矿物结合态有机碳(MAOC)是土壤有机碳(SOC)的主要组成部分,约占全球陆地矿质土壤碳储量的65%[1],其碳库的微弱变化均可能对区域乃至全球气候和碳循环产生深远影响。MAOC的C/N比值和周转速率相对较低,可以在土壤中留存几十至几百年,被认为是土壤中的持久组分[2-3]。但最新研究表明,在热带森林、苔原和一些温带森林的表层土壤中MAOC和颗粒有机碳(POC)有大致相当的周转时间[4-5]。Villarino等[6]和Jilling等[7]研究结果表明MAOC不是一种均匀、慢循环组分,而是一种动态的且含有不稳定化合物的非均相组分,其可以作为土壤中C和N的潜在来源。未来几十年,MAOC是大气CO2的源或者汇,将显著影响全球气候变化的速度和程度。
土壤有机碳矿化是一个与土壤养分释放和供给有关的生化过程,该过程主要受温度、土壤理化性质、土壤微生物群落和耕作管理等多种因素的影响[8]。单会茹等[9]研究发现撂荒和化肥配施有机肥显著提高了MAOC的矿化速率。Jilling等[7]研究发现根系分泌物(草酸和葡萄糖)的添加显著增强了MAOC的矿化。此外,研究发现MAOC的储存和周转与团聚体的物理隔离机制密切相关[10]。土壤团聚体的空间异质性,直接影响团聚体内部的微生物活性、丰度及群落结构,导致有机碳的循环路径发生改变[10]。目前研究多关注团聚体大小对有机碳矿化的影响[11-12],而关于不同粒径团聚体中MAOC矿化特性及其影响因素的研究较少。
柑橘是一种经济价值极高的园艺作物。我国作为全球柑橘的主要产地之一,栽培面积位居世界第一[13]。我国柑橘主要栽培于南方丘陵缓坡地带,果园立地条件较差、土层较薄、土壤冲刷和营养流失严重,加之管理粗放等,导致土壤有机碳和土壤肥力存在极大的空间差异[14]。坡位作为重要的地形因子,对有机碳的迁移、转化和积累具有重要影响[15]。不同坡位SOC含量的差异可能是由于土壤侵蚀和水土流失造成的,上坡位的表土和凋落物易随土壤侵蚀和水土流失向下运输和移动,从而导致下坡位土壤有机碳含量较高[16]。同时,土壤侵蚀和水土流失也会对土壤有机碳的化学结构造成影响,特别是对脂肪族碳的影响较为显著。脂肪碳来源于新鲜的植物碳水化合物,代表易被土壤微生物分解的不稳定碳水化合物部分[17]。相比之下,芳香碳主要代表植物生物聚合物或微生物的代谢产物(包括木质素和单宁),更难被微生物利用[18]。脂肪碳/芳香碳比率(疏水性)已被用作表征有机碳腐殖化或分解程度的有效指标,比值越低,有机碳分解程度越低[19-20]。目前相关研究主要关注不同坡位土壤有机碳分配格局,而对不同坡位土壤MAOC矿化过程及相关因素影响作用尚不明确。
因此,本研究以典型柑橘园土壤为研究对象,通过室内培养试验比较分析不同坡位(坡上、坡中和坡下)柑橘园土壤团聚体MAOC的矿化特征,并初步分析了土壤理化因子和MAOC疏水性对柑橘园土壤MAOC矿化的影响,以进一步阐明柑橘园土壤MAOC的矿化规律,为进一步认识果园土壤固碳、团聚体的形成机制以及提高土壤质量和改善生态环境提供理论依据。
1 材料与方法 1.1 研究区概况研究区位于湖南省郴州市宜章县笆篱乡,地处亚热带季风气候区,年平均气温18.3℃,年平均降水量约1 600 mm,气候温和,日照充足,无霜期长。土壤类型为耕型板岩红壤,耕地多为坡耕地,所种植的柑橘品种均为纽荷尔,园区柑橘树种植执行统一施肥、人工授粉、除病虫害管理。研究果园以种植8年以上柑橘树为主,面积约67 000 m2。土壤基本理化性质如下:土壤pH 4.67~5.30(m土︰V水=1︰2.5)、有机质15.19~23.29 g·kg–1、全氮1.39~2.24 g·kg–1、全磷0.67~1.04 g·kg–1。
1.2 样品采集2022年12月在柑橘园选取典型坡面进行土样采集。根据实际地形和Brubaker等[21]划分坡面的方法,将研究的坡位分为3个部分(坡上、坡中、坡下)进行土样采集。不同坡位采用五点法采集土壤样品,每个坡位采样点位于同一海拔高度和同一垄,由左往右选取5棵长势相当柑橘树。每个采样点沿柑橘树冠投影边向主干推10~20 cm,采集0~40 cm土层样品,按四分法分取2kg左右的新鲜样品。样品带回实验室后将土块沿着自然缝隙仔细掰开,使其全部过8 mm筛,拣去植物残根和砾石,在室温下继续风干,完全风干后通过不同孔径土筛以用于相应理化性质分析(表 1)。
![]() |
表 1 不同坡位土壤基本理化性质 Table 1 Basic physical and chemical properties of soils at different slope positions |
(1)团聚体分离。土壤水稳定性团聚体粒径组分分离采用湿筛法进行。具体方法为:称取风干土块100 g,按照土块自然裂隙掰成1 cm左右大小的土块,将其放置由0.053、0.25和2 mm组成的套筛顶处(2 mm处),使土块全部浸入到液面以下,静置10 min后用团聚体分析仪(TPF-100)以30 r·min–1的速度进行筛分30 min。筛分结束后,将每粒径筛上的团聚体冲洗至烧杯中,获得 > 2 mm、2~0.25 mm、0.25~0.053 mm、< 0.053 mm的水稳性团聚体。然后对烧杯中的团聚体在60℃下进行烘干、称重,由此可获得各种粒径团聚体的成分含量,将各组分团聚体保留用于团聚体有机碳组分分离。
(2)POC和MAOC提取。依据Cambardella和Elliott[22]的方法进行POC和MAOC分组。将16.0 g不同粒径(2、2~0.25和0.25~0.053 mm)团聚体放入100 mL离心管中,加入80 mL 5.0 g·L–1六偏磷酸钠((NaPO3)6)溶液,用手摇匀后放在往复式振荡器上以190 r·min–1转速振荡18 h分散。将摇匀的悬浮液倒入1 L烧杯中,过53 μm筛,用去离子水彻底洗涤,直至筛下水为无色,筛上物质即为POC组分;筛下部分(< 53 μm)为MAOC组分,将分离得到的组分分别在50℃烘干,并进行称重、研磨。由于 < 0.053 mm粒径团聚体在团聚体分离过程中已经过53 μm的筛,故在第二次物理分离过程中不再进行分离,而直接把 < 0.053 mm团聚体直接视为 < 53 μm的MAOC。
(3)土壤理化性质测定。采用复合电极法测定土壤pH,水土比为2.5︰1。土壤有机碳(SOC)及其组分(POC、MAOC)和总氮(TN)分别通过硫酸-重铬酸钾外加热容量法和半微量开氏法测定。无定形态铁铝氧化物(Feo/Alo)、游离态铁铝氧化物(Fed/Ald)和络合态铁铝氧化物(Fep/Alp)分别采用草酸铵-草酸缓冲液、DCB(连二亚硫酸钠-柠檬酸钠-重碳酸钠)法和焦磷酸钠溶液提取。提取液稀释后,使用电感耦合等离子体质谱法(ICP-MS)测定不同形态铁铝氧化物的含量。
(4)红外光谱测定。采用Nicolet 5700型傅里叶红外光谱仪(Thermo Fisher Scientific),在400~4 000 cm–1波段采集不同坡位团聚体MAOC的FTIR吸收光谱。将2 mg MAOC样品与200 mg KBr混合,在玛瑙研钵中细磨,并压成透明薄片。每个样品以4 cm–1的分辨率采集,进行64次扫描,并以纯KBr光谱为背景进行校正。使用Omnic 9.0软件自动基线校正后,采集各波段对应的峰面积。每个峰吸收信号强度表示为总峰信号强度的百分比。3 000~2 800 cm–1吸收波段被定义为具有疏水性的脂肪族C-H[23–24]。1 500~1 800 cm–1吸收波段代表羧酸阴离子的芳香C=C振动和C=O振动[25-26]。亲水性基团的强度来自于C=O拉伸[27]。MAOC疏水性通过疏水性与亲水性基团的比值得到[27-28]。
(5)矿化培养试验。将调节至田间持水量为60%的不同粒径土壤团聚体MAOC样品(每个土样20 g,3个平行)在25℃下预培养7 d,以恢复微生物活性。待微生物活性恢复培养结束后,把装有10 mL 0. 1 mol·L–1 NaOH的烧杯悬挂置1 L培养瓶内,同时设置空白对照组(对照组中除了不放置装有土壤样品的烧杯外,其他条件与试验组一致),加盖密封后进行恒温培养,培养周期为69 d。在培养的第3、6、9、12、15、18、21、27、33、39、45、51和69天进行取样滴定。滴定时把装有NaOH的烧杯从培养瓶中取出,依次加入2 mL 1 mol·L–1 BaCl2溶液、2~3滴0.5%酚酞指示剂,用0.05 mol·L–1 HCl溶液进行滴定。分别计算培养过程中土壤MAOC矿化量(CO2 mg·kg–1)、MAOC矿化速率(CO2 mg·kg–1·d–1)和土壤MAOC累积矿化量,并选择一级动力学模型对不同坡位团聚体MAOC累积矿化量进行拟合。
土壤田间持水量=(m2–m1)/m1×100%,其中m2为湿润土壤质量,m1为烘干土壤质量;
土壤MAOC矿化量(CO2 mg·kg–1)=[CHCl×(V0−V1)×44]/2×m,式中,V0为滴定空白时所消耗HCl的体积(mL),V1为滴定样品时所消耗HCl的体积(mL);CHCl=0.1mol·L–1;m为土壤质量;2为转换系数;
土壤MAOC矿化速率(CO2 mg·kg–1·d–1)=培养时间内MAOC矿化量(CO2 mg·kg–1)/培养天数(d);
土壤MAOC累积矿化量=培养时间内MAOC矿化量之和;
MAOC矿化强度=培养69 d中累积矿化量/总MAOC;
一级动力学方程:Ct=Co(1–e–kt),其中Ct为MAOC的累积矿化量(g·kg–1),Co为潜在可矿化MAOC(g·kg–1),k为分解速率(d–1),t为培养时间(d)。
1.4 数据处理与分析采用Microsoft Office Excel 2010进行数据处理,并用SPSS21.0进行统计分析,采用单因素方差分析(One way ANOVA)检验,在P < 0.05的显著水平上检验不同坡位和不同粒径团聚体测量参数的差异,结果用Origin 2021绘图。采用冗余分析(RDA)方法探讨土壤理化性质(pH、SOC、MAOC、TN、C/N、铁铝氧化物(Feo/Alo、Fep/Alp和Fed/Ald)和疏水性与MAOC矿化特征之间的关系。利用RStudio 4.3.1中的“rdacca.hp”包[29],定量评价土壤理化因子和疏水性对MAOC矿化特性的影响。
2 结果 2.1 不同坡位土壤团聚体MAOC分布特征由表 2可知,坡上 > 2、2~0.25、0.25~0.053和 < 0.053 mm团聚体中MAOC的含量分别为9.30、10.13、12.58和20.59 g·kg–1,坡中各粒径团聚体中MAOC的含量分别为5.22、7.31、9.21和12.82 g·kg–1,坡下各粒径团聚体中MAOC的含量分别为11.23、12.10、13.31和19.27 g·kg–1。在 > 2、2~0.25和0.25~0.053 mm粒径中MAOC含量均表现为坡下 > 坡上 > 坡中。与坡上相比,坡下 > 2、2~0.25和0.25~0.053 mm团聚体中MAOC含量分别高于坡上20.75%、19.44%、5.85%(P < 0.05);与坡中相比,坡上 > 2、2~0.25和0.25~0.053 mm团聚体中MAOC含量分别高于坡中78.16%、38.57%、36.59%(P < 0.05),且坡下分别高于坡中151.1%、65.52%、44.52(P < 0.05)。在 < 0.053 mm粒径中,MAOC含量表现为坡上 > 坡下 > 坡中,坡上高于坡中60.70%,高于坡下6.85%,而坡下高于坡中50.31%。同一坡位不同粒径(> 2、2~0.25、0.25~0.053、< 0.053 mm)中MAOC的含量表现为:随着团聚体粒径的不断减小,MAOC呈逐渐上升的变化趋势。在各坡位柑橘园土壤中,除坡上柑橘园土壤中 > 2 mm与2~0.25 mm团聚体间差异不显著外,其余各坡位各粒径团聚体间差异均达到显著水平(P < 0.05)。
![]() |
表 2 不同坡位团聚体MAOC含量 Table 2 MAOC contents in aggregates at different slope positions |
土壤有机碳的化学组分特性显著影响土壤有机碳矿化作用,一般可通过FTIR分析进行评估[23]。甲基、亚甲基和亚甲基中的脂肪族C-H单元可以用来表征土壤有机碳的疏水性基团[27]。脂肪族C-H单元数量控制着水的亲和力,从而影响土壤有机碳抵抗微生物降解的能力[24]。同时,MAOC疏水性的提高有助于降低土壤水亲和性和润湿性,从而减少土壤团聚体的解离[30]。芳香碳属于难分解有机碳组分,脂肪碳属于易分解和不稳定有机碳组分,因此芳香碳含量高的土壤具有更高碳库稳定性。不同坡位各粒径团聚体的疏水特性如表 3所示。各坡位 > 2 mm团聚体中均含有较大的疏水性基团和疏水性。对于同一粒径而言,疏水性整体表现为:坡中 > 坡上 > 坡下。对同一坡位不同粒径团聚体而言,< 0.053 mm团聚体通常较大团聚体(> 2和2~0.25 mm)具有更大的亲水性吸收带和更低的疏水带吸收强度,因此,< 0.053 mm团聚体的疏水性较低。
![]() |
表 3 不同坡位团聚体MAOC的疏水特性 Table 3 Hydrophobic characteristics of MAOC in aggregates at different slope positions |
不同坡位各粒径团聚体中MAOC的矿化速率如图 1所示。不同坡位各粒径团聚体MAOC矿化速率均呈前期快后期慢的变化特征。各粒径团聚体最大矿化速率均表现为坡下 > 坡上 > 坡中。与坡中相比,坡下 > 2、2~0.25、0.25~0.053和 < 0.053 mm团聚体中MAOC最大矿化速率分别提高了121.7%、151.9%、149.7%和125.8%,坡上各粒径团聚体分别提高了26.89%、30.48%、49.25% 和77.91%。与坡上相比,坡下 > 2、2~0.25、0.25~0.053和 < 0.053 mm团聚体中MAOC的最大矿化速率分别提高了74.71%、93.07%、67.31%和26.91%。同一坡位不同粒径团聚体中MAOC最大矿化速率均表现为(< 0.053 mm) > (0.25~0.053 mm) > (2~0.25 mm) > (> 2 mm)。在坡上土壤中,与 > 2 mm团聚体相比,< 0.053、0.25~0.053和2~0.25 mm团聚体中MAOC的最大矿化速率分别提高了77.39%、29.56% 和4.1%。在坡中土壤中,与 > 2 mm团聚体相比,< 0.053、0.25~0.053和2~0.25 mm团聚体中MAOC的最大矿化速率分别提高了26.52%、10.15% 和1.23%。在坡下土壤中,与 > 2 mm团聚体相比,< 0.053、0.25~0.053和2~0.25 mm团聚体中MAOC的最大矿化速率分别提高了28.85%、24.07%和15.04%。
![]() |
图 1 不同坡位各粒径团聚体中MAOC矿化速率 Fig. 1 MAOC mineralization rates in aggregates of different particle sizes at different slope positions |
室内恒温培养结束(第69天)时,各坡位土壤MAOC累积矿化量变化范围分别为3.65~4.72、2.62~2.94和4.27~4.74 g·kg–1(图 2)。从同一粒径团聚体不同坡位来看,培养69 d土壤MAOC累积矿化量呈现出坡下 > 坡上 > 坡中的变化趋势;与坡中相比,坡下和坡上MAOC的累积矿化量分别增加了53.05%、30.82%(> 2 mm)、52.04%、40.82%(2~0.25 mm)、66.32%、41.05%(0.25~0.053 mm)及79.39%、80.15%(< 0.053 mm);与坡上相比,坡下 > 2、2~0.25和0.25~0.053mm和 < 0.053 mm团聚体中MAOC累积矿化量分别高出16.99%、7.97%和17.91%,而 < 0.053mm团聚体中MAOC累积矿化量下降了0.42%。从同一坡位不同粒径团聚体来看,随着团聚体粒径的减小,各坡位MAOC的累积矿化量呈上升的变化趋势。其中 < 0.053 mm粒径团聚体MAOC的累积矿化量为 > 2 mm粒径团聚体的1.10倍~1.29倍。
![]() |
图 2 不同坡位各粒径团聚体中MAOC累积矿化量 Fig. 2 The cumulative mineralization of MAOC in aggregates of different particle sizes at different slope positions |
矿化强度为培养69 d中累积矿化量与总矿物结合态有机碳的比值。如图 3所示,坡上、坡中和坡下各粒径团聚体中MAOC的矿化强度分别为22.92%~44.69%、20.12%~41.33%和24.40%~37.02%。在 > 2和2~0.25 mm粒径团聚体中,坡上MAOC的矿化强度较坡中和坡下分别高出8.13%、20.72%和5.88%、19.77%,而坡中显著高于坡下,分别高出11.64%和13.11%。在0.25~0.053 mm粒径团聚体中,各坡位上MAOC的矿化强度差异均不显著。而在 < 0.053 mm粒径团聚体中,坡上和坡中与坡下的MAOC的矿化强度差异显著,但坡上和坡下的矿化强度差异不显著。同一坡位,不同粒径团聚体中MAOC的矿化强度整体上随着粒径的减小呈下降的变化趋势。各坡位 > 2、2~0.25和0.25~0.053 mm粒径团聚体中MAOC的矿化强度显著高于 < 0.053 mm,而各坡位 > 2、2~0.25和0.25~0.053 mm粒径团聚体中MAOC矿化强度差异不显著。
![]() |
图 3 不同坡位各粒径团聚体中MAOC矿化强度 Fig. 3 MAOC mineralization intensity in aggregates of different particle sizes at different slope positions |
不同坡位下,各粒径团聚体中矿化动力学参数(潜在可矿化矿物结合态有机碳量(Co))和MAOC周转速率常数(k)均符合一级动力学模型(R2 > 0.977)。与坡中相比,坡上 > 2、2~0.25、0.25~0.053和 < 0.053 mm团聚体中MAOC的潜在可矿化有机碳含量(Co)均有所提升,分别提高了54.31%、36.45%、47.42%和85.83%;坡下 > 2、2~0.25、0.25~0.053和 < 0.053 mm团聚体中MAOC的Co分别提高了58.43%、40.32%、63.23%和81.10%(表 4)。与坡上相比,坡下 > 2、2~0.25和0.25~0.053 mm团聚体中MAOC的Co分别提高了2.67%、2.84%和0.72%,< 0.053mm团聚体下降了2.61%,但坡上与坡下除0.25~0.053 mm差异显著外,其余各粒径团聚体(> 2、2~0.25和 < 0.053 mm)中MAOC的Co差异不显著。同一坡位,不同粒径团聚体中MAOC的Co除坡上 > 2、2~0.25和0.25~0.053 mm粒径团聚体间差异不显著外,其余各粒径团聚体中Co差异显著。不同坡位各粒径团聚体中MAOC的周转速率常数(k)变化范围为0.028~0.053,同一粒径团聚体中MAOC的周转速率常数整体表现为坡下 > 坡中 > 坡上。同一坡位各粒径团聚体中MAOC的周转速率常数整体上表现为随着团聚体的减小呈上升的变化趋势。研究表明,土壤潜在可矿化矿物结合态有机碳与矿物结合态有机碳的比值(Co/MAOC)在一定程度上可以用于表征土壤的固碳能力,该比值越低,表明土壤的固碳能力越强,反之,则固碳能力越弱[31]。在 > 2和2~0.25 mm粒径团聚体中Co/MAOC均表现为坡中 > 坡上 > 坡下,在0.25~0.053 mm粒径团聚体中Co/MAOC呈现出坡上 > 坡下 > 坡中的变化趋势,而在 < 0.053 mm粒径团聚体中Co/MAOC呈现出坡下 > 坡上 > 坡中的变化趋势。同一坡位上,Co/MAOC均随着团聚体粒径的减小呈逐渐下降的变化趋势。
![]() |
表 4 培养69 d后土壤矿物结合有机碳累积矿化量及其动力学方程参数 Table 4 Accumulated mineralization of soil mineral-associated organic carbon and its kinetic equation parameters after incubation for 69 d |
土壤理化性质、MAOC疏水性与MAOC矿化参数之间的关系如图 4所示。土壤理化因子和疏水性的解释率为94.81%。冗余分析(RDA)表明,潜在可矿化MAOC量(Co)与pH、SOC、MAOC、TN和C/N呈显著正相关(P < 0.05),与铁铝氧化物(Fed/Ald、Feo/Alo和Fep/Alp)和疏水性呈显著负相关(P < 0.05)。疏水性与pH、SOC、MAOC、TN、C/N、Ct和Co呈显著负相关,与铁铝氧化物呈显著正相关。Co/MAOC与铁铝氧化物和MAOC疏水性呈显著正相关,而与Co、Ct、pH、SOC、MAOC、TN和C/N呈显著负相关。
![]() |
图 4 MAOC矿化特征与土壤理化性质和疏水性之间的关系 Fig. 4 The relationships between MAOC mineralization characteristics and soil physicochemical properties and hydrophobicity |
为探讨土壤理化性质和疏水性对土壤MAOC矿化的影响,利用RStudio 4.3.1中“rdacca.hp”包去定量评估土壤理化因子(SOC、MAOC、TN、C/N、pH、Feo、Fep、Fed、Alo、Ald、Alp)和MAOC疏水性对MAOC矿化单独效应和共同效应。层次分割分析(单独效应)表明,Alo、Alp和Fep是影响MAOC矿化的重要因子,其相对重要性值分别为15.53%、13.72%和12.80%,其次是MAOC、C/N、Feo、pH、MAOC疏水性、TN、Ald、SOC和Fed,它们的相对重要性分别为11.06%、9.86%、9.40%、5.64%、4.80%、4.22%、2.45%、1.43%和0.95%(图 5)。变差分解分析(共同效应)表明Alo、Alp、Fep、MAOC和C/N对MAOC矿化存在较高比例的共同效应(18.45%);Alo、Alp、Fep、MAOC、C/N、Feo和TN对MAOC矿化的共同效应为15.48%;Alo、Alp、Fep、MAOC、C/N、Feo和MAOC疏水性对MAOC矿化的共同效应为14.85%,而所有理化因子和MAOC疏水性对MAOC矿化的共同效应为8.43%。
![]() |
注:左侧柱形图表示土壤理化因子的单独效应(层次分割分析)。上方柱形图表示土壤理化因子的共同效应(变差分解分析)。 Note: The left histogram represents the individual effects of soil physical and chemical factors(hierarchical segmentation analysis). The above histogram represents the common effect of soil physical and chemical factors(variation decomposition analysis). 图 5 土壤理化因子与MAOC矿化特性之间的分层分析 Fig. 5 Stratified analysis between soil physical and chemical factors and MAOC mineralization characteristics |
本研究显示,MAOC在初始阶段迅速矿化,后期逐渐放缓直至趋于平稳的趋势。这主要是因为在培养前期,由于微生物活性的恢复,有机碳矿化增强,随后有机碳分解增加。总体而言,微生物群落的底物有效性通过降低有机碳含量和增加CO2排放而逐渐降低[32]。本研究中,对于坡位而言,坡下较坡上和坡中具有更高的矿化速率(图 1)、累积矿化量(图 2)和潜在可矿化量(表 4)。这可能是因为不同坡位之间MAOC含量、土壤理化性质、凋落物量以及微生物的多样性和数量等不同,进而导致不同坡位间MAOC的矿化速率存在差异。一方面,这可能与不同坡位微生物含量差异有关。蔚杰等[33]探讨不同坡位地理环境对微生物分布的影响发现坡下各类微生物的含量最高,因此与坡上和坡中相比,坡下土壤MAOC含量增加,微生物活性增强,从而导致MAOC分解速率较快,其潜在可矿化矿物结合态有机碳含量较高。另一方面,土壤侵蚀会导致坡上和坡中的作物残留物被冲刷至坡下,从而导致坡下MAOC含量较高。研究表明MAOC主要由微生物来源的OC主导,但植物来源的OC(作物残留物)也可以对MAOC做出重大贡献[3],这可能与坡下具有更高的矿化速率、累积矿化量和潜在可矿化量与土壤侵蚀引起的SOC沉积有关。Kan等[34]研究表明较低的碳矿化度有效地减少了碳输出,从而增加了SOC封存。然而MAOC定义为与粉砂和黏土级矿物相关的有机碳分数,它主要由微生物衍生的低分子量化合物组成[2]。矿物质是调节SOC命运的重要内在因素[35-36],矿物与有机物的结合保护有机物免受降解[37]。Zhuang等[38]发现无定形铁氧化物的加入抑制了酸性土壤中有机物的分解。本研究发现与坡上和坡中相比,坡下柑橘园土壤中无定形铁氧化物的含量显著高于坡上和坡中(表 1)。变差分解分析结果表明,Alo、Alp、Fep、MAOC和C/N对MAOC矿化存在较高比例的共同效应(18.45%)(图 5)。因此,本研究推测尽管坡下柑橘园土壤中MAOC的矿化度较高,但是由于坡下土壤中MAOC的含量高,且其与土壤中铁铝氧化物的作用较强,从而增强了坡下MAOC的封存。研究表明有机碳的疏水性(脂肪碳/芳香碳比值)已被用作表征有机碳腐殖化或分解程度的有效指标,比值越低,有机碳分解程度越低[18]。Leifeld和Kögel-Knabner[39]研究发现土壤有机碳的稳定性决定着土壤固定和储备有机碳的能力,其难降解性反映了土壤有机碳稳定性的高低。本研究发现,与坡上和坡中相比,坡下柑橘园土壤MAOC中具有较低的疏水性(表 3),表明坡下MAOC的稳定性更高,固碳能力更强。此外,一级动力学模型模拟结果表明,与坡上和坡中相比,坡下的Co/MAOC的值更低,这可能是由于Co的增幅小于MAOC的增幅导致,也进一步证实了与坡上坡中相比,坡下固碳能力更强。
3.2 不同粒径团聚体MAOC矿化特征有机碳矿化的变化被认为与土壤团聚体大小和团聚体相关碳含量密切相关[40]。研究表明,MAOC的累积矿化量的大小顺序为:(< 0.053 mm) > (0.25~0.053 mm) > (2~0.25 mm) > (> 2 mm)。本研究结果与前人研究结果一致[41-42]。这可能与不同粒径团聚体中MAOC分布的异质性有关。本研究发现随着团聚体粒径的减小,MAOC呈上升的变化趋势,且各坡位间差异显著(表 2)。王菁等[43]研究表明土壤有机碳分布的异质性是导致不同粒级团聚体有机碳矿化速率变化趋势产生差异的主要原因。此外,大团聚体中较大的MAOC疏水性降低了土壤润湿和吸附过程的速度,从而提高了有机碳对微生物降解的抵抗力[23]。这与本结果一致,即各坡位柑橘园土壤中MAOC的疏水性随着团聚体的减小而减小(表 3)。研究显示随着团聚体粒径的减小各坡位的Co/MAOC值呈下降的变化趋势,表明 < 0.053 mm粒径团聚体中MAOC固持能力和稳定性较强。这是因为团聚体形成的主要胶结物质SOC、黏土矿物、多价阳离子及其复合物可能不均匀地分布在土壤团聚体的不同大小的组分中,从而导致MAOC受到的物理保护程度存在差异[44]。一般而言,团聚体由于与矿物表面的物理咬合、插层、疏水性和包裹作用,形成了限制分解者接触有机底物的屏障[45-46]。物理保护作用取决于聚集的水平,微团聚体包裹的土壤有机碳较大团聚体更稳定[47-48]。此外,高活性矿物表面通过吸附和解吸反应以及矿物-土壤有机碳复合体(例如,有机结合态铁铝氧化物[Fep/Alp]和非晶态铁铝氧化物[Feo/Alo])的沉淀和溶解来调控土壤有机碳,从而限制土壤有机碳的活化和降解[34,49]。RDA分析表明94.81%的土壤团聚体MAOC矿化由土壤碳、氮、铁铝氧化物和疏水性解释(图 4),且Co/MAOC与铁铝氧化物和疏水性呈显著正相关,而与Co、Ct、pH、SOC、MAOC、TN和C/N呈显著负相关。层次分割分析表明Alo、Alp和Fep是影响MAOC矿化的重要因子。一方面,这与氧化铝在土壤中的形态、表面电荷密度等有关[50-51]。Schulten和Leinweber [51]依照静电学原理计算得出Al3+离子电荷/半径的比率大于Fe3+,指出氧化铝对胡敏酸和富里酸的吸附能力强于氧化铁。另一方面,这也可能与络合态铁铝氧化物的特性有关,其本身即是铁铝氧化物与有机质的胶结[52],铁铝氧化物与多功能团有机络合物的结合可作为土壤颗粒团聚的稳定剂,形成的黏粒-多价金属-有机质复合体提高了有机碳稳定性[53]。变差分解分析也表明Alo、Alp、Fep、C/N、MAOC和Feo的共同影响对MAOC矿化的解释度最大(18.45%)显著影响MAOC矿化,这意味着MAOC和铁铝氧化物及其相互作用可能是土壤团聚体稳定性和粒径分布的重要机制。
4 结论坡位显著影响MAOC的矿化特性,与坡上和坡中相比,坡下柑橘园土壤具有更高的累积矿化量、矿化率和潜在可矿化量。随着团聚体粒径的减小,各坡位柑橘园土壤中MAOC的累积矿化量、矿化率和潜在可矿化量呈上升的变化趋势,而MAOC的矿化强度逐渐减弱。Alo、Alp和Fep是影响MAOC矿化的重要因子,且Alo、Alp、Fep、C/N、MAOC和Feo的共同作用也显著影响不同坡位不同粒径团聚体中MAOC矿化。
[1] |
Sokol N W, Whalen E D, Jilling A, et al. Global distribution, formation and fate of mineral-associated soil organic matter under a changing climate: A trait-based perspective[J]. Functional Ecology, 2022, 36(6): 1411-1429. DOI:10.1111/1365-2435.14040
( ![]() |
[2] |
Lavallee J M, Soong J L, Cotrufo M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century[J]. Global Change Biology, 2020, 26(1): 261-273. DOI:10.1111/gcb.14859
( ![]() |
[3] |
Yu W J, Huang W J, Weintraub-Leff S R, et al. Where and why do particulate organic matter(POM)and mineral-associated organic matter(MAOM)differ among diverse soils?[J]. Soil Biology and Biochemistry, 2022, 172: 108756. DOI:10.1016/j.soilbio.2022.108756
( ![]() |
[4] |
Heckman K, Hicks Pries C E, Lawrence C R, et al. Beyond bulk: Density fractions explain heterogeneity in global soil carbon abundance and persistence[J]. Global Change Biology, 2022, 28(3): 1178-1196. DOI:10.1111/gcb.16023
( ![]() |
[5] |
Hicks Pries C E, Castanha C, Porras R C, et al. The whole-soil carbon flux in response to warming[J]. Science, 2017, 355(6332): 1420-1423. DOI:10.1126/science.aal1319
( ![]() |
[6] |
Villarino S H, Talab E, Contisciani L, et al. A large nitrogen supply from the stable mineral-associated soil organic matter fraction[J]. Biology and Fertility of Soils, 2023, 59(7): 833-841. DOI:10.1007/s00374-023-01755-z
( ![]() |
[7] |
Jilling A, Keiluweit M, Gutknecht J L M, et al. Priming mechanisms providing plants and microbes access to mineral-associated organic matter[J]. Soil Biology and Biochemistry, 2021, 158: 108265. DOI:10.1016/j.soilbio.2021.108265
( ![]() |
[8] |
Shi F Y, Zhang F B, Yang M Y. Research hotspots and progress of soil organic carbon mineralization based on bibliometrics method (In Chinese)[J]. Acta Pedologica Sinica, 2022, 59(2): 381-392. DOI:10.11766/trxb202010280600 [史方颖, 张风宝, 杨明义. 基于文献计量分析的土壤有机碳矿化研究进展与热点[J]. 土壤学报, 2022, 59(2): 381-392.]
( ![]() |
[9] |
Shan H R, Zhang L, Gao Q, et al. Microbial community composition and species uniformity regulate the mineralization characteristics of organic carbon fractions in red soil (In Chinese)[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(1): 109-119. [单会茹, 张璐, 高强, 等. 红壤有机碳组分中微生物群落构成及均匀度决定其矿化特征[J]. 植物营养与肥料学报, 2023, 29(1): 109-119.]
( ![]() |
[10] |
Xue Z J, Li X Y, Jiao L, et al. Advance in the formation and stabilization mechanisms of soil mineral-associated organic carbon (In Chinese)[J]. Journal of Soil and Water Conservation, 2023, 37(5): 12-23. [薛志婧, 李霄云, 焦磊, 等. 土壤矿质结合态有机碳形成及稳定机制的研究进展[J]. 水土保持学报, 2023, 37(5): 12-23.]
( ![]() |
[11] |
Ma H L, Chen C C, Yin Y F, et al. Experimental study on carbon mineralization of different sizes particle in forest soils (In Chinese)[J]. Acta Pedologica Sinica, 2024. DOI:10.11766/trxb202303140102 [马红亮, 陈灿灿, 尹云锋, 等. 森林土壤不同粒径颗粒的碳矿化研究[J]. 土壤学报, 2024.]
( ![]() |
[12] |
Rong H, Fang H, Zhang Z B, et al. Effects of aggregate size distribution on soil pore structure and soil organic carbon mineralization (In Chinese)[J]. Acta Pedologica Sinica, 2022, 59(2): 476-485. DOI:10.11766/trxb202101270631 [荣慧, 房焕, 张中彬, 等. 团聚体大小分布对孔隙结构和土壤有机碳矿化的影响[J]. 土壤学报, 2022, 59(2): 476-485.]
( ![]() |
[13] |
Yang M, Long Q, Li W L, et al. Mapping the environmental cost of a typical Citrus-producing county in China: Hotspot and optimization[J]. Sustainability, 2020, 12(5): 1827. DOI:10.3390/su12051827
( ![]() |
[14] |
Ma X C, Lu X P, Zhang Z M, et al. Analyses of the soil and tree nutrition and fruit quality of Satsuma mandarin in orchards at different latitudes in Hunan Province (In Chinese)[J]. Journal of Fruit Science, 2018, 35(4): 423-432. [马小川, 卢晓鹏, 张子木, 等. 湖南省不同纬度温州蜜柑园土壤和叶片营养及果实品质分析[J]. 果树学报, 2018, 35(4): 423-432.]
( ![]() |
[15] |
[15] Kharkwal G, Rawat Y S. Structure and composition of vegetation in subtropical forest of Kumaun Himalaya[J]. African Journal of Plant Science, 2010, 4(4): 116-121.
( ![]() |
[16] |
Nan Y F, Guo S L, Zhang Y J, et al. Effects of slope aspect and position on soil organic carbon and nitrogen of terraces in small watershed (In Chinese)[J]. Plant Nutrition and Fertilizer Science, 2012, 18(3): 595-601. [南雅芳, 郭胜利, 张彦军, 等. 坡向和坡位对小流域梯田土壤有机碳、氮变化的影响[J]. 植物营养与肥料学报, 2012, 18(3): 595-601.]
( ![]() |
[17] |
Pedersen J A, Simpson M A, Bockheim J G, et al. Characterization of soil organic carbon in drained thaw-lake basins of Arctic Alaska using NMR and FTIR photoacoustic spectroscopy[J]. Organic Geochemistry, 2011, 42(8): 947-954. DOI:10.1016/j.orggeochem.2011.04.003
( ![]() |
[18] |
He Y T, He X H, Xu M G, et al. Long-term fertilization increases soil organic carbon and alters its chemical composition in three wheat-maize cropping sites across central and South China[J]. Soil and Tillage Research, 2018, 177: 79-87. DOI:10.1016/j.still.2017.11.018
( ![]() |
[19] |
Demyan M S, Rasche F, Schulz E, et al. Use of specific peaks obtained by diffuse reflectance Fourier transform mid-infrared spectroscopy to study the composition of organic matter in a Haplic Chernozem[J]. European Journal of Soil Science, 2012, 63(2): 189-199. DOI:10.1111/j.1365-2389.2011.01420.x
( ![]() |
[20] |
Lan X J, Lü Z Z, Liu X M, et al. Effects of long-term fertilization on contents and chemical compositions of particle and mineral-combined organic matter in red paddy soils (In Chinese)[J]. Soils, 2021, 53(1): 140-147. [蓝贤瑾, 吕真真, 刘秀梅, 等. 长期施肥对红壤性水稻土颗粒有机质和矿物结合态有机质含量与化学组成的影响[J]. 土壤, 2021, 53(1): 140-147.]
( ![]() |
[21] |
Brubaker S C, Jones A J, Lewis D T, et al. Soil properties associated with landscape position[J]. Soil Science Society of America Journal, 1993, 57(1): 235-239. DOI:10.2136/sssaj1993.03615995005700010041x
( ![]() |
[22] |
Cambardella C A, Elliott E T. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56(3): 777-783. DOI:10.2136/sssaj1992.03615995005600030017x
( ![]() |
[23] |
Laudicina V A, Novara A, Barbera V, et al. Long-term tillage and cropping system effects on chemical and biochemical characteristics of soil organic matter in a Mediterranean semiarid environment[J]. Land Degradation & Development, 2015, 26(1): 45-53.
( ![]() |
[24] |
Capriel P. Hydrophobicity of organic matter in arable soils: Influence of management[J]. European Journal of Soil Science, 1997, 48(3): 457-462. DOI:10.1111/j.1365-2389.1997.tb00211.x
( ![]() |
[25] |
Fultz L M, Moore-Kucera J, Calderón F, et al. Using fourier-transform mid-infrared spectroscopy to distinguish soil organic matter composition dynamics in aggregate fractions of two agroecosystems[J]. Soil Science Society of America Journal, 2014, 78(6): 1940-1948. DOI:10.2136/sssaj2014.04.0161
( ![]() |
[26] |
Margenot A J, Calderón F J, Goyne K W, et al. IR spectroscopy, soil analysis applications[M]//Encyclopedia of Spectroscopy and Spectrometry. Amsterdam: Elsevier, 2017: 448-454.
( ![]() |
[27] |
Šimon T, Javůrek M, Mikanová O, et al. The influence of tillage systems on soil organic matter and soil hydrophobicity[J]. Soil and Tillage Research, 2009, 105(1): 44-48. DOI:10.1016/j.still.2009.05.004
( ![]() |
[28] |
Xing Z, Tian K, Du C W, et al. Agricultural soil characterization by FTIR spectroscopy at micrometer scales: Depth profiling by photoacoustic spectroscopy[J]. Geoderma, 2019, 335: 94-103. DOI:10.1016/j.geoderma.2018.08.003
( ![]() |
[29] |
Liu Y, Yu X, Yu Y, et al. Application of "rdacca. hp"R package in ecological data analysis: Case and progress (In Chinese)[J]. Chinese Journal of Plant Ecology, 2023, 47(1): 134-144. [刘尧, 于馨, 于洋, 等. R程序包"rdacca. hp"在生态学数据分析中的应用: 案例与进展[J]. 植物生态学报, 2023, 47(1): 134-144.]
( ![]() |
[30] |
Li S P, Lu J J, Liang G P, et al. Factors governing soil water repellency under tillage management: The role of pore structure and hydrophobic substances[J]. Land Degradation & Development, 2021, 32(2): 1046-1059.
( ![]() |
[31] |
Tang J, Liu Y Q, Wang S N, et al. Characteristics of organic carbon mineralization in saline-alkali paddy field in western Jilin Province (In Chinese)[J]. Journal of Soil and Water Conservation, 2019, 33(2): 162-168. [汤洁, 刘禹晴, 王思宁, 等. 吉林西部盐碱地区稻田土壤有机碳矿化特征[J]. 水土保持学报, 2019, 33(2): 162-168.]
( ![]() |
[32] |
Fatima S, Riaz M, Al-Wabel M I, et al. Higher biochar rate strongly reduced decomposition of soil organic matter to enhance C and N sequestration in nutrient-poor alkaline calcareous soil[J]. Journal of Soils and Sediments, 2021, 21(1): 148-162. DOI:10.1007/s11368-020-02753-6
( ![]() |
[33] |
Wei J, Cheng B, He X L, et al. Characteristics of soil microbial community structure in the rhizosphere of Hedysarum laeve Maxim revealed by phospholipid fatty acid(PLFA) (In Chinese)[J]. Journal of Hebei Agricultural University, 2019, 42(1): 57-64. [蔚杰, 成斌, 贺学礼, 等. 磷脂脂肪酸(PLFA)法检测内蒙古沙化梁地不同坡位羊柴(Hedysarum laeve Maxim)根围土壤微生物群落结构[J]. 河北农业大学学报, 2019, 42(1): 57-64.]
( ![]() |
[34] |
Kan Z R, Virk A L, He C, et al. Characteristics of carbon mineralization and accumulation under long-term conservation tillage[J]. Catena, 2020, 193: 104636. DOI:10.1016/j.catena.2020.104636
( ![]() |
[35] |
Chen C M, Hall S J, Coward E, et al. Iron-mediated organic matter decomposition in humid soils can counteract protection[J]. Nature Communications, 2020, 11: 2255. DOI:10.1038/s41467-020-16071-5
( ![]() |
[36] |
Mosier S, Apfelbaum S, Byck P, et al. Adaptive multi-paddock grazing enhances soil carbon and nitrogen stocks and stabilization through mineral association in southeastern US grazing lands[J]. Journal of Environmental Management, 2021, 288: 112409. DOI:10.1016/j.jenvman.2021.112409
( ![]() |
[37] |
Adhikari D, Dunham-Cheatham S M, Wordofa D N, et al. Aerobic respiration of mineral-bound organic carbon in a soil[J]. Science of the Total Environment, 2019, 651: 1253-1260. DOI:10.1016/j.scitotenv.2018.09.271
( ![]() |
[38] |
Zhuang S Y, Li Q, Wang J. Effect of amorphous Al hydroxide addition on soil organic matter decomposition with bamboo plantation[J]. Journal of Soils and Sediments, 2016, 16(1): 95-104. DOI:10.1007/s11368-015-1168-5
( ![]() |
[39] |
Leifeld J, Kögel-Knabner I. Soil organic matter fractions as early indicators for carbon stock changes under different land-use?[J]. Geoderma, 2005, 124(1/2): 143-155.
( ![]() |
[40] |
Mustafa A, Xu M G, Ali Shah S A, et al. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of Southern China[J]. Journal of Environmental Management, 2020, 270: 110894. DOI:10.1016/j.jenvman.2020.110894
( ![]() |
[41] |
Cai A D, Xu H, Shao X F, et al. Carbon and nitrogen mineralization in relation to soil particle-size fractions after 32 years of chemical and manure application in a continuous maize cropping system[J]. PLoS One, 2016, 11(3): e0152521. DOI:10.1371/journal.pone.0152521
( ![]() |
[42] |
Rabbi S, Wilson B R, Lockwood P V, et al. Aggregate hierarchy and carbon mineralization in two Oxisols of New South Wales, Australia[J]. Soil and Tillage Research, 2015, 146: 193-203. DOI:10.1016/j.still.2014.10.008
( ![]() |
[43] |
Wang J, Chen F, Liu Y. Respiration characteristics of different sized soil aggregates and their contribution to carbon emissions (In Chinese)[J]. Plant Science Journal, 2014, 32(6): 586-593. [王菁, 陈防, 刘毅. 不同粒级土壤团聚体呼吸特征及其对碳排放的贡献[J]. 植物科学学报, 2014, 32(6): 586-593.]
( ![]() |
[44] |
Zhao J S, Chen S, Hu R G, et al. Aggregate stability and size distribution of red soils under different land uses integrally regulated by soil organic matter, and iron and aluminum oxides[J]. Soil and Tillage Research, 2017, 167: 73-79. DOI:10.1016/j.still.2016.11.007
( ![]() |
[45] |
Hontoria C, Gómez-Paccard C, Mariscal-Sancho I, et al. Aggregate size distribution and associated organic C and N under different tillage systems and Ca-amendment in a degraded Ultisol[J]. Soil and Tillage Research, 2016, 160: 42-52. DOI:10.1016/j.still.2016.01.003
( ![]() |
[46] |
Zheng H B, Liu W R, Zheng J Y, et al. Effect of long-term tillage on soil aggregates and aggregate- associated carbon in black soil of Northeast China[J]. PLoS One, 2018, 13(6): e0199523. DOI:10.1371/journal.pone.0199523
( ![]() |
[47] |
Somasundaram J, Chaudhary R S, Awanish Kumar D, et al. Effect of contrasting tillage and cropping systems on soil aggregation, carbon pools and aggregate-associated carbon in rainfed Vertisols[J]. European Journal of Soil Science, 2018, 69(5): 879-891.
( ![]() |
[48] |
Six J, Bossuyt H, Degryze S, et al. A history of research on the link between(micro)aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 2004, 79(1): 7-31.
( ![]() |
[49] |
Nguyen M L, Goldfarb J L, Plante A F, et al. Sorption temperature and the stability of iron-bound soil organic matter[J]. Geoderma, 2019, 341: 93-99.
( ![]() |
[50] |
Zhang Q, Fang H L, Shi Z H, et al. Advances in fluence factors of aggregate stability under erosion (In Chinese)[J]. Scientia Silvae Sinicae, 2007, 43(S1): 77-82. [张琪, 方海兰, 史志华, 等. 侵蚀条件下土壤性质对团聚体稳定性影响的研究进展[J]. 林业科学, 2007, 43(S1): 77-82.]
( ![]() |
[51] |
Schulten H R, Leinweber P. New insights into organic-mineral particles: Composition, properties and models of molecular structure[J]. Biology and Fertility of Soils, 2000, 30(5): 399-432.
( ![]() |
[52] |
Zhang Y, Liang A Z, Zhang X P, et al. Progress in soil aggregates physical conservation mechanism for organic carbon (In Chinese)[J]. Soil and Crop, 2015, 4(2): 85-90. [张延, 梁爱珍, 张晓平, 等. 土壤团聚体对有机碳物理保护机制研究[J]. 土壤与作物, 2015, 4(2): 85-90.]
( ![]() |
[53] |
Wang X H, Yang Z J, Liu X F, et al. Effects of different forms of Fe and Al oxides on soil aggregate stability in midsubtropical mountainous area of Southern China (In Chinese)[J]. Acta Ecologica Sinica, 2016, 36(9): 2588-2596. [王小红, 杨智杰, 刘小飞, 等. 中亚热带山区土壤不同形态铁铝氧化物对团聚体稳定性的影响[J]. 生态学报, 2016, 36(9): 2588-2596.]
( ![]() |