近年来随着温室效应的加剧和全球气候变化研究的深入,碳中和成为世界各国一起关注的新焦点。我国早在75届联合国大会上便明确提出碳达峰与碳中和战略目标以应对全球变暖[1]。农田土壤既是主要碳源,亦是重要碳汇,充分了解土壤固碳潜力并增加对碳的固持是提高土壤质量、减缓全球变暖和早日实现碳中和的有效途径[2-3]。然而,农田土壤易受人类活动的影响。频繁耕作、过度施肥和过度种植等措施在提高作物产量的同时,也加剧了土壤退化,造成全球耕地25%~75%土壤有机碳损失[4]。
大多数研究认为持续的外源有机物质输入(施用有机肥和秸秆还田等)可以显著提高土壤有机碳含量[5-6]。陈义等[7]通过在浙江省开展的26年长期定位试验发现,施猪厩肥能够促进稻田土壤有机碳持续增加,每公顷增施1 t猪厩肥土壤有机质相应增加22 kg。一项关于长期秸秆还田对我国华北旱地农田有机碳储量变化的整合分析发现,有机碳储量较试验初始时显著增加16%~55%;且土壤固碳速率与秸秆输入量之间呈显著的正相关性[8]。然而,越来越多的研究表明,土壤有机碳库容量存在上限[9]。在碳稳定输入且碳周转达到平衡时,随着时间的推移土壤中将不再固持更多的碳[10]。Angers等[11]发现长达20年施用猪粪后,土壤表层有机碳含量并不会持续增加。此外,Kapkiyai等[12]在肯尼亚开展18年玉米-大豆轮作系统长期定位试验中甚至发现,长期施肥和秸秆还田均导致土壤有机碳的下降,最大损失达557 kg·hm–2·a–1(以C计)。因此,长期种植下土壤有机碳的变化并非一致,它的主要取决于碳的输入状况(输入的数量和质量)和输出状况(有机碳的矿化分解速率)[13]。气候条件、土壤性质以及各类农业管理活动也会对土壤有机碳的积累产生影响 [14]。在一项关于农田管理措施对土壤固碳潜力以及影响因素的全球尺度整合分析中表明,少耕和增施有机肥下土壤固碳能力均表现为热带 > 亚热带 > 温带地区[15]。而Maillard和Augers[16]通过全球尺度的整合分析发现,与亚热带地区相比,施有机肥对温带地区土壤有机碳的增加更为明显。Li等[17]的研究表明,长期种植豆科作物下,受养分限制严重(SOM < 15 g·kg–1、pH < 6.6)土壤中有机碳及其组分含量增加的更多。Mi等[18]基于15年不同水分管理和秸秆还田措施长期定位试验,发现与干湿交替相比,持续淹水可使稻田土壤有机碳含量提高17.4%,而且相对于秸秆还田,水分管理对总有机碳的影响更大。
目前关于我国农田土壤有机碳长期变化的研究报道较多,但大都基于一个或几个长期定位试验结果进行分析。而且,由于不同试验区域所处地理环境、土壤性质和气候条件的差异导致结论各不相同。此外,农田开垦短期内土壤理化性质迅速变化,进而影响土壤有机碳的稳定积累。例如,唐光木等[19]通过对新疆地区典型绿洲长期耕作农田土壤为研究对象,发现耕作5年间,有机碳含量增加迅速。而宋长春等[20]对开垦后的沼泽湿地研究后发现,5年的开垦导致土壤有机碳显著下降。因此本研究借助Meta分析方法,整合我国各地区长期定位试验(种植时间大于5年)与试验开始之初相比的土壤有机碳含量演变结果。评估不同气候条件、土壤初始理化性质和长期农艺管理措施对农田土壤有机碳的影响程度,研究结果将为农业可持续发展和早日实现农业碳中和提供科学依据。
1 材料与方法 1.1 数据来源通过中国知网、谷歌学术(Google Scholar)和Web of Science检索1990年至2022年国内外已发表的有关长期作物种植土壤有机碳变化的相关文献。检索关键词为中国农田、长期种植、土壤有机碳(有机质)、碳库、种植制度、轮作、农田管理等,相应英文检索词为China's croplands、Long-term farming,Soil organic carbon(SOC)/Soil organic matter(SOM)。初步检索出800余篇中英文文献。为增加数据的有效性,本研究采用以下标准进行筛选:(1)研究区为我国农田土壤且试验年限不少于5年;(2)农田管理措施明确(施肥、耕作和利用方式以及是否地膜覆盖);(3)除包括长期种植后土壤有机碳的含量外,试验开始之初的土壤有机碳含量(作为对照)也必须明确,土壤有机碳的测定为常规的重铬酸钾外加热法和元素分析仪燃烧法。经筛选最终获得152篇可用文献,其中126篇中文文献,26篇英文文献。其中包括75个试验点分布于我国除上海、宁夏、西藏、广东、广西、海南、台湾、香港和澳门的25个省。提取试验地名、经纬度、海拔、年均温、年均降水、种植年限、种植制度、施肥处理、轮作方式、采样深度、重复次数以及初始有机碳和其他养分数据。若只有土壤有机质数据时,利用系数0.58进行转换。文献中图表的数据采用GetData软件进行提取,最终得到964组有效数据。对已有数据按照气候条件、土壤类型、农艺措施以及轮作制度等进行分组处理,检验长期种植作物下某特定因素对农田土壤有机碳含量的影响。其中气候带的划分参考中国气候区划图[21];海拔、年平均气温、年均降水量的划分标准参考文献[17];初始酸碱度、土壤有机碳以及其他土壤养分划分参考文献[17]和全国第二次土壤普查养分分级标准。此外,农田种植方式分为水田(一季稻、双季稻)、水旱轮作(稻麦轮作、稻油轮作、稻玉轮作等)和旱作(单季玉米、单季小麦、麦玉轮作、麦豆轮作等)。
1.2 数据分析所获得的数据使用Metawin2.1进行计算不同处理下有机碳含量的变化率,采用随机效应模型评估长期耕作对有机碳的影响。选择效应比(R)的自然对数(lnR)作为效应值[22],通过式(1)计算每对数据的效应值:
lnR=ln(XtXc)=lnXt−lnXc | (1) |
式中,Xt,长期种植后土壤有机碳的含量,单位g kg–1;Xc,试验初始有机碳含量。通过式(2)计算每个lnR的效应权重:
w=(nt+nt)/(nt×nt) | (2) |
式中,w,效应权重;nt,各处理的试验重复次数。利用bootstrap重复抽样法重复取样4 999次计算95%置信区间。若置信区间包含0,则表示无显著影响;若置信区间不包含0,则表示影响显著;若置信区间全部大于0,则表示长期种植作物显著增加土壤有机碳含量;若置信区间全部小于0,则说明土壤有机碳显著降低[23]。为了更好地解释结果,通过式(3)计算出土壤有机碳含量百分比变化:
Change in SOC (%)=(elnR−1)×100% | (3) |
式中,Change in SOC,长期种植后有机碳含量相对于试验初始时有机碳的变化。
2 结果 2.1 气候条件和地理环境影响下长期种植作物土壤有机碳含量的变化长期种植作物下,全国耕层土壤(0~20 cm)有机碳含量较初始状态提高了17.85%。常规的气候和地理条件下,长期种植作物均会显著提高农田耕层(0~20 cm)土壤有机碳的含量,但不同环境因素对有机碳固存效果存在差异。按温度带划分时,农田土壤有机碳增幅表现为暖温带 > 亚热带 > 中温带。暖温带地区有机碳增幅为33.62%,中温带和亚热带有机碳增幅为18.28%和15.27%。按海拔划分时,海拔在200~600 m时的农田土壤有机碳的增幅最大为28.90%,海拔 < 200 m次之,海拔 > 600 m最小。不同的年均温度和年均降水量对农田土壤有机碳的影响程度亦是不同。当温度大于15℃时,土壤有机碳提升幅度最小为17.07%,温度在8~15℃时增幅最大,其变化率为35.11%。降水量对有机碳影响表现出与温度相似的趋势。降水在600~1 000 mm时有机碳的增幅最大,变化率为37.86%。之后随着温度和降水量的继续增加,土壤有机碳的增幅开始下降。随土层加深,长期种植作物对耕层土壤有机碳积累的促进作用逐渐减弱。0~5 cm土层有机碳增幅最大,为28.48%;5~10 cm和10~20 cm土层有机碳含量增幅逐渐降为13.84%和8.08%(图 1)。
![]() |
图 1 不同气候和地理条件下长期种植作物土壤有机碳含量变化率 Fig. 1 Changes in SOC contents under different climatic and geographical conditions |
长期种植作物下,酸性土壤(pH < 6.6)中有机碳增幅要略低于中性土壤(pH6.6~7.7)和碱性土壤(pH > 7.7),土壤有机碳含量分别显著增加17.31%、23.38%和21.54%。初始SOC在0~10 g·kg–1时,长期种植作物对土壤有机碳的增加效应最为显著,达35.65%;初始SOC超过20 g·kg–1时,有机碳增幅最小为7.00%。初始全氮含量对耕层土壤有机碳积累的影响亦是不同,随着初始全氮含量增加有机碳增幅逐渐下降。全氮小于0.9 g·kg–1时有机碳增量最高为44.72%,较全氮介于0.9~1.5 g·kg–1时、全氮大于1.5 g·kg–1时增加了20.89%和30.18%。
在速效养分中,不同的土壤初始碱解氮含量对有机碳的影响程度相似,初始碱解氮含量为0~50 mg·kg–1、50~100 mg·kg–1和 > 100 mg·kg–1时的增幅分别为13.8%、16.28%和15.36%(图 2)。土壤初始速效磷与速效钾对有机碳的影响相似,随着初始速效磷和速效钾含量的增加,有机碳增幅表现出下降趋势。初始速效磷含量为0~10 mg·kg–1时,有机碳增幅最大,为24.98%;初始速效磷为10~20 mg·kg–1时,增幅下降至18.63%,较0~10 mg·kg–1时下降了6.35%;当初始速效磷 > 20 mg·kg–1时,长期种植作物下土壤有机碳未发生显著变化。初始速效钾在0~75 mg·kg–1时有机碳增幅最大,为18.52%;速效钾为75~150 mg·kg–1时有机碳增幅居中,为11.2%;初始速效钾含量 > 150 g·kg–1时有机碳增加不显著。
![]() |
图 2 不同初始土壤理化性质下长期种植作物土壤有机碳含量变化率 Fig. 2 Changes in SOC contents under different initial properties of soil |
从秸秆还田、覆膜、施肥、耕作和土地利用情况进行分析,发现长期种植下这些措施均能显著提高土壤有机碳含量,但提升程度存在差异(图 3)。秸秆还田量决定了土壤有机碳的增加幅度,秸秆还田对土壤有机碳的增加具体表现为全量还田 > 部分还田 > 不还田,增加幅度在20.03%~33.62%之间。与地膜覆盖相比无地膜覆盖下有机碳的积累更多。长期地膜覆盖有机碳增加13.46%,而长期无地膜覆盖有机碳的增幅达20.38%。长期施用化肥和有机肥均能不同程度地提高有机碳含量。长期施有机肥土壤的固碳效果最佳,可达32.76%,较施化肥处理(7.59%)提高了25.17%。长期不同耕作措施对有机碳的提升效果表现为少耕 > 免耕 > 常规耕作,有机碳含量分别增加27.32%、24.98%和17.14%。不同利用方式均能显著提高有机碳含量,具体表现为水旱轮作 > 水田 > 旱田,有机碳分别提高24.57%、21.76%和18.83%。
![]() |
图 3 不同农艺措施条件下长期种植作物土壤有机碳含量变化率 Fig. 3 Changes in SOC contents under different agronomic measures |
气候条件(如温度和降水)不仅影响着农业生产管理模式的合理制定,还影响着各种农业管理下有机碳的固持与周转[15,24-25]。温度、降水等因素制约着作物生物量输入、土壤性质和微生物群落结构与活性,从而影响土壤中植物残体等的分解,最终影响土壤有机碳的积累[26]。按温度带划分时,农田土壤有机碳增幅表现为暖温带 > 亚热带 > 中温带(图 1)。这主要是因为在暖温带和亚热带地区,每年种植作物二到三季,年均碳投入量较中温带高[27]。而亚热带地区有机碳增幅小于暖温带,可能与土壤中碳的平均停留时间这一参数有关,碳在土壤中的平均停留时间表征土壤碳的周转过程[28]。有研究指出热带地区稻田土壤碳的平均停留时间较短(16~42年),而温带与亚热带地区碳停留时间较长(20~56 a)[25],结构方程模型的结果显示温度是主要的影响因子。这是因为增温不仅增加了微生物的活性,还可能提高土壤酶活性,从而加速土壤碳的矿化速度[29-30]。在本研究中,相对湿润和温暖的气候条件(MAT 8~15 ℃,MAP 200~600 mm)更有利于我国农田土壤有机碳的积累(图 1)。相对适宜的温度和降水有利于作物生长,从而促进植物碳向土壤的输入[27,31]。一方面较高的温度刺激生物化学风化过程、次生矿物和倍半氧化物的形成,因此形成的有机矿物质能够很好地保护有机碳不受微生物以及酶的作用而被分解转化[25,32]。另一方面较高的温度虽然会促进微生物活性和腐殖化过程,加快根系与凋落物衍生的碳补充到土壤中,但同时也提高了土壤碳的矿化速率,会抵消掉部分外源碳输入对有机碳增加的影响[33]。随着海拔的升高,长期种植作物下土壤有机碳的积累程度逐渐下降(图 1),这与王丽华等[34]在探讨不同气候类型下,草地土壤有机碳分布特征的研究结果一致。海拔对有机碳的影响,归结于气温和降水相互作用的结果。我国整体呈西高东低的海拔分布特征,且西部干旱少雨,东部湿润多雨。因此,西部地区土壤含水量较低,水分的限制会对植物以及土壤生物产生负面影响。相对干旱的气候条件增加了作物和微生物生长的养分和水分限制,加强了两者之间养分的竞争,最终导致碳输入减少[35]。长期种植作物下,全国耕层土壤(0~20 cm)有机碳含量较初始状态提高了17.85%,但随土层加深,长期种植作物对耕层土壤有机碳积累的促进作用逐渐减弱,主要与表层土壤中凋落物的归还量多、根系分布密集等因素相关[36]。
3.2 长期种植作物下初始土壤理化性质对有机碳积累的影响长期种植作物下初始pH为酸性(< 6.6)的土壤有机碳的累积程度略低于初始pH为中性和碱性的土壤(图 2)。但酸性土壤不利于植物和微生物的养分吸收和生长,尤其影响土壤中钙、镁、钾和磷素的有效性[37]。土壤酸化也会降低土壤质量并破坏农业生产力,导致作物凋落物与根系分泌物减少,最终减少有机碳的输入[38]。且pH影响着团聚体的形成,pH较高的土壤中,Fe3+等阳离子会接近零电荷点,从而降低铁氧化物间的静电排斥,促进土壤颗粒间的吸引,加强了更多有机物质保存到土壤团聚体中[39]。长期种植作物条件下,肥力较低的土壤对有机碳的增加更为明显(图 2)。一般而言,高有机质土壤更有利于植物和微生物的生长,进而有更多的有机碳输入[40]。然而,区域调查的研究结果表明,有机碳偏低的土壤较富含有机碳的土壤更容易固持有机碳[41]。而且在不同的农业管理(施有机肥、实施保护性耕作、秸秆还田等)下,有机质贫乏土壤中有机碳含量均会显著地增加[8]。且越来越多的研究发现有机碳的累积能力与初始有机碳储量呈负相关性,认为低有机碳土壤可能较富含有机碳土壤更不容易达到饱和状态,可以积累更多的碳[42-43]。Li等[17]在探讨土壤有机碳组分对豆科植物纳入种植制度的响应及其影响因素的研究中发现,在有机质含量低的土壤中,豆科间作诱导有机碳组分增加更显著,这可归因于有机质含量高的土壤中豆科作物种植的生态效益被弱化。
随着初始全氮含量增加,长期种植作物下土壤有机碳的增加程度也在逐渐下降(图 2)。氮的富集可能会降低植物和微生物的多样性,还会逐渐制约土壤固存有机碳的能力[44]。此外,随着土壤氮素的增加,由于硝化作用和植物对铵离子的吸收,导致更多的H+被释放到土壤中进而加速土壤酸化[45-46]。此外,随着速效磷和速效钾含量增加,有机碳增幅呈下降趋势(图 2)。初始土壤养分(速效磷、速效钾)含量影响有机碳输出与储存过程[47]。主要归因于以下两点:首先,养分含量丰富的土壤有利于作物生长,促使作物凋落物、根系等外源碳的输入,打破了土壤有机碳的矿化和积累平衡[48-49]。其次,微生物活性相对较高,为了满足微生物的生长繁殖需求,除了活性碳组分优先被微生物利用之外,土壤中惰性碳也开始被矿化,由此不利于有机碳的积累[49-51]。也有研究表明,土壤磷元素可以促进土壤碳的积累[52],同时王绍强和于贵瑞[53]基于生态化学计量比理论研究指出,微生物生长需要适宜比例的碳、氮、磷营养元素,若氮或磷元素供大于求将会引起碳限制,进而促进有机碳的矿化。
3.3 长期种植作物下不同农艺措施对土壤有机碳积累的影响长期的秸秆还田、覆膜、施肥和保护性耕作均对有机碳的积累有积极的促进作用,但不同方式间存在差异(图 3)。秸秆还田被广泛认为是减少化肥施用并提高有机碳的有效方法[54-55]。本研究发现与初始土壤有机碳相比,长期无秸秆还田下有机碳含量增加了5.18%,这可能主要来源于作物根茬和凋落物的输入。与无秸秆还田相比,长期部分和全量还田处理的土壤有机碳分别提高了14.85%和28.44%(图 3)。主要是因为秸秆添加为农田土壤提供了大量的外源碳,从而增加了土壤微生物的生物量与活性,进而增加土壤有机碳含量[56]。类似结果在Berhane等[8]的研究中也有报道,土壤固碳速率与秸秆碳输入量之间存在显著的正相关性,秸秆还田的巨大固碳潜力对于提高或维持农业生态系统的SOC储量具有重要作用。全球尺度下整合分析结果表明由于作物秸秆的投入,土壤有机碳增加了10.5%~12.0%,同时提高土壤C︰N、C︰P比值和pH[54]。
与覆膜相比,长期不使用地膜更有利于有机碳的积累(图 3)。在无地膜覆盖的情况下,有机碳含量增加了20.38%,高于覆膜处理的13.46%。虽然覆膜具有增温保墒的作用,可促进作物地上部和根系生长,增加了还田生物量[57],但是适宜的水热条件加快了微生物代谢功能和土壤有机碳的分解[58]。张彤勋等[59]在探究不同覆盖方式对土壤有机碳组分影响的研究指出,与不覆盖相比,全膜覆盖显著降低DOC含量,以及100~200 cm土层水分储量;半膜覆盖显著降低SOC含量但显著提高MBC含量。Zhou等[58]在黄土高原旱地农业试验站进行大田试验,研究发现垄沟覆膜下较高的土壤温度和适度显著增加MBC含量,为不覆膜处理的3倍;而SOC含量与MBC含量呈显著的负相关性。此外,滞留的残膜会降低土壤孔隙度、减少土壤水分运动,改变微生物群落结构,导致土壤肥力下降,抑制作物生长,碳的输入量减少,因此对土壤有机碳的积累产生不利影响[60]。
长期施用化肥对土壤有机碳积累是促进还是抑制一直存在争议。有研究发现在有机质匮乏的土壤施用化肥能显著提高有机碳含量[61]。但是部分长期施肥试验的研究结果表明长期单施化肥对有机碳的影响并不显著[62]。还有研究发现在无任何外源碳输入的情况下,长期施入化肥会削弱土壤固碳能力[63]。整合分析结果表明,不同施肥方式均能提高有机碳含量,但长期施有机肥对土壤有机碳的影响更为显著,是施化肥的2.4倍(图 3)。有机肥的施入显著增加土壤的团聚作用并对有机质起物理保护作用[38],还能提供有效养分并提高微生物生物量[64]。长期施用化肥较不施肥有机碳含量多提升7.32%。
大量研究表明,实行少免耕可减少有机质的氧化降解,农田土壤呈现出碳汇效应,而传统耕作增加了碳库的不稳定性,在本研究中也表现出相似的结果。常规耕作与免耕少耕相比,对土壤结构的破坏更大,加剧有机碳的暴露和微生物的利用[65,38]。张琦等[66]研究发现与常规耕作相比,免耕可显著提高土壤大团聚体固碳能力,达50.16%。实施保护性耕作措施(如免耕与少耕)可以有效减少土壤的扰动,有利于有机碳的封存[67]。还有研究表明,少耕和免耕会增加真菌和厌氧菌的丰度,从而降低土壤有机碳的矿化速度[68]。
近年来,大量研究发现农田土地利用方式对土壤有机碳有着显著的影响。本研究发现,长期种植的水田与水旱轮作模式下土壤有机碳的增幅较旱田高。韩天富等[69]在探讨我国种植制度对土壤有机碳的影响研究发现水田对有机碳的影响最大,水旱轮作和水田下有机碳含量较旱田高出24.9%和53.2%。这主要是因为水田的厌氧环境会抑制微生物活性,进而降低土壤有机碳分解速率。水稻土中有机质的积累与铁氧化物有关,由于铁氧化物结晶度低,比表面积大,很多学者认为其主导有机质的吸附[70-71],其含量高于旱地土壤,因此稻田土壤有机碳稳定性较旱地土壤更强[27];因此稻田特有的水耕熟化作用,可能有利于土壤团聚体的形成,进而对土壤有机碳具有化学保护作用[27,39]。另一方面在持续淹水厌氧条件下,土壤中Fe3+被还原为Fe2+,导致Fe3+结合的土壤颗粒被分散,进而破坏土壤团聚体结构,但土壤中含有大量碳酸盐和硫化物,容易生成Fe2+矿物保留在土壤中,而铁矿物的表面有利于有机碳的吸附[39]。也有研究指出水旱轮作较水田相比更容易造成碳的流失,认为频繁的干湿交替使土壤环境发生剧烈变化,加速了有机碳矿化分解[72]。
4 结论(1)我国暖温带地区,以及低海拔(< 600 m)和相对温暖湿润的地区(年均温8~15℃,年降水200~600 mm)更有利于农田土壤有机碳的积累。随着耕层加深,长期种植作物对土壤有机碳的增加由28%逐渐降低为8%。(2)长期种植作物条件下,初始酸性土壤有机碳的累积程度略低于初始中性和碱性的土壤。除初始土壤碱解氮外,初始土壤养分(有机碳、全氮、速效磷和速效钾)含量越贫瘠的农田土壤越有利于有机碳的积累,有机碳含量可显著增加25%~45%。随着这些初始养分含量的提高,长期种植作物对土壤有机碳的增加程度逐渐降低。(3)秸秆还田量决定了长期种植作物土壤有机碳的增加程度,具体表现为全量还田 > 部分还田 > 不还田;长期无地膜覆盖与覆盖地膜相比可以多积累7%的土壤有机碳;长期施有机肥对耕层土壤的增碳效果更强,较不施肥和施化肥可多固定30.26%和25.17%的有机碳;与常规耕作相比,实施保护性耕作(少免耕)有利于土壤有机碳的固存,可增加25%~27%的土壤有机碳;长期水田与水旱轮作模式与旱作相比更有利于有机碳的积累,可多固定5.74%的有机碳。
[1] |
Yang S Q, Yan X. Strategies for achieving agriculture carbon peak and carbon neutrality in China based on view of biogeochemical cycle (In Chinese)[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(3): 435-443. [杨世琦, 颜鑫. 基于生物地球化学循环视角下我国农业碳达峰、碳中和应对策略[J]. 中国科学院院刊, 2023, 38(3): 435-443.]
( ![]() |
[2] |
Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677): 1623-1627. DOI:10.1126/science.1097396
( ![]() |
[3] |
Yan S J, Deng A X, Shang Z Y, et al. Characteristics of carbon emission and approaches of carbon mitigation and sequestration for carbon neutrality in China's crop production (In Chinese)[J]. Acta Agronomica Sinica, 2022, 48(4): 930-941. [严圣吉, 邓艾兴, 尚子吟, 等. 我国作物生产碳排放特征及助力碳中和的减排固碳途径[J]. 作物学报, 2022, 48(4): 930-941.]
( ![]() |
[4] |
Lal R. Sequestering carbon in soils of agro-ecosystems[J]. Food Policy, 2011, 36: S33-S39. DOI:10.1016/j.foodpol.2010.12.001
( ![]() |
[5] |
Wang Y D, Hu N, Xu M G, et al. 23-year manure and fertilizer application increases soil organic carbon sequestration of a rice–barley cropping system[J]. Biology and Fertility of Soils, 2015, 51(5): 583-591. DOI:10.1007/s00374-015-1007-2
( ![]() |
[6] |
Liu H F, Zhang J Y, Ai Z M, et al. 16-Year fertilization changes the dynamics of soil oxidizable organic carbon fractions and the stability of soil organic carbon in soybean-corn agroecosystem[J]. Agriculture, Ecosystems & Environment, 2018, 265: 320-330.
( ![]() |
[7] |
Chen Y, Wu C Y, Shui J G, et al. Emission and fixation of CO2 from soil system as influenced by long-term application of organic manure in paddy soils (In Chinese)[J]. Scientia Agricultura Sinica, 2005, 38(12): 2468-2473. DOI:10.3321/j.issn:0578-1752.2005.12.015 [陈义, 吴春艳, 水建国, 等. 长期施用有机肥对水稻土CO2释放与固定的影响[J]. 中国农业科学, 2005, 38(12): 2468-2473.]
( ![]() |
[8] |
Berhane M, Xu M, Liang Z Y, et al. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: A meta-analysis[J]. Global Change Biology, 2020, 26(4): 2686-2701. DOI:10.1111/gcb.15018
( ![]() |
[9] |
Six J, Conant R T, Paul E A, et al. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils[J]. Plant and Soil, 2002, 241(2): 155-176. DOI:10.1023/A:1016125726789
( ![]() |
[10] |
West T O, Six J. Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity[J]. Climatic Change, 2007, 80(1): 25-41.
( ![]() |
[11] |
Angers D A, Chantigny M H, MacDonald J D, et al. Differential retention of carbon, nitrogen and phosphorus in grassland soil profiles with long-term manure application[J]. Nutrient Cycling in Agroecosystems, 2010, 86(2): 225-229. DOI:10.1007/s10705-009-9286-3
( ![]() |
[12] |
Kapkiyai J J, Karanja N K, Qureshi J N, et al. Soil organic matter and nutrient dynamics in a Kenyan nitisol under long-term fertilizer and organic input management[J]. Soil Biology and Biochemistry, 1999, 31(13): 1773-1782. DOI:10.1016/S0038-0717(99)00088-7
( ![]() |
[13] |
Kundu S, Bhattacharyya R, Prakash V, et al. Carbon sequestration and relationship between carbon addition and storage under rainfed soybean–wheat rotation in a sandy loam soil of the Indian Himalayas[J]. Soil and Tillage Research, 2007, 92(1/2): 87-95.
( ![]() |
[14] |
Virk A L, Lin B J, Kan Z R, et al. Simultaneous effects of legume cultivation on carbon and nitrogen accumulation in soil[J]. Advances in Agronomy, 2022, 171: 75-110.
( ![]() |
[15] |
Lessmanna M, Ros G H, Young M D, et al. Global variation in soil carbon sequestration potential through improved cropland management[J]. Global Change Biology, 2022, 28(3): 1162-1177. DOI:10.1111/gcb.15954
( ![]() |
[16] |
Maillard É, Angers D A. Animal manure application and soil organic carbon stocks: A meta-analysis[J]. Global Change Biology, 2014, 20(2): 666-679. DOI:10.1111/gcb.12438
( ![]() |
[17] |
Li G R, Tang X Q, Hou Q M, et al. Response of soil organic carbon fractions to legume incorporation into cropping system and the factors affecting it: A global meta-analysis[J]. Agriculture, Ecosystems & Environment, 2023, 342: 108231.
( ![]() |
[18] |
Mi W H, Sun Y, Zhao C, et al. Soil organic carbon and its labile fractions in paddy soil as influenced by water regimes and straw management[J]. Agricultural Water Management, 2019, 224: 105752. DOI:10.1016/j.agwat.2019.105752
( ![]() |
[19] |
Tang G M, Zhang Y S, Xu W L, et al. Effects of long-term cultivation on contents of organic carbon and total nitrogen in soil particulate fractionin oasis farmland of Xinjiang (In Chinese)[J]. Scientia Agricultura Sinica, 2020, 53(24): 5039-5049. [唐光木, 张云舒, 徐万里, 等. 长期耕作对新疆绿洲农田土壤颗粒中有机碳和全氮含量的影响[J]. 中国农业科学, 2020, 53(24): 5039-5049.]
( ![]() |
[20] |
Song C C, Yan B X, Wang Y Y, et al. Effect of mires reclamation on soil moisture, temperature and characters (In Chinese)[J]. Journal of Soil and Water Conservation, 2003, 17(6): 144-147. [宋长春, 阎百兴, 王毅勇, 等. 沼泽湿地开垦对土壤水热条件和性质的影响[J]. 水土保持学报, 2003, 17(6): 144-147.]
( ![]() |
[21] |
Wang J A, Zuo W. Geographical Atlas of China (In Chinese). Beijing: China Map Press, 2012. [王静爱, 左伟. 中国地理图集[M]. 北京: 中国地图出版社, 2012.]
( ![]() |
[22] |
Hedges L V, Gurevitch J, Curtis P S. The meta-analysis of response ratios in experimental ecology[J]. Ecology, 1999, 80(4): 1150-1156. DOI:10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
( ![]() |
[23] |
Curtis P S, Wang X Z. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology[J]. Oecologia, 1998, 113(3): 299-313. DOI:10.1007/s004420050381
( ![]() |
[24] |
Liu Y L, Ge T D, van Groenigen K J, et al. Rice paddy soils are a quantitatively important carbon store according to a global synthesis[J]. Communications Earth & Environment, 2021, 2(1): 1-9.
( ![]() |
[25] |
Liu Y L, Ge T D, Wang P, et al. Residence time of carbon in paddy soils[J]. Journal of Cleaner Production, 2023, 400: 136707. DOI:10.1016/j.jclepro.2023.136707
( ![]() |
[26] |
Liu Y L, Wang P, Cai G, et al. Divergent accumulation of microbial and plant necromass along paddy soil development in a millennium scale[J]. Soil and Tillage Research, 2023, 232: 105769. DOI:10.1016/j.still.2023.105769
( ![]() |
[27] |
Liu Y L, Ge T D, Zhu Z K, et al. Carbon input and allocation by rice into paddy soils: A review[J]. Soil Biology and Biochemistry, 2019, 133: 97-107. DOI:10.1016/j.soilbio.2019.02.019
( ![]() |
[28] |
Luo Y Q, White L W, Canadell J G, et al. Sustainability of terrestrial carbon sequestration: A case study in Duke Forest with inversion approach[J]. Global Biogeochemical Cycles, 2003, 17(1): 1021.
( ![]() |
[29] |
Dorrepaal E, Toet S, van Logtestijn R S P, et al. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic[J]. Nature, 2009, 460(7255): 616-619. DOI:10.1038/nature08216
( ![]() |
[30] |
Chen J I, Elsgaard L, van Groenigen K J, et al. Soil carbon loss with warming: New evidence from carbon-degrading enzymes[J]. Global Change Biology, 2020, 26(4): 1944-1952. DOI:10.1111/gcb.14986
( ![]() |
[31] |
Wiesmeier M, Hübner R, Spörlein P, et al. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation[J]. Global Change Biology, 2014, 20(2): 653-665. DOI:10.1111/gcb.12384
( ![]() |
[32] |
Doetterl S, Stevens A, Six J, et al. Soil carbon storage controlled by interactions between geochemistry and climate[J]. Nature Geoscience, 2015, 8(10): 780-783. DOI:10.1038/ngeo2516
( ![]() |
[33] |
Li L D, Wilson C B, He H B, et al. Physical, biochemical, and microbial controls on amino sugar accumulation in soils under long-term cover cropping and no-tillage farming[J]. Soil Biology and Biochemistry, 2019, 135: 369-378. DOI:10.1016/j.soilbio.2019.05.017
( ![]() |
[34] |
Wang L H, Xue J Y, Xie Y, et al. Spatial distribution and influencing factors of soil organic carbon among different climate types in Sichuan, China (In Chinese)[J]. Chinese Journal of Plant Ecology, 2018, 42(3): 297-306. [王丽华, 薛晶月, 谢雨, 等. 不同气候类型下四川草地土壤有机碳空间分布及影响因素[J]. 植物生态学报, 2018, 42(3): 297-306.]
( ![]() |
[35] |
Hao Z G, Zhao Y F, Wang X, et al. Thresholds in aridity and soil carbon-to-nitrogen ratio govern the accumulation of soil microbial residues[J]. Communications Earth & Environment, 2021, 2(1): 1-12.
( ![]() |
[36] |
Jobbágy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications, 2000, 10(2): 423-436. DOI:10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
( ![]() |
[37] |
Zhao J, Chen J, Beillouin D, et al. Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers[J]. Nature Communications, 2022, 13(1): 1-9. DOI:10.1038/s41467-021-27699-2
( ![]() |
[38] |
Donaldson M A, Bish D L, Raff J D. Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(52): 18472-18477.
( ![]() |
[39] |
Liu Y L, Wang P, Wang J K. Formation and stability mechanism of soil aggregates: Progress and prospect (In Chinese)[J]. Acta Pedologica Sinica, 2023, 60(3): 627-643. DOI:10.11766/trxb202112180686 [刘亚龙, 王萍, 汪景宽. 土壤团聚体的形成和稳定机制: 研究进展与展望[J]. 土壤学报, 2023, 60(3): 627-643.]
( ![]() |
[40] |
Li Y, Li Z, Cui S, et al. Microbial-derived carbon components are critical for enhancing soil organic carbon in no-tillage croplands: A global perspective[J]. Soil and Tillage Research, 2021, 205: 104758. DOI:10.1016/j.still.2020.104758
( ![]() |
[41] |
Capriel P. Trends in organic carbon and nitrogen contents in agricultural soils in Bavaria(south Germany)between 1986 and 2007[J]. European Journal of Soil Science, 2013, 64(4): 445-454. DOI:10.1111/ejss.12054
( ![]() |
[42] |
Georgiou K, Jackson R B, Vindušková O, et al. Global stocks and capacity of mineral-associated soil organic carbon[J]. Nature Communications, 2022, 13: 3797.
( ![]() |
[43] |
Liu Y L, Ge T D, Ye J, et al. Initial utilization of rhizodeposits with rice growth in paddy soils: Rhizosphere and N fertilization effects[J]. Geoderma, 2019, 338: 30-39.
( ![]() |
[44] |
Phillips R P, Finzi A C, Bernhardt E S. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation[J]. Ecology Letters, 2011, 14(2): 187-194.
( ![]() |
[45] |
Wang C, Lu X K, Mori T, et al. Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest[J]. Soil Biology and Biochemistry, 2018, 121: 103-112.
( ![]() |
[46] |
Zhu G B, Wang S Y, Li Y X, et al. Microbial pathways for nitrogen loss in an upland soil[J]. Environmental Microbiology, 2018, 20(5): 1723-1738.
( ![]() |
[47] |
Derrien D, Plain C, Courty P E, et al. Does the addition of labile substrate destabilise old soil organic matter?[J]. Soil Biology and Biochemistry, 2014, 76: 149-160.
( ![]() |
[48] |
Lehmann J, Kleber M. The contentious nature of soil organic matter[J]. Nature, 2015, 528(7580): 60-68.
( ![]() |
[49] |
Cotrufo M F, Wallenstein M D, Boot C M, et al. The Microbial Efficiency-Matrix Stabilization(MEMS)framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?[J]. Global Change Biology, 2013, 19(4): 988-995.
( ![]() |
[50] |
Xue Z J, Qu T T, Liu C H, et al. Contribution of microbial necromass to soil organic carbon formation during litter decomposition under incubation conditions (In Chinese)[J]. Chinese Journal of Applied Ecology, 2023, 34(7): 1845-1852. [薛志婧, 屈婷婷, 刘春晖, 等. 培养条件下枯落物分解过程中微生物残体对土壤有机碳形成的贡献[J]. 应用生态学报, 2023, 34(7): 1845-1852.]
( ![]() |
[51] |
Wang P, Zhu L X, Chen X X, et al. Effects of Platycodon grandiflorum and Allium fistulosum intercropping on soil nutrients, microorganism and enzyme activity (In Chinese)[J]. Journal of Plant Nutrition and fertilizers, 2018, 24(3): 668-675. [王鹏, 祝丽香, 陈香香, 等. 桔梗与大葱间作对土壤养分、微生物区系和酶活性的影响[J]. 植物营养与肥料学报, 2018, 24(3): 668-675.]
( ![]() |
[52] |
Zhang S Q, Wang G D, Tian P, et al. Distributive feature of soil microorganism of Robinia pseudoacacia L. Plantation forestland in Loess Plateau (In Chinese)[J]. Journal of Soil and Water Conservation, 2004, 18(6): 128-131. [张社奇, 王国栋, 田鹏, 等. 黄土高原刺槐林地土壤微生物的分布特征[J]. 水土保持学报, 2004, 18(6): 128-131.]
( ![]() |
[53] |
Wang S Q, Yu G R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements (In Chinese)[J]. Acta Ecologica Sinica, 2008, 28(8): 3937-3947. [王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937-3947.]
( ![]() |
[54] |
Liu C, Lu M, Cui J, et al. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis[J]. Global Change Biology, 2014, 20(5): 1366-1381.
( ![]() |
[55] |
Liu J, Jiang B S, Shen J L, et al. Contrasting effects of straw and straw-derived biochar applications on soil carbon accumulation and nitrogen use efficiency in double-rice cropping systems[J]. Agriculture, Ecosystems & Environment, 2021, 311: 107286.
( ![]() |
[56] |
Lal R, Follett R F, Stewart B A, et al. Soil carbon sequestration to mitigate climate change and advance food security[J]. Soil Science, 2007, 172(12): 943-956.
( ![]() |
[57] |
Mo F, Han J, Wen X X, et al. Quantifying regional effects of plastic mulch on soil nitrogen pools, cycles, and fluxes in rain-fed agroecosystems of the Loess Plateau[J]. Land Degradation & Development, 2020, 31(13): 1675-1687.
( ![]() |
[58] |
Zhou L M, Jin S L, Liu C G, et al. Ridge-furrow and plastic-mulching tillage enhances maize–soil interactions: Opportunities and challenges in a semiarid agroecosystem[J]. Field Crops Research, 2012, 126: 181-188.
( ![]() |
[59] |
Zhang T X, Pi X M, Sun B H, et al. Effects of straw and plastic film mulching on carbon and nitrogen components in Lou soil of dryland (In Chinese)[J]. Acta Agriculturae Boreali- Occidentalis Sinica, 2018, 27(8): 1225-1233. [张彤勋, 皮小敏, 孙本华, 等. 秸秆与地膜覆盖对旱作土娄土碳氮组分的影响[J]. 西北农业学报, 2018, 27(8): 1225-1233.]
( ![]() |
[60] |
Qi Y L, Beriot N, Gort G, et al. Impact of plastic mulch film debris on soil physicochemical and hydrological properties[J]. Environmental Pollution, 2020, 266: 115097.
( ![]() |
[61] |
Lin J S, Roswanjaya Y P, Kohlen W, et al. Nitrate restricts nodule organogenesis through inhibition of cytokinin biosynthesis in lotus japonicus[J]. Nature Communications, 2021, 12(1): 1-12.
( ![]() |
[62] |
Chen Q Y, Hu Y L, Hu A, et al. Shifts in the dynamic mechanisms of soil organic matter transformation with nitrogen addition: From a soil carbon/nitrogen-driven mechanism to a microbe-driven mechanism[J]. Soil Biology and Biochemistry, 2021, 160: 108355.
( ![]() |
[63] |
Yang X M, Zhang X P, Fang H J, et al. Long-term effects of fertilization on soil organic carbon changes in continuous corn of northeast China: RothC model simulations[J]. Environmental Management, 2003, 32(4): 459-465.
( ![]() |
[64] |
Gao H Y, Guo S L, Liu W Z, et al. Effect of fertilization on organic carbon distribution in various fractions of aggregates in caliche soils (In Chinese)[J]. Acta Pedologica Sinica, 2010, 47(5): 931-938. DOI:10.11766/trxb200908110343 [高会议, 郭胜利, 刘文兆, 等. 不同施肥处理对黑垆土各粒级团聚体中有机碳含量分布的影响[J]. 土壤学报, 2010, 47(5): 931-938.]
( ![]() |
[65] |
Sarker J R, Singh B P, Cowie A L, et al. Carbon and nutrient mineralisation dynamics in aggregate-size classes from different tillage systems after input of canola and wheat residues[J]. Soil Biology and Biochemistry, 2018, 116: 22-38.
( ![]() |
[66] |
Zhang Q, Wang S L, Wang H, et al. Effects of subsoiling and no-tillage frequencies on soil aggregates and carbon pools in the loess plateau (In Chinese)[J]. Scientia Agricultura Sinica, 2020, 53(14): 2840-2851. [张琦, 王淑兰, 王浩, 等. 深松与免耕频次对黄土旱塬春玉米田土壤团聚体与土壤碳库的影响[J]. 中国农业科学, 2020, 53(14): 2840-2851.]
( ![]() |
[67] |
Prestele R, Hirsch A L, Davin E L, et al. A spatially explicit representation of conservation agriculture for application in global change studies[J]. Global Change Biology, 2018, 24(9): 4038-4053.
( ![]() |
[68] |
Zhang X F, Xin X L, Zhu A N, et al. Linking macroaggregation to soil microbial community and organic carbon accumulation under different tillage and residue managements[J]. Soil and Tillage Research, 2018, 178: 99-107.
( ![]() |
[69] |
Han T F, Du J X, Qu X L, et al. Factors affecting change in topsoil organic carbon pool density in Chinese farmlands from 1988 to 2019 (In Chinese)[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(7): 1145-1157. [韩天富, 都江雪, 曲潇琳, 等. 1988―2019年中国农田表土有机碳库密度变化及其主要影响因素[J]. 植物营养与肥料学报, 2022, 28(7): 1145-1157.]
( ![]() |
[70] |
Regelink I C, Stoof C R, Rousseva S, et al. Linkages between aggregate formation, porosity and soil chemical properties[J]. Geoderma, 2015, 247/248: 24-37.
( ![]() |
[71] |
Liu Y L, Dong Y Q, Ge T D, et al. Impact of prolonged rice cultivation on coupling relationship among C, Fe, and Fe-reducing bacteria over a 1000-year paddy soil chronosequence[J]. Biology and Fertility of Soils, 2019, 55(6): 589-602.
( ![]() |
[72] |
Witt C, Cassman K G, Olk D C, et al. Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems[J]. Plant and Soil, 2000, 225(1): 263-278.
( ![]() |