几种土壤的 Zn—Ca 交换平衡

虞锁富

(中国科学院南京土壤研究所)

摘要

本文就黄棕壤、红壤、砖红壤的 Zn-Ca 交换平衡进行了初步研究。结果表明:三种土壤 对 Zn^{2+} 离子的选择性是:黄棕壤>红壤>砖红壤。选择系数(K_c)随着土壤粘粒表面上 Zn^{2+} 离子饱和度的增加而下降;随着温度的上升而增加。从曲线的形状看,可以认为黄棕壤粘粒表 面存在两种能量不同的吸附位,一种对 Zn^{2+} 离子具有较强的亲和力,另一种则要差。在体系 中 Zn^{2+} 离子交换 Ca^{2+} 离子过程中, $\Delta G^0 \cong \Delta H^0$ 的影响远比 ΔS^0 要大。这在黄棕壤里表现尤为 明显。从热力学参数 ΔG^0 、 ΔH^0 、 ΔS^0 的变化情况看,黄棕壤对 Zn^{2+} 离子特别偏好,结合得 也较紧。红壤和砖红壤则无法比拟,这可能与土壤粘粒矿物类型及表面性质有关。

1. A. A. A.

土壤粘粒表面阳离子间交换是重要的理化现象。 其过程必然引起体系中能量的变化。 Argersinger 等人将热力学原理引用于土壤胶体与阳离子相互作用的研究,后经 Gaines Thomaes 等人完善发展,并用数学模式表示各热力学参数之间的关系^[14],现已广 泛应用。但均以纯粘土矿物为材料,阳离子多采用 K、Na、Ca、Mg、Sr 等^[5,7,14,15,1]。 晚 近随着微量营养化学和环境科学的发展,对重金属元素的研究亦日益增多^[2,10,11]。 虽然用 土壤或土壤胶体为材料的报道也有不少^[1,3,4,6,8,12,13],但以土壤和 Zn²⁺ 离子相互作用的研究还不多见。

本文主要讨论几种土壤中 Zn--Ca 离子交换过程中,热力学参数的变化,从而了解土 壤对 Zn²⁺ 离子的选择性和结合的稳定性。

一、试样和方法

1.供试土样:下蜀系黄土发育的黄棕壤;第四纪红色粘土发育的红壤以及玄武岩风化物发育的砖 红壤。

2.样品制备: 土样先用 0.5 N CaCl,溶液连续处理 3—4 次,使之成为 Ca²⁺ 离子饱和的土壤,多余的 盐用渗析法移去,直至半透膜外的蒸馏水的电导与新蒸馏水相同,并持续二天不变为止。然后将试样放 在红外灯下(60℃ 左右)烘干,过 60 孔筛,装瓶备用。

3.试验方法: 称取土样 2.50 克放在塑料容器中,加入含有不同 Zn²⁺ 离子(ZnCl₂)浓度(10—200 ppm)的溶液 50 毫升,加盖摇匀放置恒温箱中,采用 20℃和 50℃两种温度,并不时摇动。过 72 小时取出离心,用等离子光谱仪测定清液中的 Zn²⁺、Ca²⁺ 离子的含量。 Ca²⁺ 离子 饱和 土 壞的 CEC 用 Frink^[4] 方法提取,用等离子光谱仪测定 Ca²⁺ 离子量。土壤基本特性见表 1。

表1 土壤的某些特性

Table 1 Some properties of soil samples

土壤 Soil	卧 质 Parent material	有机质 (%) O. M	pH (H₂O)	游离氧化铁(%) Ferric oxide (Fe ₂ O ₃)	粘粒(%) Clay	比表面积 (m²/g) Specific surface	阳离子交换 量(me/ 100g)CEC	主要粘土矿物 Dominant clay mineral
	下蜀系黄土	0.66	6.7	2.40	39.8	488	23.2	伊利石
	第四纪红色粘土	0.38	4.4	4.66	44.6	253	10.4	高岭石、伊利石
	玄武岩风化物	0.80	5.7	13.0	49.0	183	6.9	高岭石、三水铝矿

二、结果与讨论

测得的结果列于表 2,并根据计算各项热力学参数的要求对表 2 数据经必要的演算, 然后进行势力学处理,并进行初步的讨论。

(一)选择系数 Ca 质土与溶液中 Zn²⁺离子相互作用可用下式表示。

$$\overline{X} - Ca + Zn^{2+} \Longrightarrow \overline{X} - Zn + Ca^{2+}$$
(1)

 \overline{X} -Ca、 \overline{X} -Zn 代表固相上的 Ca²⁺、Zn²⁺ 离子; Zn²⁺、Ca²⁺ 表示液相中的离子。 其选择系数的计算可由下式表示:

$$K_{c} = \frac{[M_{Zn}](Ca^{2+})}{[M_{Ca}](Zn^{2+})}$$
(2)

 K_c 为选择系数; $[M_{z_n}]$ 、 $[M_{c_n}]$ 分别为固相上 Ca^{2+} 和 Zn^{2+} 离子量,用离子的摩尔 份数表示; (Ca^{2+}) 、 (Zn^{2+}) 为溶液中 Ca^{2+} 、 Zn^{3+} 离子的活度,以摩尔表示。

用下面的方程式计算出体系中离子的活度系数,然后再求得离子的活度。

$$\log f_i = AZ_i^2 \sqrt{I} / (1 + Br_i \sqrt{I})$$
(3)

 f_i 为离子活度系数; A、B 为在一定的温度下 Debye-Huckel 方程式的常数值; Z_i 为 离子价数; r_i 为离子水化直径; I 为离子强度 (即 $I = \frac{1}{2} \Sigma(M_i Z_i^2))_{o}$

选择系数(K_c)是建立在质量作用定律的基础上的,能较正确地反映离子在固液相中的分配情况,从而可判断吸附剂对离子的选择性或偏好程度(图1)。

由图 1 可以看出,选择系数 (K_c)的大小顺序为:黄棕壤>红壤>砖红壤。总的趋势 K_c 值随着 Zn^{2+} 离子的饱和度增加而降低,可是降幅不相同。黄棕壤随着固相部分 Zn^{2+} 离子的摩尔份数增加而锐降。特别是 20°C 的曲线尤为明显。但下降的起始点较早,当土 壤粘粒表面的 Zn^{2+} 离子量为 0.15 摩尔分数时曲线开始平缓下来。鉴于上述情况可以认 为黄棕壤粘粒表面存在着两种不同类型的吸附位,前者属于对 Zn^{2+} 离子结合能较高的吸 附位;后者为结合能较低的吸附位。相比之下红壤和砖红壤(除 50°C 与黄棕壤类似的情 况外)的曲线较平缓,在 y 轴上起点低,随着 Zn^{2+} 离子在固相表面的摩尔份数增加, K_c 值 则缓慢下降,曲线的坡度较小。其次,从图 1 上还可以看出, K_c 的变化受土壤的 CEC 影 响大。土壤 CEC 大, K_c 值就高,表现在 y 轴上起始点高; CEC 小的土壤 K_c 值低,起始 点也相应低。温度对 K_c 值也有明显的制约作用,除高温大于低温外,曲线的上端部份显

表 2 平衡时 Zn²⁺ 和 Ca²⁺ 离子在固液相的分配

 Table 2
 The distribution of zinc and calcium ions on solid and in liquid phases

 at equiliblium

			. t		quinonan			-		
土壤 Soil	溶液 Solution	1	液 Liquid ph	本 ases (M10 ⁻	目 *)	固 相 Solid phases (m.e/100g)				
		20	20° C 50)°C - 20)°C .	5(50 ℃	
		Zn++	Ca++	Zn++	Ca++	Zn++	Ca++	Z n++	Ca++	
畨	1	0.02	1.9	0.01	1.94	0.60	22.69	0.61	22.66	
	2	0.13	3.42	0.02	3.34	1.17	22.08	1.22	22.10	
棕	3	0.47	6.01	0.36	7.16	2.26	21.04	2.30	20.58	
14	4	1.14	8.23	0.52	9.58	3.21	20.15	3.46	19.61	
塷	5	2.40	10.08	1.36	12.03	3.93	19.41	4.35	18.63	
	6	3.64	11.53	2.23	13.42	4.66	18.83	5.23	18.07	
	7	8.38	15.17	6.45	18.31	6.44	17.37	7.21	15,62	
	8	12.42	17.56	10.09	21.56	7.27	16.41	8.20	14.82	
	1	0.12	1.07	0.09	1.12	0.56	6.29	0.57	6.27	
11	2	0.41	0.98	0.34	2.15	1.06	5.93	1.08	5.86	
糽	3	2.04	4.00	2.46	5.71	1.65	5.13	1.48	4.38	
24	4	4.56	5.04	4.06	6.44	1.88	4.70	2.06	4,15	
梔	5	6.84	5.61	7.05	7.29	2.17	4.50	2.07	3.81	
< p 2,	6	9.44	6.24	9.04	7.93	2.35	4.23	2.50	3.55	
	7	17.01	7.13	15.90	8.58	2.99	3.87	3.45	3.29	
	8	22.82	7.15	21.63	9.55	3.11	3.86	3.61	2.90	
	1	0.14	1.09	0.07	1.21	0.56	4.49	0.58	4.45	
砖红	2	0.55	1.89	0.04	2.10	1.00	4.18	1.20	4.09	
	3	2.65	3.02	1.03	1.93	1.39	3.72	2.03	3.14	
	4	4.62	3.18	4.03	4.65	1.82	3.66	2.06	3.07	
	5	7.04	3.53	6.41	4.92 .	2.08	3.52	2.33	2.96	
壞	6	9.57	4.16	9.09	5.29	2.29	3, 27	2.55	2.81	
	7	17.07	4.66	16.51	6.09	2.96	3.07	3.18	2.49	
	8	22.15	5.01	22.40	6.46	3.38	2.93	3.27	2.34	

得比较直,近似于线性关系,这是因离子热运动不同所致。

(二) 热力学参数 阳离子交换反应过程中能量的变化,常用自由能(G)、热函(H)、和熵(S)等热力学参数表征。

1. 热力学平衡常数(K):K 值是计算热力学参数的基本数据,其公式是:

$$\ln K = \int_{0}^{1} \ln K_{c} dM_{Zn} \tag{4}$$

将选择系数(lnK_c)作为y轴,固相上Zn²⁺离子的摩尔分数(M_{Zn})为*轴作图。然后将曲线下部的面积用公式(4)进行积分。其值即为热力学平衡常数(K)。

2. 标准自由能 (ΔG°): 热力学平衡常数 (K)和标准自由能 (ΔG°) 的关系如下:

$$\Delta G^{\mathfrak{o}} = -RT \ln K$$

(5)

T为绝对温度,其值为273.15 度,在用上式计算时还应加上室温(即实验时用的温度); R 为常数,其值为1.987 卡/摩尔。在等温等压条件下,自由能的变化可作为反应的方向和

限度的判据。

3. 热函 (△H²): 热函 (△H²) 与热力学平衡常数的关系可由下式表示:

$$\ln \frac{K_{T_2}}{K_{T_1}} = -\frac{\Delta H^0}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$
(6)

在固液相体系中进行离子交换,必然引起热量的变化。体系中 ΔH^2 和总的贮能量是固相 表面与离子之间结合的牢固度和强度的重要指标。

4. 熵 (ΔG°): 熵与热函和标准自由能之间的关系极为密切,可以下式表示:

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ} \tag{7}$$

数据经上述公式(2)-(7)处理, 三种土壤 Zn--Ca 交换中几个重要热力学参数列于 表 3。

从表 3 可以看出 △G⁰ 的变化,黄棕壤是负值,而红壤和砖红壤均为正值。根据热力 学原理,反应方向向负值 (△G⁰ < 0)的一侧进行。就是说黄棕壤 Zn--Ca 交换体系中, 在 Zn²⁺ 离子置代 Ca²⁺ 离子的过程中伴随着自由能的降低,这有利于 Zn²⁺ 离子交换 Ca²⁺ 离子。表明黄棕壤对 Zn²⁺ 离子偏好。而红壤和砖红壤则相反。这是由于土壤不同,粘土

表 3 凡种土壤 Zn---Ca 交换的热力学参数。

Table 3	Thermodynamic	parameters o	f zinc	exchange with	Calcium	on several	soils
---------	---------------	--------------	--------	---------------	---------	------------	-------

热力学参数 Thermodynamic	黄 棕 Yellow	壞 -brown	紅 Red e	壤 earth	砖 红 壤 Latosol	
parameters	20° C	50 °C	20°C 50°C		: 20° C	50°C
K	1.4305	1.0336	0.7977	0.8763	0.6880	0.8994
Δ G"(卡/摩尔)	-208.4	-21.2	131.6	84.7	217.7	68.0
Δ H"(卡/摩尔)	-2018.6		583.	.7	1664	
Δ S ⁰ (卡/摩尔) 度	-6	-6.18		.54	4.94	

矿物的组成及其理化性质不同所致。

ΔH⁹ 变化与 ΔG⁹ 有同样的趋势。黄棕壤的 ΔH⁹ 是负值, 红壤、砖红壤为正值。一般 来说 ΔH⁹ 是负值为放热反应,正值为吸热反应。根据热力学原理来观察离子交换过程热 量变化,可以认为黄棕壤与 Zn²⁺ 离子结合得紧,化学稳定性好,而红壤和砖红壤比黄棕壤 要差。但是必须指出, ΔH⁹ 变化较复杂,除离子交换过程伴随着 ΔH⁹ 的变化外,还包括离 子水解、混合等热量的变化。分别测定其变化是困难的,因此也无法进行单独计算, ΔH 值是整个体系中热能变化的表观现象。

 ΔS^{0} 的变化与 ΔH^{0} 、 ΔG^{0} 相似。除黄棕壤是负值外,其它两种土壤均为正值。熵值是 反映体系内部物质的混乱程度,也是整个体系内熵变化的代数和。 Zn^{2+} 、 Ca^{2+} 离子在体系中进行交换时,离子在固液相中熵的变化可用下式表示^[3]。

$$\Delta S^{0} = (S^{0}_{Zn} - S^{0}_{Ca})_{\mathbb{H}} - (S^{0}_{Zn} - S^{0}_{Ca})_{\mathbb{H}}$$
(8)

△S[®] 变化主要由于体系内部溶液中离子的迁移、水化而引起的。离子水解作用能使水分 子趋向于定向排列,熵也随之降低。当然离子在固相表面所处的状态不同也会引起结构 熵的变化。从 Zn²⁺、Ca²⁺离子交换过程中也可以看出熵的变化。 总之,离子交换反应 的方向主要受两种因素的制约: (1)体系趋向最低热能; (2)体系内部趋向于混乱。

综上所述,可以认为黄棕壤对 Zn²⁺ 离子有较强的亲和力,也较稳定。其它两种土壤则差些。土壤表露的吸附特性和离子的偏好,除土壤的理化性质的作用外,还与土壤粘粒表面的电荷类型有关。可变电荷易吸附 Ca²⁺ 离子^[5]。酸性土壤粘粒表面交换位为 Ca²⁺ 离子所占据,阻碍对重金属离子的吸附^[2]。此外,也与土壤的 CEC 有密切关系。 Shuman^[9] 的结果表明,土壤去氧化铁后,其吸附 Zn²⁺ 离子量增加,增值与土壤 CEC 呈正 相关。但是必须指出,在涉及到有关氧化铁对 Zn²⁺ 离子的专性吸附的文献,普遍认为土 壤中的氧化物对 Zn²⁺ 离子有较强的亲和力。足见土壤与阳离子相互作用的复杂性。

参考文献

- Bladel, R. Van. and Gheyi, H. R., 1980: Thermodynamic study of Ca-Na and Ca-Mg exchange in calcareous soils. Soil Sci. Soc. Amer. J., 44: 938---42.
- [2] Cavallar, N. and McBride, M. B., 1978: Copper and cadmium adsorption characteristics of selected acid calcareous soils. Soil Sci. Soc. Amer. J., 42: 138-148.
- [3] Deist, J. and Talibudeen, O., 1967: Thermodynamics of K-Ca ion exchange in soils. J. Soil Sci., 18: 138-148.
- [4] frink, C. R. and Ppeech, M., 1963: Hydrolysis and exchange reaction of the aluminium ion in hectorite and montmorillonite susppensions. Soil Sci. Soc. Amer. J., 27: 527-530.

- [5] Gessa, C., 1963: Ca-K exchange on allophane. Agrochimica, 18: 188-189.
- [6] Hutcheon, A. T., 1966: Thermodynamics of cation exchange on clay: Ca-K montmorillonite. J. Soil Sci., 17: 339-355.
- [7] Levy, R. and I. Shainerg, 1970: Calcium-magnesium exchange in montmorillonite and vermiculite. Clays Clay Miner. 20:-37-46.
- [8] Mehta, S. C., Poonia, S. R. and Ral Pal, 1983: Exchange equilibria potassium versus calcium and sodium in soils from a semiarid region India. Soil Sci., 135: 214-220.
- [9] Shuman, L. M. 1978: Zinc adsorpption isothermie for soil clay with and without iron oxides removed. Soil Sci. Soc. Amer. J., 40: 349-752.
- [10] Singhal, J. P. and G. K. Guppta., 1977: Studies on the thermodynamics of zinc exchange in montnorillonite. Soil Sci. Plant Nuts., 23: 457-464.
- [11] Singhal, J. P. and Kumar, D., 1977: Thermodynamics of exchange of Zn with Mg-bentonit and Mg-ilite. Geoderma, 17: 253-258.
- [12] Singhal, J. Pp. and Rishi Pal Singh, 1973: Thermodynamics of Cobalt + +-Sodium exchange on montmorillonite clay. J. Soil Sci., 24: 271-276.
- [13] Sposito, G., Holtzclaw., K. M. Johnston, C. T. and Levesque-Madore C. S.: 1981: Thermodynamics of sodium-copper exchange on wyming bentonite at 298 K. Soil Sci. Soc. Amer. J., 45: 1079-1084.
- [14] Udo, E. J. 1978: Thermodynamics of K-Ca and Mg-Ca exchange reaction on a kaolinic and soil clay. Soil Sci. Soc. Amer. J., 43: 556-560.
- [15] Wild, A. and Keay; J. 1964: Cation-exchange equilibria with vermiculite. J. Soil Sci., 15: 135-144.

THE EXCHANGE EQUILIBRIUM OF ZINC-CALCIUM IN SEVERAL SOILS

Yu Suofu

(Institute of Soil Science, Academia Sinica, Nanjing)

Summary

The present paper deals mainly with the changes of thermoynamic parameters in the exchange of Zn-Ca of several typical soils. 50 ml solution containing Zn + (10 - 200 ppm) was added to 2.50 g soils saturated by Ca, and then put in plastic container (vessel) and shaken occasionly, standing under 20°C and 50°C for 72 hrs and then centrifugalized. The Zn and Ca in samples were determined by Plasme Spectrometray.

The results obtained showed that the selectivity coefficients (K_e) of the soils was in the following order: Yellow brown earth>Red earth>Latosol. K_e was decreasing with the increase of the saturation percentage for Zn on solid. It is considered from Fig. 1 that there are two adsoption sites with different energy on the solid surface, one has a stronger and another has a weaker affinity to Zn⁺⁺. In the process of Zn-Ca exchange, the effect of ΔH^0 on ΔG^0 was much more than that on the ΔS^0 , which was especially evident for Yellow brown earth. It is found from the changes of the theromodynamical parameters that Yellow brown earths had a higher preference for Zn⁺⁺ and a tighter banding with Zn⁺⁺ than Red earths and Latosols, which is related with the differences in types and properties of clay minerals.