构建了植物第二道免疫屏障,在增强营养吸收、改善根系结构以及保护宿主免受各种生物非生物胁迫中发挥关键作用[15]。由此推测小麦根际微生物对O3浓度升高、EDU喷施及其交互作用可能均有响应。假设:1)O3浓度升高会改变小麦根际土细菌群落多样性与结构;2)EDU叶面喷施亦会改变根际细菌群落多样性与结构;3)O3浓度升高和EDU叶面喷施对根际细菌群落多样性与结构的影响可能存在交互作用。本研究以O3敏感型小麦(农麦88)为研究对象,利用完全开放式O3熏蒸系统(O3-FACE),结合细菌群落高通量测序技术及冗余分析(RDA)模型解析O3浓度升高、EDU叶面喷施及其交互作用对小麦根系细菌群落的影响;以期进一步丰富农田生态系统对O3浓度升高的响应规律以及EDU缓解农作O3胁迫的作用机制。
1 材料与方法 1.1 研究区概况试验在位于江苏省扬州市江都区三五斗农村合作社的南京信息工程大学扬州绿色农业研究与示范基地(32°44′N,119°25′E)开展,该地属于亚热带季风气候,长期实行稻麦轮作。2020年该地区年均气温16.6 ℃、年降水总量1 337.8 mm、年日照时数1 455.4 h。土壤类型为砂姜黑土。
1.2 试验设计于2020年11月至2021年5月进行,供试小麦为“农麦88”。2020年11月播种,2021年3月1日开始利用完全开放式O3熏蒸系统(O3-FACE)进行环境O3浓度(浓度约为40.9 μg·m–3·h–1,A处理)和1.5倍环境O3浓度(浓度约为59.9 ± 2.5 μg·m–3·h–1,E处理)两个O3浓度的熏蒸,每个O3浓度设置3个FACE圈重复。每天熏蒸10 h(8:00—18:00)(阴雨天除外),实际熏蒸49 d,O3浓度控制偏差率基本在15%以内[16]。熏蒸10 d后开始对小麦进行叶面喷施450 mg·L–1的EDU(以浇等量的水作为对照处理)[17],以小麦叶片能挂住溶液为标准进行喷施。每隔10 d叶面喷施EDU溶液一次,如果喷施后的第二天遇上雨天需要进行补喷,试验期间共喷施EDU6次。各圈播种时间、种植密度与日常管理均与周围大田相同。其中,肥料按氮肥(尿素)220 kg·hm–2、磷肥(P2O5)和钾肥(K2O)(复合肥)75 kg·hm–2的标准施用。
1.3 样品收集于2021年5月13日(即小麦灌浆期)收集根以及根际土壤样品。用95%工业酒精将铲子擦净,再将一穴小麦连根带土一起挖出。参照Chen等[18]的方法,将附着在根表 2 mm以内的土壤样品定义为根际土壤。轻轻抖落根表附着土壤,再用细刷刷去根表附着的土,即为根际土。将根际土分成两份,一份风干后过40目筛,一份放–80 ℃冻存,以便后续进行理化性质分析和DNA提取。
1.4 土壤理化性质分析称取1 g风干土,按1﹕5的比例加入煮沸后的去离子水(去除CO2),摇床150 r·min–1震荡30 min后用pH计(PHS-3CT,中国上海)测定土壤悬液的pH。采用重铬酸钾外加热法测定土壤有机碳含量。用元素分析仪(Vario Max,Elementar,德国)测定土壤全氮(TN)含量。用1 mol·L–1乙酸铵提取土壤有效态钾(AK)后用火焰分光光度计(FP640,INASA,中国)测定其含量。用0.5 mol·L–1 NaHCO3提取土壤中有效磷(AP),并采用钼锑抗分光光度法测定其含量。
1.5 土壤DNA提取与高通数据处理称取0.5g土样,按Fast DNA Spin试剂盒(MP Biomedicals LLC,美国)说明书提取根际土微生物基因组总DNA。利用0904-16SV4-F /0904-16SV4-R引物[19]扩增细菌16S rRNA基因V4区,每个引物上均连接了12 bp的独特的barcode以区分不同样品。扩增参照Wang等[20]的方法进行PCR扩增,PCR产物纯化后等摩尔量混合后,利用Illumina MiSeq测序仪进行高通量测序。原始数据已于NCBI数据库获得登录号(PRJNA985102)。
利用i-Sanger云数据分析平台(http://www.isanger.com)对高通量测序获得的数据进行分析[20]。原始数据质控后,利用UCLST将高质量序列聚类成OTU(相似性不低于97%)。利用RDP数据对每个OTU进行鉴定,置信阈值为0.80。为避免不同测序深度对结果分析产生干扰,从每份样本中随机抽取110 000条序列进行后续alpha和beta多样性分析。
1.6 统计分析以Chao1指数、香农指数(Shannon)和辛普森指数(Simpson)来表征细菌群落的alpha多样性。基于Bray-Curtis距离计算方法,采用非度量多维尺度(NMDS)和主坐标分析(PCoA)对不同处理样品细菌群落结构进行聚类分析,然后利用排列多变量方差分析(PERMANOVA)进行显著性检验[21]。利用R语言包进行冗余分析(RDA)来解析土壤样品理化性质对小麦根际细菌群落的影响。利用Shapiro-Wilk和Levene检验以检查数据的正态分布和方差齐性后,用JMP 10.0软件中双因素方差分析(ANOVA)来解析O3、EDU及其相互作用对根的生物量、根际土理化性质以及根际细菌群落alpha多样性及优势种群相对丰度的影响。利用Tukey-Kramer HSD来检验不同处理间是否有显著性差异。
2 结果 2.1 O3浓度升高和EDU喷施对根系生物量的影响如图 1所示,A处理条件下EDU喷施显著提高了小麦根系干重,与对照相比增加了37%。而E处理条件下EDU喷施则对根系干重没有显著差异。O3浓度升高与EDU喷施对根系干重没有明显的交互作用。
![]() |
注:A处理,环境O3浓度;E处理,1.5倍环境O3浓度;EDU,叶面喷施450 mg·L–1 EDU溶液处理;水,叶面喷施等量自来水的对照处理。图中误差线为标准差;不同小写字母表示处理间差异显著。下同。 Note: A, ambient atmospheric O3; E, 1.5 times ambient atmospheric O3; EDU, sprayed foliage with 450 mg·L–1 EDU; Water, sprayed foliage with 0 mg·L–1 EDU. Error bars denote standard deviation; Different letters represent significant differences according to Tukey's Honestly Significant Difference (HSD) post-hoc test following significant interaction effects (P < 0.05). The same below. 图 1 O3浓度升高和EDU喷施对小麦根系干重的影响 Fig. 1 The effects of elevated ozone concentration, EDU foliar spray, and their interaction on root dry weight of wheat plant |
如表 1所示,O3浓度升高和EDU喷施对土壤有机碳和TN的含量均没有显著的影响。不同O3浓度条件下喷施EDU土壤AK均呈现出下降趋势,但未达到显著水平。A处理条件下,喷施EDU显著降低了根际土的pH。O3浓度升高和EDU喷施的交互作用对土壤AP含量产生了显著影响,E处理下EDU喷施显著提高了根际土壤AP含量。
![]() |
表 1 O3浓度升高、EDU喷施及其交互作用对小麦根际土壤理化性质的影响 Table 1 The effects of elevated ozone concentration, EDU foliar spray, and their interaction on the physi-chemical properties of wheat rhizosphere soil |
表 2可以看出,不同处理细菌群落结构的Chao1、Shannon和Simpson指数没有显著差异,即O3浓度升高与EDU叶面喷施均没有对小麦根际细菌群落alpha多样性产生显著影响。
![]() |
表 2 O3浓度升高、EDU喷施及其交互作用对小麦根际微生物alpha多样性指数的影响 Table 2 Effect of elevated ozone concentration, EDU foliar spray, and their interaction on microbial alpha diversity index of wheat rhizosphere soil |
如图 2所示,所有处理中,O3显著改变小麦根际细菌群落(F = 7.56,P = 0.016);而较之于环境O3浓度,1.5倍环境O3浓度条件下喷施EDU对小麦根际细菌群落的整体结构影响更显著(F = 10.24,P = 0.009)。
![]() |
图 2 不同处理条件下细菌群落的非度量多维尺度分析(NMDS)(a)和主坐标分析(PCoA)(b) Fig. 2 Nonmetric multidimensional scaling (NMDS) analysis (a) and principal coordinates analysis (PCoA) plot (b) depict the Bray–Curtis distance of bacterial communities in different treatments |
在门的水平上O3浓度升高提高了所有处理中硝化螺旋菌门(Nitrospirota)的相对丰度(但没有达到显著水平),并显著降低了α-变形菌纲(Alphaproteobacteria)的相对丰度。此外在EDU喷施条件下O3浓度升高使尤微菌门(Verrucomicrobiota)的相对丰度下降了44.5%(P < 0.05)。
EDU对拟杆菌门(Bacteroidota)、绿湾菌门(Chloroflexi)、Alphaproteobacteria、浮霉菌门(Planctomycetota)和疣微菌门(Verrucomicrobiota)的相对丰度均产生了显著的影响。两种O3浓度条件EDU喷施使Bacteroidota和Alphaproteobacteria的相对丰度下分别下降了18%~20%和15%~22%;Bacteroidota相对丰度在E处理下下达到了显著水平,而Alphaproteobacteria相对丰度在A处理下达到了显著水平。不同O3浓度条件下EDU使Chloroflexi和Planctomycetota的相对丰度分别提高了16%~70%和23%~70%,且均在环境O3条件下达到显著水平。此外环境O3条件下EDU显著提高了Verrucomicrobiota的相对丰度。对于芽单胞菌门(Gemmatimonadota)和Verrucomicrobiota的相对丰度而言,O3浓度升高和EDU喷施具有显著的交互作用(图 3)。
![]() |
注:误差线代表标准差;不同小写字母表示处理间差异显著。 Note: Error bars denote standard deviation; Different letters represent significant differences according to Tukey's Honestly Significant Difference (HSD) post-hoc test following significant interaction effects (P < 0.05). 图 3 O3浓度升高、EDU喷施及其交互作用对小麦根际优势细菌菌门(亚门)相对丰度的影响 Fig. 3 The effects of elevated ozone, EDU foliar spray, and their interaction on the relative abundances of dominant phyla (subphyla) |
如图 4所示,本研究测定的土壤理化性质共解释了60.7%的细菌群落结构变异,其中速效钾和pH是主要驱动因子,分别解释了20.6%和16%的群落结构变异(P < 0.05)。相关性分析结果表明,pH与放线菌门(Actinobacteria)和Alphaproteobacteria的相对丰度呈显著负相关;有效磷含量与Gemmatimonadota相对丰度呈显著正相关;速效钾含量与Actinobacteria和Alphaproteobacteria相对丰度呈显著正相关,而与Chloroflexi和Nitrospirota相对丰度呈显著负相关(表 3)。
![]() |
图 4 利用冗余分析解析土壤理化性质对群落结构的影响 Fig. 4 The effects of soil physi-chemical properties on the structure of rhizosphere bacterial community based on redundancy analysis (RDA) |
![]() |
表 3 土壤理化性质和优势菌门(亚门)相对丰度之间的相关性 Table 3 The Spearman's correlations (r) between soil physi-chemical properties and the relative abundances of dominant phyla (subphyla) |
本研究发现环境O3浓度条件下喷施EDU显著降低了根际土壤pH,与之前的研究结果一致[13]。这可能是因为EDU喷施显著提高了小麦根系生物量(图 1),根系则向根际土壤分泌更多有机酸等分泌物,从而降低了根际土壤pH。1.5倍环境O3条件下,EDU虽然也提高了根系生物量但未达到显著水平,对应的pH有所下降但也未达到显著水平(表 1)。
生物多样性是衡量生态系统功能稳定性的重要指标,生物多样性越丰富生态系统功能越稳定[22]。通常O3浓度升高导致植物根系结构和功能发生变化,从而间接导致土壤微生物群落生物多样性的下降[20,23-24]。但在部分研究中O3浓度升高反而显著增加了土壤微生物群落的多样性[25]。而本研究中O3浓度增加及EDU喷施对于根际土壤微生物群落多样性均没有显著影响,研究结论的不一致可能与作物品种、O3熏蒸浓度及熏蒸方式相关;同时也暗示需要更多的研究来全面理解O3对土壤微生物群落的影响机制。
与之前的研究类似[26],O3浓度显著降低了土壤Alphaproteobacteria亚门的相对丰度(图 3)。Alphaproteobacteria属于富营养菌群,生长速度慢且对C的利用率低[27];因此施肥处理的土壤中Alphaproteobacteria通常会占据优势生态位,而O3浓度升高在降低植物光合速率的同时也减少了土壤无机氮和溶解有机碳的可利用性[28],因此也限制了Alphaproteobacteria菌群的生长代谢。此外本研究发现,在不同O3浓度条件下EDU喷施也均降低了Alphaproteobacteria菌群的相对丰度。虽然之前的研究发现在土壤缺氮的条件下喷施350 mg·L–1 EDU溶液能起到氮肥的作用[29],但与农业生产中常用速效氮肥不同,EDU不能提供能植物直接吸收的利用的硝态氮和铵态氮,因此EDU喷施和施速效氮肥并没有提高Alphaproteobacteria菌群的相对丰度。与之相对应的是,EDU提高了根际土壤中部分贫营养型细菌的相对丰度(包括Chloroflexi、Planctomycetota和Verrucomicrobiota菌门)。由此推断,EDU可能通过降低富营养细菌相对丰度的同时提高贫营养型细菌相对丰度来增强O3胁迫条件下小麦根际微生物群落对养分匮乏的适应性。
O3浓度升高和EDU喷施处理条件下RDA分析结果表明土壤AK是农麦88根际细菌群落结构的主要驱动因素(图 4),解释了20.6%的群落结构变异;且AK含量与Alphaproteobacteria菌群的相对丰度呈显著正相关(表 3)。O3浓度升高和EDU喷施均使根际土壤有效态钾含量下降,但未达到显著水平(表 2)。Wang等[13]发现环境O3浓度条件下叶面喷施450 mg·L–1 EDU显著降低了根际土有效态钾的含量,主要原因可能是EDU喷施显著提高了水稻根系生物量,使水稻从根际土壤中吸收了更多的钾。本研究也发现,在不同O3浓度下EDU喷施均提高了农麦88根系生物量,但仅在环境O3浓度下达到显著水平(图 1)。由此推断,EDU喷施可能是通过调控水稻根系结构功能(包括根系的生物量、根系分泌组分以及根系的活力)来间接实现其对小麦根系微生物群落的调控。
之前的研究中我们发现1.5倍环境O3浓度条件下,叶面喷施EDU显著提高了农麦88叶表Bacteroidota的相对丰度[16]。可能原因为Bacteroidota菌门菌株均具有鞭毛或菌毛能通过滑行运动达到叶片表面具有更多水分和养分的有利位置[30];且Bacteroidetes在进化过程中还保留的高效节能的ACIIIcaa3COX呼吸超复合体也赋予了它们竞争高分子量碳水化合物能力[30];同时Bacteroidetes可以利用柔红素家族色素作为紫外线保护剂[31],因此其对于叶表这一贫瘠生境较其他菌群具有更强的适应性。而根际土壤生境与叶际相比营养更丰度,也更为稳定;本研究发现O3浓度升高对农麦88根际土壤Bacteroidetes的相对丰度没有显著影响,且EDU喷施后反而降低了Bacteroidetes的相对丰度。这也体现了植物不同部位的微生物群落对环境变化的不同响应规律。
本研究中对小麦进行叶面喷施450 mg·L–1的EDU,是以每株小麦的叶片能挂住溶液为标准进行喷施;这就意味着有部分EDU液体溶液是直接滴落到了土壤表面。因此O3浓度升高条件下EDU喷施对根际微生物群落的调控可能也包括EDU溶液直接改变了根际土壤微生境,从而导致微生物群落结构发生改变。因此在后续研究中可以利用盆栽试验通过设置灌根与EDU叶面喷施(同时用塑料膜遮挡土壤)的处理进一步明确其作用方式。
4 结论EDU喷施使农麦88根系生物量提高了5%~58%,且在环境O3浓度条件下达到了显著水平;O3浓度升高、EDU叶面喷施及其交互作用对农麦88根际土壤细菌群落alpha多样性均无显著影响;O3浓度升高改变了根际土壤细菌整体群落结构,1.5倍环境O3浓度条件下EDU对细菌群落结构的影响较环境O3浓度条件下更显著;1.5倍环境O3浓度和EDU叶面喷施处理均显著降低了Alphaproteobacteria的相对丰度但提高了Chloroflexi的相对丰度;降低富营养菌群相对丰度的同时提高贫营养菌群相对丰度可能是小麦适应O3浓度升高以及EDU缓解小麦O3胁迫的微生物学调控机制。本研究为通过调控特定植物相关微生物菌群来增强农田生态系统应对环境变化的恢复力及农作物生产力提供了理论和试验依据。
[1] |
Yeung L Y, Murray L T, Martinerie P, et al. Isotopic constraint on the twentieth-century increase in tropospheric ozone[J]. Nature, 2019, 570: 224-227. DOI:10.1038/s41586-019-1277-1
( ![]() |
[2] |
Mills G, Pleijel H, Malley C S, et al. Tropospheric ozone assessment report: present-day tropospheric ozone distribution and trends relevant to vegetation[J]. Elementa-Science of the Anthropocene, 2018, 6: 47. DOI:10.1525/elementa.302
( ![]() |
[3] |
Feng Z Z, Xu Y S, Kobayashi K, et al. Ozone pollution threatens the production of major staple crops in East Asia[J]. Nature Food, 2022, 3: 47-56. DOI:10.1038/s43016-021-00422-6
( ![]() |
[4] |
Feng Y Z, Lin X G, Yu Y C, et al. Elevated ground-level O3 changes the diversity of anoxygenic purple phototrophic bacteria in paddy field[J]. Microbial Ecology, 2011, 62: 789-799. DOI:10.1007/s00248-011-9895-7
( ![]() |
[5] |
Wang J Q, Tan Y Y, Shao Y J, et al. Changes in the abundance and community complexity of soil nematodes in two rice cultivars under elevated ozone[J]. Frontiers in Microbiology, 2022, 13: 916875. DOI:10.3389/fmicb.2022.916875
( ![]() |
[6] |
Zhang J W, Tang H Y, Zhu J G, et al. Effects of elevated ground-level ozone on paddy soil bacterial community and assembly mechanisms across four years[J]. Science of the Total Environment, 2019, 654: 505-513. DOI:10.1016/j.scitotenv.2018.11.130
( ![]() |
[7] |
Wang J Q, Shi X Z, Tan Y Y, et al. Elevated O3 exerts stronger effects than elevated CO2 on the functional guilds of fungi, but collectively increase the structural complexity of fungi in a paddy soil[J]. Microbial Ecology, 2023, 86(2): 1096-1106. DOI:10.1007/s00248-022-02124-3
( ![]() |
[8] |
Agathokleous E, Koike T, Watanabe M, et al. Ethylene-di-urea (EDU), an effective phytoproctectant against O3 deleterious effects and a valuable research tool[J]. Journal of Agricultural Meteorology, 2015, 71(3): 185-195. DOI:10.2480/agrmet.D-14-00017
( ![]() |
[9] |
Pandey A K, Majumder B, Keski-Saari S, et al. Searching for common responsive parameters for ozone tolerance in 18 rice cultivars in India: Results from ethylenediurea studies[J]. Science of the Total Environment, 2015, 532: 230-238. DOI:10.1016/j.scitotenv.2015.05.040
( ![]() |
[10] |
Agathokleous E. Perspectives for elucidating the ethylenediurea (EDU) mode of action for protection against O3 phytotoxicity[J]. Ecotoxicology and Environmental Safety, 2017, 142: 530-537. DOI:10.1016/j.ecoenv.2017.04.057
( ![]() |
[11] |
Gupta S K, Sharma M, Maurya V K, et al. Effects of ethylenediurea (EDU) on apoplast and chloroplast proteome in two wheat varieties under high ambient ozone: An approach to investigate EDU's mode of action[J]. Protoplasma, 2021, 258(5): 1009-1028. DOI:10.1007/s00709-021-01617-1
( ![]() |
[12] |
Shang B, Fu R, Agathokleous E, et al. Ethylenediurea offers moderate protection against ozone-induced rice yield loss under high ozone pollution[J]. Science of the Total Environment, 2022, 806: 151341. DOI:10.1016/j.scitotenv.2021.151341
( ![]() |
[13] |
Wang Q, Wang D, Agathokleous E, et al. Soil microbial community involved in nitrogen cycling in rice fields treated with antiozonant under ambient ozone[J]. Applied and Environmental Microbiology, 2023, 89(4): e0018023. DOI:10.1128/aem.00180-23
( ![]() |
[14] |
Berg G. Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture[J]. Applied Microbiology and Biotechnology, 2009, 84: 11-18. DOI:10.1007/s00253-009-2092-7
( ![]() |
[15] |
Sokol N W, Slessarev E, Marschmann G L, et al. Life and death in the soil microbiome: how ecological processes influence biogeochemistry[J]. Nature Reviews Microbiology, 2022, 20: 415-430. DOI:10.1038/s41579-022-00695-z
( ![]() |
[16] |
Su Y, Cheng C, Wang Q, et al. Effects of ozone pollution and EDU spraying on the phyllospheric bacterial community of wheat plants (In Chinese)[J]. Journal of Agro-Environment Science, 2023, 42(5): 984-993. [苏熠, 程诚, 王琪, 等. 臭氧污染和EDU喷施对小麦叶际细菌群落的影响[J]. 农业环境科学学报, 2023, 42(5): 984-993.]
( ![]() |
[17] |
Feng Z Z, Jiang L J, Calatayud V, et al. Intraspecific variation in sensitivity of winter wheat (Triticum aestivum L.) to ambient ozone in northern China as assessed by ethylenediurea (EDU)[J]. Environmental Science and Pollution Research, 2018, 25: 29208-29218. DOI:10.1007/s11356-018-2782-8
( ![]() |
[18] |
Chen S, Waghmode T R, Sun R B, et al. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization[J]. Microbiome, 2019, 7: 136. DOI:10.1186/s40168-019-0750-2
( ![]() |
[19] |
Walters W, Hyde E R, Berg-Lyons D, et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys[J]. mSystems, 2015, 1(1): e00009-15.
( ![]() |
[20] |
Wang Q, Li Z Z, Li X W, et al. Interactive effects of ozone exposure and nitrogen addition on the rhizosphere bacterial community of poplar saplings[J]. Science of the Total Environment, 2021, 754: 142134. DOI:10.1016/j.scitotenv.2020.142134
( ![]() |
[21] |
Yu Y J, Zhang J W, Petropoulos E, et al. Divergent responses of the diazotrophic microbiome to elevated CO2 in two rice cultivars[J]. Frontiers in Microbiology, 2018, 9: 1139. DOI:10.3389/fmicb.2018.01139
( ![]() |
[22] |
Loreau M, de Mazancourt C. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms[J]. Ecology Letters, 2013, 16: 106-115. DOI:10.1111/ele.12073
( ![]() |
[23] |
Chen Z, Wang X K, Yao F F, et al. Elevated ozone changed soil microbial community in a rice paddy[J]. Soil Science Society of America Journal, 2010, 74: 829-837. DOI:10.2136/sssaj2009.0258
( ![]() |
[24] |
Wang X N, Qu L Y, Mao Q Z, et al. Ectomycorrhizal colonization and growth of the hybrid larch F1 under elevated CO2 and O3[J]. Environmental Pollution, 2015, 197: 116-126. DOI:10.1016/j.envpol.2014.11.031
( ![]() |
[25] |
Li Q, Yang Y, Bao X L, et al. Legacy effects of elevated ozone on soil biota and plant growth[J]. Soil Biology & Biochemistry, 2015, 91: 50-57.
( ![]() |
[26] |
Chen Z, Maltz M R, Cao J X, et al. Elevated O3 alters soil bacterial and fungal communities and the dynamics of carbon and nitrogen[J]. Science of the Total Environment, 2019, 677: 272-280. DOI:10.1016/j.scitotenv.2019.04.310
( ![]() |
[27] |
Dai Z M, Su W Q, Chen H H, et al. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe[J]. Global Change Biology, 2018, 24: 3452-3461. DOI:10.1111/gcb.14163
( ![]() |
[28] |
Xia L L, Lam S K, Kiese R, et al. Elevated CO2 negates O3 impacts on terrestrial carbon and nitrogen cycles[J]. One Earth, 2021, 4: 1752-1763. DOI:10.1016/j.oneear.2021.11.009
( ![]() |
[29] |
Agathokleous E, Paoletti E, Saitanis CJ, et al. High doses of ethylenediurea (EDU) are not toxic to willow and act as nitrogen fertilizer[J]. Science of the Total Environment, 2016, 566/567: 841-850. DOI:10.1016/j.scitotenv.2016.05.122
( ![]() |
[30] |
Munoz R, Teeling H, Amann R, et al. Ancestry and adaptive radiation of Bacteroidetes as assessed by comparative genomics[J]. Systematic and Applied Microbiology, 2020, 43(2): 126065. DOI:10.1016/j.syapm.2020.126065
( ![]() |
[31] |
Aruldass C A, Dufossé L, Ahmad W A. Current perspective of yellowish-orange pigments from microorganisms—A review[J]. Journal of Cleaner Production, 2018, 180: 168-182. DOI:10.1016/j.jclepro.2018.01.093
( ![]() |