2. 南京林业大学生态与环境学院, 南方现代林业协同创新中心, 南京 210037;
3. 江苏洪泽湖湿地生态系统国家定位观测研究站, 江苏洪泽 223100;
4. 南京市高淳区阳江镇农业技术推广服务中心, 南京 211311;
5. 土壤与农业可持续发展全国重点实验室(中国科学院南京土壤研究所), 南京 211135
2. Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China;
3. National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China;
4. Yangjiang Town Agricultural Technology Extension Service Center in Gaochun District of Nanjing, Nanjing 211311, China;
5. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
溶解性有机质(Dissolved organic matter,DOM)在土壤有机质总量中占比较小(< 1%),但其在物质的生物地球化学循环中发挥着重要作用,调节养分循环、钝化/转化污染物、稳定微生态等,是评估土壤质量与生态环境健康风险的重要指标[1-2]。土壤DOM主要来源于植被枯枝落叶的分解产物、根系分泌物及其衍生物、腐殖质转化产物等,并在环境中固定或持续分解/芳香化,其总量与化学性质受植被覆盖类型、土壤矿物质/有机质组成、环境要素等影响显著,具有典型的空间异质性[3]。其中,植被是土壤有机质和DOM的初始来源,且其根系可调控土壤环境因子,因此,植被覆盖类型对土壤DOM的影响较为深远[4-5],相关研究工作的开展将有助于理解DOM的环境转化、生态效益与其定向调控等。
湿地土壤有机质矿化速率较慢,其在全球碳循环中,尤其是碳封存,扮演极其重要且特殊的角色[6]。DOM可流转于湿地水体与土壤环境,作用于整个湿地生态系统,其易分解性与较活跃的生化反应特性可显著影响湿地生态系统的碳循环、污染物消减等环境行为。因此,湿地土壤DOM总量与性质的变化等成为近些年湿地环境领域的研究重点与热点[7-8]。河湖交汇区是湿地生态系统极为特殊的活跃区域,水质、水位变化频率高、幅度大,能量与物质循环效率高,其中高活性组分DOM可参与或主导多个关键的多介质环境过程。然而,河湖交汇区土壤DOM的变化及其环境效应研究极为缺乏。此外,河湖交汇区是养分的聚集地带,植物资源丰富,常呈现出多植被类型覆盖现象。不同植被覆盖对河湖交汇区土壤DOM的影响尚未见报道。
洪泽湖是我国典型的平原浅水湖泊,受蓄洪行洪及南水北调东线工程影响,水位波动较为频繁、剧烈,尤其是淮河主河道入湖的河湖交汇区,被视为最重要的生物资源库和环境缓冲带。本研究以洪泽湖河湖交汇区为研究区域,选用湖草滩、芦苇滩、柳树林和杨树林4种典型植被覆盖土壤为研究对象,基于紫外-可见光谱和三维荧光光谱表征土壤DOM的组分与性质差异,为揭示河湖交汇区土壤DOM的空间异质性、理解其植物-微生物-动物-土壤之间的生物化学过程、评估其碳封存潜力和指导其生态修复等提供数据与理论基础。
1 材料与方法 1.1 研究区概况研究区位于江苏省西北部洪泽湖(33°06'-33°40'N,118°10'-118°52'E),采样地点为洪泽湖河湖交汇区,位于淮河主河道入湖口,洪泽湖东部湿地省级自然保护区内,同时也是江苏洪泽湖湿地生态系统国家定位观测研究站所在地。洪泽湖河湖交汇区自然演替植被类型主要为湖草与芦苇,1989—2016年间,当地林场为有效管理洪泽湖湿地,滩地和河道两岸人工抚育密植杨树和柳树等人工植物覆被类型。在自然发育与人为干扰下,随水位周期性变化,河湖交汇区逐渐形成湖草滩-芦苇滩-柳树林-杨树林的植被结构。
1.2 样品采集与分析土壤样品采集时间为2021年10月(洪泽湖枯水期),选择处于平原型湖泊靠近水体的缓坡型地带的典型湖草滩、芦苇滩、柳树林和杨树林4种植被覆盖类型,每个样地中随机设置4个10 m×10 m的重复样方,每个样方采用S型取样法用土钻按0~20 cm和20~40 cm土层重复采集多个样点,同一样方采集的土样混合成一个样品。湖草滩样地土壤pH为7.9,有机质含量为9.8 g·kg–1,黏粒、粉粒、砂粒含量分别为28.3%,41.5%和30.2%;芦苇滩样地土壤pH为7.9,有机质含量为9.6 g·kg–1,黏粒、粉粒、砂粒含量分别为18.4%,32.1%和49.5%;柳树林样地土壤pH为7.6,有机质含量为10.7 g·kg–1,黏粒、粉粒和砂粒含量分别为23.4%,35.5%和41.1%;杨树林样地土壤pH为7.7,有机质含量为11.0 g·kg–1,黏粒、粉粒和砂粒含量分别为27.6%、32.8%和39.6%。各采样地基本情况如表 1所示。
|
|
表 1 采样点基本情况 Table 1 Basic information of sampling sites |
土壤DOM提取:土样风干后过2 mm筛,按照土水质量比1︰6的比例浸提,25℃恒温震荡60 min,悬浊液以4 000 r·min–1的转速离心20 min,上清液过0.45 μm滤膜,得到土壤DOM溶液。
土壤溶解性有机碳(DOC)含量测定:利用总有机碳分析仪(OI Analytical,Aurora 1030,美国)测定土壤DOC含量,由于所测样品均已过0.45 μm滤膜,样品中有机碳均为溶解性,因此所测得的TOC值即为样品中的DOC含量。通过预试验确定DOM溶液的稀释倍数,以控制各样品中DOC浓度小于10 mg·L–1。单个样品检测时间为8 min,检测过程所用气体为纯氧,配备纯水,5%磷酸溶液和4.2%过硫酸钠溶液,磷酸溶液用于测定溶解性无机碳(DIC),过硫酸钠溶液和氧气用于测定溶解性总碳(DTC),采用差减法(DOC=DTC-DIC)计算得到土壤DOC含量。
土壤DOM紫外光谱测定:将DOM提取液采用紫外-可见光分光光度计(UV-2450)进行扫描,波长范围为200~800 nm,波长间隔为1 nm,扫描前将DOC浓度标准化至10 mg·L–1,以超纯水作为空白对照。
土壤DOM三维荧光光谱测定:三维荧光光谱(Three-dimensional excitation emission matrix,3D-EEM)采用三维荧光扫描光谱仪(Aqualog,HORIBA Instruments Inc.,美国)进行分析,配以1 cm×1 cm石英荧光样品池。荧光扫描光谱仪以氙气灯为激发光源,信噪比 > 20 000︰1。激发波长Ex范围为211~618 nm,扫描间隔为3 nm。发射波长Em范围为240~600 nm,采用电制冷CCD检测器,扫描间隔为3.54 nm。三维荧光光谱采用Origin 8.0软件(Origin Lab Inc.,美国)进行数据预处理,包括利用超纯水去除拉曼散射,消除一、二级瑞丽散射,并同时测量UV-Vis吸光光谱校正内滤效应。对处理后的三维荧光光谱,采用SOLO+MIA 8.6.1软件(Eigenvector Research,Inc.,美国)进行平行因子分析,并通过核一致性诊断和半劈裂分析验证模型。将建立的组分模型上传至OpenFluor在线数据库进行比较,以进一步鉴定模型中的组分来源与特性。
本研究中紫外-可见光谱相关参数包括A250/A365、SUVA254、SUVA260、SR;三维荧光参数包括荧光指数(FI)、自生源指数(BIX)、腐殖化指数(HIX);各参数计算方法及含义见表 2。
|
|
表 2 紫外-可见吸收光谱与荧光光谱参数 Table 2 Description of parameters in UV-Vis and fluorescence spectroscopy |
使用Excel 2021和SPSS 22.0软件对紫外-可见吸收光谱和三维荧光光谱数据进行参数计算和数据处理。采用单因素方差分析中的Duncan多重比较检验不同处理间差异显著性,统计显著性设为P < 0.05,采用Origin 8.5进行图形绘制。
2 结果与讨论 2.1 不同植被覆盖下土壤DOM含量不同植被覆盖下,差异化的有机碳输入与转化过程,致使DOM总量发生变化(图 1)。0~20 cm土层,DOC含量介于46.5~112.9 mg·kg–1之间,不同植被覆盖土壤DOC含量之间差异显著(P < 0.05),表现为芦苇滩 > 湖草滩 > 杨树林 > 柳树林,其中芦苇滩土壤DOC含量可达柳树林土壤DOC含量的2.4倍。20~40 cm土层,DOC含量介于70.6~93.0 mg·kg–1之间,芦苇滩、湖草滩和杨树林土壤DOC含量无显著性差异,但均显著低于柳树林土壤DOC含量(P < 0.05)。与巢湖湖滨带和岩溶区河岸等湿地不同植被类型下土壤DOC含量对比,本研究土壤DOC含量较高。营养盐等养分易在特殊的河湖交汇区聚集,满足植物生长需求,生长速率较快、生物质量较大,水位波动下植被更替频率高,植被残体累积快,有助于土壤DOM的形成[9-10]。对比0~20 cm和20~40 cm土层DOC含量,芦苇滩和湖草滩表现为表层土壤DOC含量较高,而杨树林和柳树林深层土壤DOC含量较高。乔木类植物扎根深、根系发达,可同时在深层与表层土壤产生大量DOM;而草本类植物扎根相对较浅,根系产生的DOM主要聚集在表层土壤[11]。DOM向下迁移的过程中,会在土壤界面反复分馏与转化,致使各植被覆盖土壤DOM含量间的差异性主要体现在0~20 cm土层,而20~40 cm土层则表现出均一化特征[12]。累积0~40 cm土层,芦苇滩土壤DOM最高、其次是湖草滩,柳树林与杨树林基本相似。与袁宏毅等[10]的研究较为相似,枯水期草本植被覆盖土壤DOC含量高于木本植被覆盖土壤DOC。草本类植物生物质形成速率较快,且易形成残体进入土壤,为DOM的产生提供了大量的前驱体[13]。河湖交汇区多雨、温暖的气候条件加快了凋落物的分解过程,形成DOM。草本植物中,芦苇具有株高优势,光合作用强度高,凋落物生物量增量大,其对土壤DOM与有机质的补充较为显著。
|
注:图中值为均值±标准误(n=4);不同大写字母表示0~20 cm土层不同植被覆盖土壤溶解性有机碳含量差异显著(P < 0.05),不同小写字母表示20~40 cm土层不同植被覆盖土壤溶解性有机碳含量差异显著(P < 0.05)。 Note: The median in the figure is mean ± standard error(n=4);Different capital letters indicate significant differences in the dissolved organic carbon content of soil with different vegetation cover in the 0-20 cm soil layer(P < 0.05);Different lowercase letters indicate significant differences in the dissolved organic carbon content of soil with different vegetation cover in the 20-40 cm soil layer(P < 0.05). 图 1 植被覆盖土壤溶解性有机碳含量 Fig. 1 Soi dissolved organic carbon derived from different vegetation types |
不同植被覆盖下,土壤DOM来源和总量不同,易在形成与转化过程中,形成差异化结构和性质(图 2)。A250/A365值与DOM的芳香性和分子量成反比,其值越小,表明DOM芳香性越高、分子量越大。从图 2a可知,湖草滩土壤A250/A365值为3.7~4.5,显著低于其他处理,尤其是20~40 cm土层,表明其土壤DOM的分子结构相对更为复杂,芳香化程度高。0~20 cm土层,柳树林土壤A250/A365值显著高于其他植被覆盖类型,表明其含有大量小分子类物质,移动性与反应性相对较高。除芦苇滩外,其他植被覆盖土壤A250/A365值随着土层深度的增加略有下降趋势,表明0~20 cm土层DOM分子量低于20~40 cm土层,尤以柳树林土壤最为显著。与大分子量DOM相比,中等分子量DOM(m/z =300~450)或小分子量DOM更易向下迁移,尤其是扎根深且根系发达的植被覆盖下的土壤[12]。与环滇池湿地土壤、昆明松华坝库区湿地土壤相比,本研究湿地土壤DOMA250/A365值(3.7~7.3)较高,与水体中DOMA250/A365值相似,表明河湖交汇区土壤DOM整体受水体影响较大[14-15]。
|
注:图中值为均值±标准误(n=4);不同大写字母表示0~20 cm不同植被覆盖土壤DOM紫外-可见光光谱指数差异显著(P < 0.05),不同小写字母表示20~40 cm不同植被覆盖土壤DOM紫外-可见光光谱指数差异显著(P < 0.05)。 Note: The median in the figure is mean ± standard error(n=4);Different capital letters indicate significant differences in the UV-visible spectral index of soil dissolved organic matter with different vegetation cover in the 0-20 cm soil layer(P < 0.05);Different lowercase letters indicate significant differences in the UV-visible spectral index of soil dissolved organic matter with different vegetation cover in the 20-40 cm soil layer(P < 0.05). 图 2 不同植被覆盖土壤溶解性有机质A250/A365(a),SUVA254(b),SUVA260(c)和SR(d)指数的变化 Fig. 2 A250/A365(a), SUVA254(b), SUVA260(c)and SR(d)of soil dissolved organic matter derived from different vegetation types |
SUVA254可表征DOM的芳香性结构和腐殖化程度,其值越高,表明DOM的芳香性和腐殖化程度也越高。从图 2b可知,不同植被覆盖下SUVA254均值介于1.3~1.8,0~20 cm土层SUVA254值由高到低顺序为湖草滩≈芦苇滩≈杨树林 > 柳树林,20~40 cm土层SUVA254值顺序为湖草滩 > 柳树林 > 杨树林 > 芦苇滩,表明湖草滩植被下土壤DOM中共轭结构和芳香性组分较多。本研究中DOM的SUVA254均值与报道的湿地土壤DOM相似,低于林地与农田土壤,与植被的生物质组分相关,水生植被蛋白质类等易分解物质较多,其分解过程中形成的芳香性结构的组分相对较少[9,16]。SUVA260与DOM中疏水性有机组分含量成正比。从图 2c可知,不同植被覆盖下,土壤DOM芳香性和疏水性趋势相同。SUVA260均值介于0.86~1.8之间,湖草滩植被下土壤DOM的疏水性最高;浅层芦苇滩土壤DOM的疏水性较高,但深层芦苇滩土壤DOM的疏水性最低;芦苇滩和杨树林土壤DOM疏水性差异不显著;杨树林与芦苇滩土壤DOM的疏水性受土层深度变化影响显著。DOM的疏水性对湿地环境中有机污染物的迁移转化影响巨大。柳树林表层土壤DOM疏水性最小,表明其对有机污染物,尤其是持久性高疏水有机污染物的捕获潜力较弱,不易随DOM扩散。与报道的湿地土壤DOM、林地土壤DOM相比,其SUVA260值相对较低,有助于避免河湖交汇区有机污染物的扩散[9,15,8]。
光谱斜率SR与DOM的相对分子质量呈负相关性。由图 2d可知,不同植被覆盖下土壤DOM的SR值为3.6~4.9,不同植被覆盖下土壤DOM的SR值顺序为芦苇滩 > 柳树林≈杨树林 > 湖草滩,表明芦苇滩土壤DOM中低分子量物质较多,高分子量物质较少,而湖草滩土壤中高分子量物质较多,与A250/A365分析结果一致,说明湖草滩土壤中腐殖化的大分子量组分较多。与常规农业耕作土壤相比(SR值为1.5~2.4),本研究中SR值略高,可能是由于研究区域为河湖交汇区,良好的水土环境促进了部分大分子有机物的快速分解,导致DOM的平均分子质量略小[17]。在垂直分布上,深层土壤SR值相对高于表层土壤,表明表层土壤DOM分子量高于深层土壤,进一步证实高分子量DOM主要集中在表层土壤,而中等/低分子量DOM更易向深层土壤迁移。
2.3 不同植被覆盖下土壤DOM荧光光谱特征通过植被覆盖下土壤DOM的平行因子分析,共发现4种PARAFAC组分(分别标记为C1、C2、C3和C4),结果如图 3所示。其中C1组分(Ex/Em:261 nm/459 nm)为高分子量的陆源类腐殖酸物质,广泛分布在湿地、森林、农田土壤中[18]。C2组分(Ex/Em:243 nm(318nm)/422 nm(541 nm))为海洋源类腐殖酸物质,广泛分布于海洋、河流、湖泊等环境中[19]。C3组分(Ex/Em:285 nm/498 nm)为类黄腐酸物质,分子量相对较低,自身可以发生光化学降解,形成氧自由基等[20]。C4组分(Ex/Em:273 nm/314 nm)为类蛋白物质,由新鲜植物凋落物分解产生[21]。
|
注:C1为陆源类腐殖酸物质,C2为海洋源类腐殖酸物质,C3为类黄腐酸物质,C4为类蛋白物质。下同。Note:C1 is terrestrial humic-like substances,C2 is marine humic-like substances,C3 is fulvic-like substances,and C4 is protein-like substances. The same below. 图 3 EEM-PARAFAC荧光特征组分 Fig. 3 Four fluorescence components obtained by EEM-PARAFAC analysis |
不同植被覆盖下土壤DOM各组分含量如图 4所示。在0~20 cm土层中,湖草滩和杨树林土壤DOM主要以C1和C2类腐殖酸组分含量较高,为67.7%~69.1%,C3类黄腐酸组分含量约为20%,类蛋白组分C4含量较低,仅为10.1%~12.1%;芦苇滩和柳树林土壤DOM中类腐殖酸组分(尤其是陆源类腐殖酸)和黄腐酸类组分含量略有下降,但蛋白类组分C4有所上升,含量为18.1%~18.9%。不同植被光合作用强度等的差异会影响其生长代谢过程,枯枝落叶等有机质输入量与组分均不同。此外,植被间根系分泌物的差异化,也会诱导微生物群落结构与活度的变化,土壤有机物(如木质素、角质)的降解和周转速率分异[22]。湖草滩长期积水,氧气含量低,微生物活性较低,植被残体代谢慢,易积累且易腐殖化,形成高芳香化、高分子量的类腐殖酸物质[23]。在20~40 cm土层中,湖草滩土壤DOM以类腐殖酸物质为主(陆源类占比41.3%,海洋源占比28.8%),蛋白类组分C4含量仅为7.4%;芦苇滩土壤DOM以蛋白类组分C4为主,含量高达30.6%,类黄腐酸组分C3含量较低,仅为14.3%;柳树林和杨树林土壤DOM组分含量基本类似,以陆源类腐殖酸组分C1和海洋源类腐殖酸组分C2为主,含量为62.3%~64.7%,类黄腐酸组分C3和类蛋白组分C4含量分别为15.6%~18.1%和17.2%~22.1%。湖草滩土壤中,DOM组分主要为稳定性和难降解的腐殖酸类物质,如单宁类、缩合芳香类和木质素类化合物等,性质较稳定[24]。湖草滩周期性淹水,水生植被生命周期持续被压缩,周年内呈现疯长与凋零交替,长期保持生物质的高效率累积与输入,干湿交替过程快速转化有机质,淹水时腐殖化加快,形成特有的组分与性质特征[25]。从DOM总量与组分的角度出发,湖草滩有助于河湖交汇区碳封存;芦苇滩较深土层(20~40 cm),蛋白类组分C4较多,可激发微生物活性,强化稳定态有机质的分解[26-27]。
|
图 4 不同植被覆盖土壤溶解性有机质荧光组分含量 Fig. 4 The four fluorescence components proportion of soil dissolved organic matter derived from different vegetation types |
不同植被覆盖下土壤DOM荧光光谱特征指数变化见表 3。荧光指数(FI)值可表征DOM的来源,FI值< 1.4可认为是植物源有机碳,FI值> 1.9则为微生物源有机碳[28]。由表可知,在表层0~20 cm土壤中,柳树林土壤DOM既有植物源也有微生物代谢产物源有机碳;湖草滩和杨树林土壤DOM的FI值均 < 1.4,主要为植物源有机碳,微生物源有机碳贡献较小;在20~40 cm土层中,湖草滩土壤DOM主要为植物源有机碳,微生物源有机碳贡献较小;芦苇滩土壤DOM既有植物源有机碳也有微生物代谢产物源有机碳。不同植被覆盖土壤DOM的FI值均较接近于1.4,与滨海湿地土壤DOM的FI值接近,表明河湖交汇区植被凋落物或残体增加速度快,同时微生物活动较弱,其DOM主要为植物源有机碳,分子结构较为复杂[29]。EEM-PARAFAC分析中C1组分的占比也证实了此结论。自生源指数(BIX)可表征DOM的自生源特征,BIX值越高,说明DOM的分解程度越高[30]。4种植被覆盖土壤DOM的BIX指数值介于0.47~0.72之间,均小于0.8,表明生物源特征不显著,与FI值反映的结果一致。与长江等流域土壤DOM相比,洪泽湖河湖交汇区DOM自生源特征不显著[31]。植被类型中,湖草滩具有最低的BIX值,其陆源/植物源特征最显著,分子量较大、芳香化程度高。腐殖化指数(HIX)是评价DOM腐殖化程度的重要指标,HIX值越高,土壤DOM腐殖化程度越高[32]。4种植被覆盖土壤DOM的HIX值为1.6~7.4,均高于1.5,表明DOM腐殖化程度较高[29]。0~20 cm土层DOM的HIX值表现为湖草滩 > 杨树林 > 柳树林 > 芦苇滩;20~40 cm土层DOM的HIX值表现为湖草滩 > 柳树林 > 杨树林 > 芦苇滩,表明湖草滩土壤DOM腐殖化程度最高,与紫外光谱指数结果基本一致。除湖草滩外,其他植被覆盖类型20~40 cm土层DOM的HIX值均低于表层土壤。植物源/陆源的基础上,湖草滩的特别之处在于长期淹水,尤其是深层土壤,其有助于有机碳的稳定化[33-34]。
|
|
表 3 不同植被覆盖土壤溶解性有机质荧光指数变化 Table 3 Fluorescence indices of soil dissolved organic matter derived from different vegetation types |
本研究通过紫外/可见光光谱和荧光光谱技术,研究了洪泽湖河湖交汇区湖草滩、芦苇滩、杨树林、柳树林覆盖下不同土层中DOM的光谱特征。主要结论如下:(1)相对于木本类植物杨树和柳树,草本类芦苇和湖草覆盖可显著提高土壤DOM含量,尤其是在0~20 cm土层,DOC含量可达112.9 mg·kg–1;(2)基于紫外/可见光光谱特征参数,湖草滩土壤分子量较大、疏水性和芳香性较高,纵向上规律不明显;(3)河湖交汇区不同植被覆盖土壤DOM组分均以类腐殖酸物质为主体,其中芦苇滩20~40 cm土层土壤DOM蛋白类物质显著提升;(4)河湖交汇区土壤DOM以植物源/陆源有机碳为主导,自生源特征不显著,微生物来源占比较低,腐殖化程度较高,碳形态较稳定。
致谢 感谢江苏洪泽湖湿地生态系统国家定位观测研究站工作人员在样品采集过程中提供的帮助。
| [1] |
D'Andrilli J, Silverman V, Buckley S, et al. Inferring ecosystem function from dissolved organic matter optical properties: A critical review[J]. Environmental Science & Technology, 2022, 56(16): 11146-11161.
( 0) |
| [2] |
Zhou P, Tian L, Graham N, et al. Spatial patterns and environmental functions of dissolved organic matter in grassland soils of China[J]. Nature Communications, 2024, 15(1): 6356.
( 0) |
| [3] |
Ding Y, Shi Z Q, Ye Q T, et al. Chemodiversity of soil dissolved organic matter[J]. Environmental Science & Technology, 2020, 54(10): 6174-6184.
( 0) |
| [4] |
Camino-Serrano M, Gielen B, Luyssaert S, et al. Linking variability in soil solution dissolved organic carbon to climate, soil type, and vegetation type[J]. Global Biogeochemical Cycles, 2014, 28(5): 497-509.
( 0) |
| [5] |
van den Berg L J L, Shotbolt L, Ashmore M R. Dissolved organic carbon(DOC)concentrations in UK soils and the influence of soil, vegetation type and seasonality[J]. Science of the Total Environment, 2012, 427: 269-276.
( 0) |
| [6] |
Ma S Z, Creed I F, Badiou P. New perspectives on temperate inland wetlands as natural climate solutions under different CO2-equivalent metrics[J]. NPJ Climate and Atmospheric Science, 2024, 7: 222.
( 0) |
| [7] |
Liang W Z, Chen X G, Zhao C, et al. Seasonal changes of dissolved organic matter chemistry and its linkage with greenhouse gas emissions in saltmarsh surface water and porewater interactions[J]. Water Research, 2023, 245: 120582.
( 0) |
| [8] |
Zhang X H, Bai J H, Zhang Z S, et al. Plant invasion strengthens the linkages between dissolved organic matter composition and the microbial community in coastal wetland soils[J]. Catena, 2023, 232: 107449.
( 0) |
| [9] |
Shen H Y, Wang J F, Cao C Z, et al. Study on DOM spectra of different soil types in Chaohu lakeside zone (In Chinese)[J]. Resources and Environment in the Yangtze Basin, 2023, 32(4): 729-738. [申慧彦, 王嘉富, 曹承泽, 等. 巢湖湖滨带不同土地类型土壤DOM光谱研究[J]. 长江流域资源与环境, 2023, 32(4): 729-738.]
( 0) |
| [10] |
Yuan H Y, Tan F X, Li Q F, et al. Seasonal dynamics of dissolved carbon in soil-vegetation-water system in Karst riparian zone (In Chinese)[J]. Chinese Journal of Applied and Environmental Biology, 2025, 31(3): 509-517. [袁宏毅, 覃方兴, 李琼芳, 等. 岩溶区河岸带土壤-植被-水体中可溶性碳的季节动态特征[J]. 应用与环境生物学报, 2025, 31(3): 509-517.]
( 0) |
| [11] |
Yang F, Huang M B, Li C H, et al. Changes in soil moisture and organic carbon under deep-rooted trees of different stand ages on the Chinese Loess Plateau[J]. Agriculture, Ecosystems & Environment, 2022, 328: 107855.
( 0) |
| [12] |
Roth V N, Lange M, Simon C, et al. Persistence of dissolved organic matter explained by molecular changes during its passage through soil[J]. Nature Geoscience, 2019, 12: 755-761.
( 0) |
| [13] |
Wang J K, Xu Y D, Ding F, et al. Process of plant residue transforming into soil organic matter and mechanism of its stabilization: A review (In Chinese)[J]. Acta Pedologica Sinica, 2019, 56(3): 528-540. DOI:10.11766/trxb201811140559 [汪景宽, 徐英德, 丁凡, 等. 植物残体向土壤有机质转化过程及其稳定机制的研究进展[J]. 土壤学报, 2019, 56(3): 528-540.]
( 0) |
| [14] |
Li S D, Jiang Q L, Li Y, et al. Spectroscopic characteristics and sources of dissolved organic matter from soils around Dianchi Lake, Kunming (In Chinese)[J]. Spectroscopy and Spectral Analysis, 2017, 37(5): 1448-1454. [李帅东, 姜泉良, 黎烨, 等. 环滇池土壤溶解性有机质(DOM)的光谱特征及来源分析[J]. 光谱学与光谱分析, 2017, 37(5): 1448-1454.]
( 0) |
| [15] |
Li S D, Zhang M L, Yang H, et al. Spectroscopic characteristics of dissolved organic matter from top soils on SongHuaba Reservoir in Kunming (In Chinese)[J]. Spectroscopy and Spectral Analysis, 2017, 37(4): 1183-1188. [李帅东, 张明礼, 杨浩, 等. 昆明松华坝库区表层土壤溶解性有机质(DOM)的光谱特性[J]. 光谱学与光谱分析, 2017, 37(4): 1183-1188.]
( 0) |
| [16] |
Zhang F F, Gao N, Wu S Z, et al. Effects of long-term film mulching and nitrogen application on soil dissolved organic matter content and structure characteristics in different soil layers (In Chinese)[J]. Acta Scientiae Circumstantiae, 2023, 43(11): 300-313. [张方方, 高娜, 吴锁智, 等. 长期施氮和覆膜对土壤溶解性有机质含量及其结构特征的影响[J]. 环境科学学报, 2023, 43(11): 300-313.]
( 0) |
| [17] |
Chen X Y, Liu Y Q, Chen M, et al. Impact of crop diversity(rotation)on quantity and spectral characteristics of latosolic dissolved organic matter[J/OL]. Journal of Agricultural Resources and Environment, 2025, 42(1): 149—158.[陈心怡, 刘钰钦, 陈淼, 等. 作物多样性(轮作)下砖红壤溶解性有机质含量及光谱特征[J]. 农业资源与环境学报, 2025, 42(1): 149—158.]
( 0) |
| [18] |
Chen M L, Kim S H, Jung H J, et al. Dynamics of dissolved organic matter in riverine sediments affected by weir impoundments: Production, benthic flux, and environmental implications[J]. Water Research, 2017, 121: 150-161.
( 0) |
| [19] |
Gao Z Y, Guéguen C. Size distribution of absorbing and fluorescing DOM in Beaufort Sea, Canada Basin[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 2017, 121: 30-37.
( 0) |
| [20] |
Harjung A, Sabater F, Butturini A. Hydrological connectivity drives dissolved organic matter processing in an intermittent stream[J]. Limnologica, 2018, 68: 71-81.
( 0) |
| [21] |
Catalá T S, Reche I, Fuentes-Lema A, et al. Turnover time of fluorescent dissolved organic matter in the dark global ocean[J]. Nature Communications, 2015, 6: 5986.
( 0) |
| [22] |
Tong H, Simpson A J, Paul E A, et al. Land-use change and environmental properties alter the quantity and molecular composition of soil-derived dissolved organic matter[J]. ACS Earth and Space Chemistry, 2021, 5(6): 1395-1406.
( 0) |
| [23] |
Ferronato C, Marinari S, Francioso O, et al. Effect of waterlogging on soil biochemical properties and organic matter quality in different salt marsh systems[J]. Geoderma, 2019, 338: 302-312.
( 0) |
| [24] |
Zhou P, Tian L, Siddique M S, et al. Divergent fate and roles of dissolved organic matter from spatially varied grassland soils in China during long-term biogeochemical processes[J]. Environmental Science & Technology, 2024, 58(2): 1164-1176.
( 0) |
| [25] |
Hang Z Q, Wang G X, Liu J E, et al. Characterization of soil organic carbon fractions at Spartina alterniflora saltmarsh in North Jiangsu (In Chinese)[J]. Acta Ecologica Sinica, 2014, 34(15): 4175-4182. [杭子清, 王国祥, 刘金娥, 等. 互花米草盐沼土壤有机碳库组分及结构特征[J]. 生态学报, 2014, 34(15): 4175-4182.]
( 0) |
| [26] |
Bernal B, McKinley D C, Hungate B A, et al. Limits to soil carbon stability: Deep, ancient soil carbon decomposition stimulated by new labile organic inputs[J]. Soil Biology and Biochemistry, 2016, 98: 85-94.
( 0) |
| [27] |
Ji H, Han J G, Xue J M, et al. Soil organic carbon pool and chemical composition under different types of land use in wetland: Implication for carbon sequestration in wetlands[J]. Science of the Total Environment, 2020, 716: 136996.
( 0) |
| [28] |
Miao C H, Lü Y Z. Spectral characteristics and structural differences of DOM in black soil, fluvo-aquic soil and red soil (In Chinese)[J]. Soils, 2021, 53(1): 168-172. [缪闯和, 吕贻忠. 黑土、潮土和红壤可溶性有机质的光谱特征及结构差异[J]. 土壤, 2021, 53(1): 168-172.]
( 0) |
| [29] |
He D M, Wang H, Zhu Y Y, et al. Spectral characteristics of soil dissolved organic matter in the coastal wetlands of Yancheng City, China (In Chinese)[J]. Journal of Ecology and Rural Environment, 2023, 39(6): 781-787. [何冬梅, 王火, 祝亚云, 等. 盐城滨海湿地土壤溶解性有机质的光谱特征分析[J]. 生态与农村环境学报, 2023, 39(6): 781-787.]
( 0) |
| [30] |
Wang Y L, Hu Y Y, Yang C M, et al. Variations of DOM quantity and compositions along WWTPs-river-lake continuum: Implications for watershed environmental management[J]. Chemosphere, 2019, 218: 468-476.
( 0) |
| [31] |
Zhang Z H, Chen X, Li H B, et al. Spectral characteristics of dissolved organic matter in the Yangtze River basin and its response to natural and human activities[J/OL]. Environmental Science, 2025, 46(4): 2135—2144.[张子寒, 陈星, 李海彬, 等. 长江流域溶解性有机质光谱特征及其对自然和人为活动的响应[J]. 环境科学, 2025, 46(4): 2135—2144.]
( 0) |
| [32] |
Liang D, Zhou Q L, Zhang H, et al. Effects of biochar and organic fertilizers combined application on spectral characteristics of soil dissolved organic matter in paddy soil (In Chinese)[J]. Acta Pedologica Sinica, 2024, 61(4): 1123-1133. DOI:10.11766/trxb202302020039 [梁栋, 周巧林, 张辉, 等. 生物质炭和有机肥配施对水稻土溶解性有机质光谱学特征的影响[J]. 土壤学报, 2024, 61(4): 1123-1133.]
( 0) |
| [33] |
Dove N C, Barnes M E, Moreland K, et al. Depth dependence of climatic controls on soil microbial community activity and composition[J]. ISME Communications, 2021, 1(1): 78.
( 0) |
| [34] |
Guo M, Yang L, Zhang L, et al. Hydrology, vegetation, and soil properties as key drivers of soil organic carbon in coastal wetlands: A high-resolution study[J]. Environmental Science and Ecotechnology, 2025, 23: 100482.
( 0) |
2025, Vol. 62







0)