2. 沈阳工业大学建筑与土木工程学院, 沈阳 110870;
3. 北京林业大学水土保持学院, 北京 100083
2. School of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang 110870, China;
3. School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
煤矿开采在带来巨大经济效益的同时也造成了生态环境的破坏。其中,排土场作为人工巨型松散堆积体,具有地表物质复杂、结构松散,层组紊乱等特征,经过非均匀沉降后会形成大小不一的裂缝,使排土场的边坡稳定性明显降低,近年来,极端暴雨事件频发,在高强度、短历时的极端暴雨条件下,易诱发滑坡和泥石流等地质灾害[1-2],使排土场成为矿区极强烈侵蚀区域。暴雨工况下,排土场边坡位移不断增长,越趋于饱和的土体越易呈现颗粒流且越早滑动,坡体力学参数严重弱化,基底出现弱层,滑面与滑体范围扩大,安全系数与自然工况下相比降低20%~30%,继而排土场边坡在暴雨作用下易出现土壤侵蚀,导致失稳[3-4]。土壤侵蚀是地形、土壤类型、植被、降雨等多种因素综合作用的结果[1,5-6]。相关研究阐明在不同水动力条件下,侵蚀沟形成,土壤侵蚀量显著增加,黄土可蚀性值约为紫土的2倍,临界剪应力约为紫土的1/2,但当生物结皮超过1.22 g.dm–2时,土壤可免受径流侵蚀[7-9]。土壤剥蚀率作为土壤侵蚀的量化,研究主要集中在黄土高原区[10]、干热河谷区[11]、花岗岩崩岗区[12]等,主要采用室内模拟降雨[13],冲刷试验[12,14-15]等方法,研究土壤剥蚀率、植被类型及各水动力学参数之间的关系,揭示了坡面产流产沙量对不同植被类型和降雨强度的响应,径流剪切力、水流功率对土壤剥蚀率的线性关系及雷诺数对耕作状态下坡面水力侵蚀的较好描述[11-12]。
植被措施能够削弱降雨对地表的侵蚀作用,增加土壤水分入渗量、降低径流能量,被认为是防治土壤侵蚀的根本措施,而合理的植被覆盖度可有效改善土壤结构继而提高土壤的抗蚀抗冲性,降雨条件下,减流减沙效益随植被覆盖度的提高而增加,因此,植被覆盖度是减少水土流失的主要因素,且植被覆盖度对重建矿区生态恢复力至关重要[16-18]。因此,通过合理布设排土场植被覆盖度不仅能促进生态恢复,还能有效消减径流动能,提高土壤抗冲性[17]。目前,关于不同植被覆盖度对土壤剥蚀率的影响已有一定程度的研究[19-20],但在极端暴雨条件下植被覆盖度对矿区排土场松散边坡土壤剥蚀过程的研究尚有不足,而探究极端暴雨作用下不同植被覆盖度对土壤剥蚀率的影响可为合理设计矿区复垦植被最佳覆盖度及防治水土流失提供科学依据。鉴于此,本文以阜新海州区露天煤矿西排土场为研究对象,采用室内模拟人工降雨的研究方法,分析不同植被覆盖度和雨强条件下,土壤剥蚀率与水动力学参数之间的定量关系,以期为揭示排土场坡面土壤侵蚀机理提供理论依据。
1 材料与方法 1.1 研究区概况研究区位于辽宁省阜新市海州露天煤矿西排土场(121°40′12″E,41°57′36″N),如图 1所示,总面积约为13 km2。该区属北温带大陆性半干旱季风气候,年均温7.30℃,年均降雨量为511.4 mm,集中于7—8月份,占全年降雨量的70%。排土场呈阶梯状,陡坎坡平均坡度为45°,相对高差为3~60 m,最高标高为200 m,西排土场由于开采时间较长,水土流失面积占总面积45%以上,2004年由国土资源部投资对该排土场开展了土地复垦工作,复垦土地规模为998.2 hm2。复垦初期,排土场采取大型复垦设备对其进行搬运、平整、压实等土地整治工作,使复垦区形成易于植被恢复的地形地貌,之后再对其进行客土回填工作。2005年复垦工作基本结束,平台复垦采取覆土措施,覆土厚度约为0.3 m,复垦树种为刺槐(Robinia pseudoacacia)、榆树(Ulmus pumila)、刺槐和榆树混交、紫穗槐(Amorpha fruticosa Linn)、火炬树(Rhus typhina)、柠条(Caragana korshinskii Kom),林龄均为17年。边坡复垦同样采取覆土措施,厚度约为0.5 m,主要以撒播草籽和人工种草的形式进行恢复,植被覆盖度为38%。排土场的水分全部来自天然降水。
|
图 1 海州露天煤矿地理位置图 Fig. 1 Geographical location map of Haizhou open-pit coal mine |
试验采用室内人工模拟降雨方法研究排土场坡面土壤侵蚀过程。试验装置为SX2004下喷式人工模拟降雨器和可调节坡度土槽,降雨器的供水设备由水源、蓄水池、潜水泵、压力表构成(图 2)。降雨设备由10个SPRACO圆形喷头构成,喷头行间距为0.5 m,口径为2.5 mm,每个喷头固定位置距离地面垂直高度为4.0 m,利用潜水泵对蓄水池进行升压,多次率定后降雨均匀度保证在90%以上,误差控制在5%左右[1]。试验操作过程中通过喷头压力使其人工模拟降雨器降雨雨滴获得一定初始速度,对降雨强度的控制达到降雨动能与天然降雨相似,雨滴终点速度可达2.5 mm·s–1。依据排土场相似模拟理论[1]与野外现场调查相结合,确定试验土槽尺寸为长1 m,宽0.3 m,高0.3 m,土槽底部有8个排水孔,孔径为4 cm,前端设有出水口,用来收集试验过程中产生的径流和泥沙。
|
图 2 人工模拟降雨设备 Fig. 2 Artificial simulation of rainfall equipment |
本试验根据野外排土场实际坡度,设计为35°。根据当地多年降雨资料及短时间暴雨的计算方法,试验设计3个降雨强度(50 mm·h –1、75 mm·h –1、100 mm·h –1),降雨历时为45 min。已有研究表明40%~50%的植被覆盖度减流减沙效益显著,达50%时,植被格局的减流减沙效益分别为49.62%及80.54%,而70%~80%的植被覆盖度为临界覆盖度,植被可发挥最大的蓄水保土作用[16-17],同时,结合现场踏查结果,设计3个植被覆盖度(0%、40%、70%)开展试验。植被采用横坡带状种植方式[5,21](图 3),使草带与土槽等高线平行,垂直于径流方向,不断拦截、分割坡面水流,起到阶梯式分级阻控作用,能有效消减径流的冲刷动能。通过控制带宽10 cm来控制植被覆盖度,在土层上铺设厚度为1~2 cm草皮的方式进行种草,对草皮进行定期浇水,保持草被高度在10~15 cm。1个月后,待草根完全扎入土壤且植被实际覆盖度满足试验要求后再开展降雨试验,每场试验设计3个重复。
|
图 3 植被覆盖度设计 Fig. 3 Vegetation coverage design |
供试土样为排土场内土壤和下层煤矸石。现场取土采取“S”型取样法选取5个样点(0~50 cm),将其混合装袋,将试验土样带回实验室后分别进行风干和过筛,去掉土壤的根系和石块等杂质,煤矸石过20 mm和10 mm孔径的筛子,取10~20 mm孔径碎石和小于10 mm孔径的土壤样品。首先将煤矸石填入土槽底部,合计20 cm,按照每10 cm一个土层分两层填入土槽,每层进行打毛处理;其次填入土壤,土壤厚度为10 cm,模拟排土场覆土状态,控制容重接近设计容重(相对误差不超过5%)。
1.4 测定指标当降雨开始后待排土场边坡产流开始时计时并测定指标和收集径流泥沙样,每隔3 min测定1次,主要测量流速、流宽、流深、径流泥沙量等,流速采用染色法测得坡面表层最大流速并根据径流流态进行修正(过渡流:0.7;紊流:0.8),流宽和流深采用钢尺测量。收集到径流泥沙样后,用量杯读取径流量,然后静置、沉淀、去除上清液,再用烘干法(105℃)测定侵蚀量。利用径流量和侵蚀量计算含沙量。
(1)流速(v)可以反映坡面径流流动的速度,为单位时间内流动的距离,其计算公式为:
| $ v = \frac{s}{t} $ | (1) |
式中,v为水流流速,m·s–1;s为水流流过的距离,m;t为对应的时间,s。
(2)雷诺数(
| $ Re = \frac{{vR}}{\eta } $ | (2) |
| $ Re = \frac{A}{{Wp}} $ | (3) |
式中,
(3)径流剪切力(
| $ \tau = \rho gRJ = rRJ $ | (4) |
式中,
(4)径流功率(ω)是单位面积水体的水流功率,反映水流流动时的挟沙能力,其计算公式为:
| $ \omega = \tau V $ | (5) |
式中,ω为径流功率,N·m–1·s–1;
(5)土壤剥蚀率(D)是单位时间单位面积径流侵蚀的泥沙质量,其表征坡面径流对土体分离能力,其计算公式为:
| $ D = \frac{M}{{bLt}} $ | (6) |
式中,D为土壤剥蚀率,g·m–2·min–1;M为各时段产沙量,g;b为流宽,cm;L为坡长,m;t为时间间隔,min。
1.5 数据处理采用SPSS27.0进行数据分析,origin 2024、Coreldraw2022、AutoCAD 2022、ArcGIS9.2进行图表制作。
2 结果 2.1 土壤剥蚀率随降雨历时的变化规律降雨历时45 min(图 4),40%和70%植被覆盖度土壤剥蚀率均表现为先增大后减小,持续波动后趋于稳定变化。0%植被覆盖度下土壤剥蚀率波动幅度较为显著,表现为降雨初期前3 min的土壤剥蚀率较大,而后迅速下降,6 min后递减速度放缓,15 min后出现峰值,随时间的延长最终趋于稳定。对比整个降雨历时,植被覆盖度40%和70%的平均土壤剥蚀率,于降雨强度为50 mm·h –1时,分别为0%植被覆盖度的19.86%和13.33%;降雨强度为75 mm·h –1时,分别为0%植被覆盖度的57.59%和15.83%;降雨强度为100 mm·h –1时,分别为0%植被覆盖度的59.01%和24.35%。相同降雨强度,平均土壤剥蚀率整体随植被覆盖度的增大而显著减小(P < 0.05)。0%、40%及70%植被覆盖度下,随降雨强度的增加总土壤剥蚀率呈极显著增加(P < 0.01)。当植被覆盖度为0%时,降雨强度为50 mm·h –1、75 mm·h –1、100 mm·h –1时的总土壤剥蚀率最大值可分别达203 g·m−2·min−1、435 g·m−2·min−1及1044 g·m−2·min−1。在相同植被覆盖度下,总土壤剥蚀率随降雨强度的增加而增大,与张乐涛等[14]研究工程堆积体陡坡坡面土壤侵蚀水动力学过程结果类似。
|
图 4 不同降雨强度下土壤剥蚀率随降雨历时的变化规律 Fig. 4 Changes in soil erosion rate with rainfall duration under different rainfall intensities |
方差分析结果显示(表 1),降雨强度、植被覆盖度、降雨强度和植被覆盖度的交互作用,对土壤剥蚀率有极显著影响(P < 0.01),三者及其他不可控因素对土壤剥蚀率的贡献率分别为50%、36%、11%和3%,表明降雨强度在控制土壤剥蚀率中起主导作用,植被覆盖度为次要作用。
|
|
表 1 降雨强度和植被覆盖度对土壤剥蚀率及各水力学参数影响的显著性和贡献率 Table 1 Significance and contribution rate of rain intensity and vegetation coverage on soil erosion rate and hydraulic parameters based on variance analysis |
坡面地表产流及土壤剥蚀量是土壤水力侵蚀的直观表现,而不同水力条件与植被覆盖度对两者均有影响[11](图 5)。不同降雨强度下,植被覆盖度为0%的产沙总量和径流总量均显著高于40%和70%植被覆盖度(P < 0.05)。当降雨强度和植被覆盖度分别为100 mm·h –1和0%时,产沙总量和径流总量最大,分别为546.69 g和6 080 mL。3种降雨强度下,植被覆盖度为40%和70%的产沙总量较0%分别显著下降78%~81%和84%~87%(P < 0.05),径流总量分别显著下降17%~26%和18%~27%(P < 0.05)。降雨强度相同,植被覆盖度增加,植被的拦蓄效益增强[20],产沙总量和径流总量均随着植被覆盖度的增加而减少,与邓彪等[19]研究排土场植被覆盖度对水土流失的影响结果一致。同一植被覆盖度,产沙总量和径流总量均随降雨强度的增加而增加,当降雨强度和植被覆盖度为50 mm·h –1和70%时,产沙总量和径流总量最小,分别为23.04 g和2600 mL。不同植被覆盖度下,降雨强度为75和100 mm·h –1的产沙总量较50 mm·h –1分别显著增加13.89~120.41 g和66.92~386.14 g(P < 0.05),径流总量分别显著增加1 610~1670 mL和1 940~2 530 mL(P < 0.05)。
|
注:不同小写字母表示同一植被覆盖度下不同降雨强度间的差异显著(P < 0.05),不同大写字母表示同一降雨强度下不同植被覆盖度间的差异显著(P < 0.05)。 Note: Different lowercase letters indicated significant differences among different rainfall intensities under the same vegetation coverage(P < 0.05), and different capital letters indicated significant differences in different vegetation cover under the same rainfall intensity(P < 0.05). 图 5 不同植被覆盖度和降雨强度影响下产沙总量(a)和径流总量(b) Fig. 5 Sediment yield and runoff under the influence of different vegetation coverage(a) and rainfall intensity(b) |
对不同植被覆盖度的土壤剥蚀率与雷诺数、剪切力、径流功率进行回归分析。植被覆盖度对雷诺数、径流剪切力、径流功率的贡献率大于降雨强度、降雨强度和植被覆盖度的交互作用,贡献率分别为58%、46%和48%(表 1)。植被覆盖度为0%、40%、70%时,平均土壤剥蚀率与平均雷诺数、平均径流剪切力和平均径流功率均呈极显著的幂函数关系(P < 0.01)(图 6),其中,植被覆盖度为70%的拟合度最好,且植被覆盖度为70%时土壤剥蚀率与径流功率回归效果最显著,决定系数R2为0.894,径流剪切力次之。表明植被覆盖度增加,径流流速减慢,功率减小,且植被为横坡带状种植,可起阶梯式分级阻控作用,能有效消减径流的冲刷动能。因此,土壤剥蚀率直接受径流功率和径流剪切力的影响,这两个指标直接反映径流携沙能力的大小。不同植被覆盖度下,土壤剥蚀率与雷诺数的拟合度均小于剪切力和径流功率。雷诺数的数值大多反映的是坡面水流流态,间接反映径流的侵蚀能力,所以拟合效果相对较差,与戴佳栋等[11]的研究结果有所不同,可能源于后者的研究对象为耕地,随耕作侵蚀强度的增加,上坡部位土层在耕作侵蚀作用下变浅变薄后会对坡面水流流态产生影响。
|
图 6 不同植被覆盖度下土壤剥蚀率与水动力学参数的关系 Fig. 6 Relationship between soil erosion rate and hydrodynamic parameters under different vegetation coverage |
由于人为因素导致排土场土壤物理性质发生极大改变,表现为土壤容重增加,造成土壤入渗速率降低,引起排土场水土流失,而边坡是发生水土流失的主要源点[19]。极端暴雨具有降雨量大且强度高的特点,降雨强度远大于土壤入渗速率,坡面产流机制以超渗产流为主,其主要通过降雨量和雨滴击溅影响土壤侵蚀,因此,降雨强度是影响坡面径流产沙过程最重要的特性因子[4,6,22]。降雨入渗过程中,排土场坡面首先发生溅蚀,导致坡面无黏性土层饱和之后表现为侵蚀破坏,浸润峰不断向下运移,坡体开始发生浅层破坏,且破坏规模逐渐增大,随着降雨的持续,开启饱和-浅层滑坡-新表土层达到饱和的循环模式,整体呈现为溯源侵蚀和浅层破坏特征,最终坡体发生整体失稳并破坏[4]。在极端暴雨作用下,由于重力和径流搬运能力的双重作用,边坡表面出现侵蚀,露天煤矿排土场土壤剥蚀率变化特征均为先增大后减小,波动后趋于稳定。此外,在同一植被覆盖度下,降雨对边坡土壤表面的击溅作用随降雨强度的增加而增强,导致产沙总量、径流总量及土壤剥蚀率均增加。降雨强度对土壤剥蚀率贡献率为50%,占据主导地位,这与白玉洁等[10]研究急陡黄土坡面土壤剥蚀率变化的水动力学机制结果类似。
基于方差分析,植被覆盖度对土壤剥蚀率的贡献率为36%。植被覆盖度为40%和70%的产沙总量和径流总量分别显著低于0%(P < 0.05)。在植被覆盖度为0%的情况下土壤剥蚀率易出现突变值和谷峰值,这是由于不受植被覆盖度的影响,产流初期表层土壤由于受到雨滴的打击,土体稳定性差更容易脱离坡面,在其搬运的同时带动周边土壤颗粒脱离表面,加之排土场土体土质松动,黏结性较低,土壤抗蚀性较差,极易发生坍塌,导致剥蚀率迅速增大,相关研究表明坍塌对剥蚀率的贡献可达90.93%[15]。随着降雨的继续,土壤团聚体在雨滴动能的击溅作用下破碎,形成细小颗粒堵塞表层土壤孔隙,土壤表面开始形成结皮,土壤的抗溅蚀强度增加[23],导致降雨后期土壤剥蚀率逐渐趋于稳定。整个降雨过程中,土壤剥蚀率及产流产沙量表现为植被覆盖度0% > 40% > 70%,表明植被覆盖度越高,水流动力分散坡面土壤颗粒的能力越弱,土壤流失量越少。植物地上部分既能通过机械阻挡减缓径流流速,有效拦截坡面产生的径流泥沙,还具有削弱降雨溅蚀、抑制地表径流以及截留降雨的作用[24-25]。同时,植被根系通过改善土壤结构,增加土壤空隙,使较多的径流被贮存,增加土壤水分的横向与侧向疏导,增强土壤的入渗能力[26]。此外,植被还对根际土壤酶活性、细菌群落具有显著影响,通过增加细菌丰度和多样性改善土壤特性,增加土壤有机质,促进土壤团聚体稳定性,进一步增强土壤的抗蚀抗冲性[27-29]。因此,植被覆盖度越高地表裸露面积越少,抵御降雨和水流的冲击力作用就越强,植被覆盖度是影响土壤侵蚀的重要指标。当降雨强度一定时,坡面产沙总量和径流总量均随植被覆盖度的增加而减少。植被覆盖度从0%增加至40%时,产沙总量和径流总量显著下降(P < 0.05),植被覆盖度从40%增加至70%时,产沙总量和径流总量呈下降趋势(图 6),表明植被覆盖度可有效防止排土场边坡水土流失,是缓解排土场水土流失的关键因素,提高植被覆盖度对排土场的减流减沙效益显著[5,19]。
由于水动力学参数与土壤剥蚀率之间均具有较好的相关性,多以水流功率、径流剪切力、单位水流功率等为衡量水动力学的临界动力条件[30-31]。研究选取了雷诺数、剪切力和径流功率三个水动力学参数进行分析,结果显示,三者存在极显著的线性正相关关系(P < 0.01)(图 7),在三者的共同作用下,坡面径流量及产沙量随着降雨强度的增大而增加,土壤侵蚀程度加剧。各水动力学参数与土壤剥蚀率进行拟合,均呈极显著的幂函数关系(P < 0.01),其中,植被覆盖度为70%的相关系数最高(图 6)。相比裸地而言,增加植被覆盖度更能体现土壤剥蚀率与其他水动力学参数之间的相关关系。拟合结果显示径流功率优于径流剪切力对土壤剥蚀率的描述,这与康宏亮等[13]在降雨条件下风沙区砾石对堆积体坡面径流及侵蚀特征研究结果一致,而土壤剥蚀率与径流功率回归效果最显著,与白玉洁等[10]、张乐涛等[14]、张祎帆等[20]研究结果一致。
|
图 7 水动力学参数间的相关关系 Fig. 7 The correlation between hydrodynamic parameters |
土壤剥蚀率主要受降雨强度和植被覆盖度两个因素影响,其中,降雨强度是影响土壤剥蚀率的主导因素,贡献率可达50%。产沙总量和径流总量均随植被覆盖度的增加而减少,随降雨强度的增加而增加。3种降雨强度下,植被覆盖度为70%的产流产沙总量相较于0%分别显著下降18%~27%、84%~87%(P < 0.05)。不同植被覆盖度,降雨强度为100 mm·h –1的产流产沙总量较50 mm·h –1分别显著增加1940~2530 mL、66.92~386.14 g(P < 0.05)。土壤剥蚀率与雷诺数、剪切力和径流功率三个水动力学参数均呈极显著幂函数关系(P < 0.01),70%植被覆盖度下径流功率与土壤剥蚀率回归效果最显著,决定系数R2为0.894,是描述矿区排土场边坡径流侵蚀的最优水力学参数。
| [1] |
Lü G, Li Y X, Ning B K, et al. Soil erosion process of platform-slope system of dump under heavy rain (In Chinese)[J]. Journal of China Coal Society, 2021, 46(5): 1463-1476. [吕刚, 李叶鑫, 宁宝宽, 等. 暴雨作用下排土场平台-边坡系统土壤侵蚀过程模拟研究[J]. 煤炭学报, 2021, 46(5): 1463-1476.]
( 0) |
| [2] |
Pan Y G, Wu Z G, Sun D, et al. Analysis on the distributive characteristics and causes of the geological disasters induced by the "8·8" heavy rainstorm in Qu County, Sichuan Province (In Chinese)[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 125-133. [潘元贵, 伍中庚, 孙东, 等. 四川渠县"8·8"特大暴雨引发的地质灾害分布特征与成因分析[J]. 中国地质灾害与防治学报, 2022, 33(4): 125-133.]
( 0) |
| [3] |
Zhao H B, Wei Z Q, Luo K, et al. Stability and control measures of open-pit mine dump slope under rainfall conditions (In Chinese)[J]. Coal Science and Technology, 2019, 47(10): 67-74. [赵洪宝, 魏子强, 罗科, 等. 降雨工况下露天矿排土场边坡稳定性与治理措施[J]. 煤炭科学技术, 2019, 47(10): 67-74.]
( 0) |
| [4] |
Zhu Y D, Wang X D, Sun Y F, et al. Shallow destruction and movement characteristics of the inner dumping site under rainfall (In Chinese)[J]. Journal of China Coal Society, 2022, 47(12): 4431-4442. [朱永东, 王雪冬, 孙延峰, 等. 降雨条件下内排土场浅层破坏与运动特征[J]. 煤炭学报, 2022, 47(12): 4431-4442.]
( 0) |
| [5] |
Wang D D, Wang Z L, Zhang Q W, et al. Experiment on influence of cover degree, slope and rainfall intensity on sediment concentration of slope runoff in rangeland (In Chinese)[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(15): 119-125. [王栋栋, 王占礼, 张庆玮, 等. 草地植被覆盖度坡度及雨强对坡面径流含沙量影响试验研究[J]. 农业工程学报, 2017, 33(15): 119-125.]
( 0) |
| [6] |
Hu Y T, Zhang F, Luo Z Z, et al. Soil and water conservation effects of different types of vegetation cover on runoff and erosion driven by climate and underlying surface conditions[J]. Catena, 2023, 231: 107347.
( 0) |
| [7] |
Xing H, Huang Y H, Chen X Y, et al. Comparative study of soil erodibility and critical shear stress between loess and purple soils[J]. Journal of Hydrology, 2018, 558: 625-631.
( 0) |
| [8] |
Li D D, Chen X Y, Han Z, et al. Determination of rill erodibility and critical shear stress of saturated purple soil slopes[J]. International Soil and Water Conservation Research, 2022, 10(1): 38-45.
( 0) |
| [9] |
Gao L Q, Sun H, Xu M X, et al. Biocrusts resist runoff erosion through direct physical protection and indirect modification of soil properties[J]. Journal of Soils and Sediments, 2020, 20(1): 133-142.
( 0) |
| [10] |
Bai Y J, Zhang F B, Yang M Y, et al. Hydrodynamic mechanism of variation in soil erosion rate on steep loess slopes (In Chinese)[J]. Journal of Soil and Water Conservation, 2018, 32(4): 1-6. [白玉洁, 张风宝, 杨明义, 等. 急陡黄土坡面土壤剥蚀率变化的水动力学机制研究[J]. 水土保持学报, 2018, 32(4): 1-6.]
( 0) |
| [11] |
Dai J D, Zhang Z H, Zhang J H, et al. Effect of tillage erosion on characteristics of hydraulic erosion in the dry-hot valley region (In Chinese)[J]. Journal of Soil and Water Conservation, 2021, 35(1): 116—124, 131. [戴佳栋, 张泽洪, 张建辉, 等. 干热河谷区耕作侵蚀作用下坡面水力侵蚀特性[J]. 水土保持学报, 2021, 35(1): 116—124, 131.]
( 0) |
| [12] |
Wang Q X, Ding S W, Deng Y S, et al. Hydrodynamic characteristics of erosion in different soil layers in granite collapse region (In Chinese)[J]. Acta Pedologica Sinica, 2017, 54(3): 570-580. DOI:10.11766/trxb201607140306 [王秋霞, 丁树文, 邓羽松, 等. 花岗岩崩岗区不同土层的侵蚀水动力学特征[J]. 土壤学报, 2017, 54(3): 570-580.]
( 0) |
| [13] |
Kang H L, Wang W L, Xue Z D, et al. Effect of gravel on runoff and erosion characteristics on engineering accumulation slope in windy and sandy area, northern China (In Chinese)[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(3): 125-134. [康宏亮, 王文龙, 薛智德, 等. 北方风沙区砾石对堆积体坡面径流及侵蚀特征的影响[J]. 农业工程学报, 2016, 32(3): 125-134.]
( 0) |
| [14] |
Zhang L T, Gao Z L, Tian H W. Hydrodynamic process of soil erosion in steep slope of engineering accumulation (In Chinese)[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(24): 94-102. DOI:10.3969/j.issn.1002-6819.2013.24.013 [张乐涛, 高照良, 田红卫. 工程堆积体陡坡坡面土壤侵蚀水动力学过程[J]. 农业工程学报, 2013, 29(24): 94-102.]
( 0) |
| [15] |
Xiao H, Liu G, Liu P L. Response of detachment rate of loess slope to hydrodynamic characteristics under concentrate flow condition (In Chinese)[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(17): 106-111. DOI:10.11975/j.issn.1002-6819.2016.17.015 [肖海, 刘刚, 刘普灵. 集中流作用下黄土坡面剥蚀率对侵蚀动力学参数的响应[J]. 农业工程学报, 2016, 32(17): 106-111.]
( 0) |
| [16] |
Lou Y C, Gao Z L, Li Y H, et al. Vegetation regulation on slopes of engineering accumulation under different upslope runoff patterns (In Chinese)[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(24): 144-153. DOI:10.11975/j.issn.1002-6819.2019.24.018 [娄永才, 高照良, 李永红, 等. 不同上方来水模式下工程堆积体坡面的植被调控[J]. 农业工程学报, 2019, 35(24): 144-153.]
( 0) |
| [17] |
Wu L, Mu X M, Gao P, et al. Effects of vegetation coverage on runoff and sediment yield in the Loess Plateau (In Chinese)[J]. Research of Soil and Water Conservation, 2019, 26(6): 133—138, 144. [吴蕾, 穆兴民, 高鹏, 等. 黄土高原地区植被盖度对产流产沙的影响[J]. 水土保持研究, 2019, 26(6): 133—138, 144.]
( 0) |
| [18] |
Chen F, Zhao J, Ma J, et al. Effects of vegetation restoration on functional groups related to soil carbon, nitrogen and phosphorus cycles in open-pit mining area of the Loess Plateau (In Chinese)[J]. Acta Pedologica Sinica, 2023, 60(5): 1507-1519. DOI:10.11766/trxb202203170117 [陈浮, 赵姣, 马静, 等. 植被恢复对黄土高原露天矿区土壤碳氮磷功能微生物类群的影响[J]. 土壤学报, 2023, 60(5): 1507-1519.]
( 0) |
| [19] |
Deng B, Chen H, Li H, et al. Influence of dump vegetation coverage and topographic changes on soil and water loss in drainage basin (In Chinese)[J]. Coal Science and Technology, 2022, 50(4): 299-308. [邓彪, 陈航, 李恒, 等. 排土场植被覆盖度及地形变化对流域水土流失的影响[J]. 煤炭科学技术, 2022, 50(4): 299-308.]
( 0) |
| [20] |
Zhang Y F, Zhao Q H, Ding S Y, et al. Effects of slope gradient and vegetation coverage on hydrodynamic characteristics of overland flow on silty riparian slope (In Chinese)[J]. Chinese Journal of Applied Ecology, 2017, 28(8): 2488-2498. [张祎帆, 赵清贺, 丁圣彦, 等. 坡度和植被盖度对粉砂质河岸带坡面流侵蚀水动力特征的影响[J]. 应用生态学报, 2017, 28(8): 2488-2498.]
( 0) |
| [21] |
Zhang G H, Liu G B, Wang G L, et al. Effects of patterned Artemisia capillaris on overland flow velocity under simulated rainfall[J]. Hydrological Processes, 2012, 26(24): 3779-3787.
( 0) |
| [22] |
Liu C L, Zhang K D, Wei S E, et al. Evaluation of the effects of grass and shrub cover on overland flow resistance and its attributes under simulated rainfall[J]. Journal of Hydrology, 2023, 626: 130285.
( 0) |
| [23] |
Wang Y, Zhang J H, Zhang Z H, et al. Impact of tillage erosion on water erosion in a hilly landscape[J]. Science of the Total Environment, 2016, 551: 522-532.
( 0) |
| [24] |
Cao Z H, Zhao Q H, Zuo X Y, et al. Runoff and sediment yielding characteristics of riparian slope of the lower Yellow River and its relationship with hydrological connectivity (In Chinese)[J]. Acta Pedologica Sinica, 2018, 55(6): 1389-1400. DOI:10.11766/trxb201803200612 [曹梓豪, 赵清贺, 左宪禹, 等. 黄河下游河岸坡面产流产沙特征及其与汇流路径长度关系[J]. 土壤学报, 2018, 55(6): 1389-1400.]
( 0) |
| [25] |
Cui Z Q, Kang H L, Wang W L, et al. Vegetation restoration restricts rill development on dump slopes in coalfields[J]. Science of the Total Environment, 2022, 820: 153203.
( 0) |
| [26] |
Liu Y, Wang D, Cui Z, et al. Alpine meadow patches unevenly regulate runoff and sediment yield generation on the Qinghai-Tibetan Plateau[J]. Journal of Hydrology, 2023, 623: 129848.
( 0) |
| [27] |
Zhang G H, Ding W F, Pu J, et al. Effects of moss-dominated biocrusts on soil detachment by overland flow in the Three Gorges Reservoir Area of China[J]. Journal of Mountain Science, 2020, 17(10): 2418-2431.
( 0) |
| [28] |
Li H C, Li J J, Zhang H, et al. Effect of vegetation type on rhizosphere microorganisms of reclaimed soils in coal mining areas (In Chinese)[J]. Acta Pedologica Sinica, 2024, 61(5): 1455-1465. DOI:10.11766/trxb202303140100 [李厚春, 李君剑, 张红, 等. 植被类型对煤矿区复垦土壤根际微生物的影响[J]. 土壤学报, 2024, 61(5): 1455-1465.]
( 0) |
| [29] |
Han C Q, Wang J, Zhao C L, et al. Phosphorus speciation characteristics of typical artificial vegetation rhizosphere soil in Mu Us sandy land (In Chinese)[J]. Acta Pedologica Sinica, 2025, 62(1): 165-176. DOI:10.11766/trxb202403290141 [韩超群, 王娇, 赵春雷, 等. 毛乌素沙地典型人工植被根际土壤磷形态特征[J]. 土壤学报, 2025, 62(1): 165-176.]
( 0) |
| [30] |
Wang Y, Luo J, Zheng Z C, et al. Assessing the contribution of the sediment content and hydraulics parameters to the soil detachment rate using a flume scouring experiment[J]. Catena, 2019, 176: 315-323.
( 0) |
| [31] |
Yao C, Zhang Q W, Wang C F, et al. Response of sediment transport capacity to soil properties and hydraulic parameters in the typical agricultural regions of the Loess Plateau[J]. Science of the Total Environment, 2023, 879: 163090.
( 0) |
2025, Vol. 62



0)