黄土性土壤 K⁺ 吸附、解吸动力学研究

薛泉宏 尉庆丰 李宝安 赵 翀

(西北农业大学,712100)

摘 要

采用连续液流法研究了 5 种黄土性土壤吸附、解吸 K⁺ 的动力学性质。结果表明:(1)供 试土壤 K⁺ 吸附、解吸反应分别在 16—24 及 26—60 min 达到平衡。吸附平衡时间及平衡 吸附量与 CEC 及粘粒含量有关。(2)平衡前不同时段的吸附解吸速度及吸附解吸率与反应 时间 lnt 间存在极显著的线性关系。其中反应速度直线和解吸率直线的斜率、初始反应速度 及初始解吸率均与 CEC 及粘粒含量密切相关。(3)一级反应方程和 Elovich 方程分别为描 述 K⁺ 吸附、解吸反应的最优模型。(4) K⁺ 的吸附、解吸以快、中、慢不同速率进行,反 映出土壤固相表面存在不同能态的 K⁺ 吸附点。(5)土壤对 K⁺ 的吸附、解吸是扩散控制过 程。

关键词 土壤钾吸附,土壤钾解吸,土壤化学动力学

土壤水溶性 K⁺ 和交换性 K⁺ 是土壤钾库中最活跃的组分。K⁺ 在固液相间的转化速 率与数量取决于 K⁺ 与土壤固相表面的作用方式,并决定着肥料 K⁺ 进入土壤后的去向 和土壤固 K⁺ 能力。研究 K⁺ 在土壤固液相间转化的动力学性质,对了解阳离子型养分 在土壤固相表面的作用机理及评价土壤保持、供应钾素能力有重要的理论与实践意义。

土壤与 K⁺ 作用的动力学性质已引起了国外研究者的注意。Sparks 和 Martin 分别研 究了交换性 K⁺ 吸附、解吸及非交换性 K⁺ 释放的动力学特征^[6-8]。国内已有关于土壤 与 H₂PO₄⁻¹等作用的动力学研究报道^[3-4],但对土壤吸附解吸 K⁺ 的动力学性质研究不 多,特别是对中国北方广泛分布的黄土性土壤中 K⁺ 在固液相间转化动力学了解更少。 本文旨在这方面进行初步探讨。

1 材料与方法

1.1 材料

供试土壤为发育于黄土母质上的堘土、黑垆土、黄绵土、黄褐土,其理化性质见表 1。

钾、钙饱和土样制备:分别用 1 mol/L KCl 和 1 mol/L CaCl₂反复处理(搅拌、静置、弃去上清 液)通过 1 mm 筛的风干土,至上清液无 Ca⁺²(铬黑 T 法检验)、无 K⁺(四苯硼钠比浊法)时用去离子 水淋洗至无 Cl⁻¹(AgNO₃法),风干磨碎过 1 mm 筛后分别为钾、钙饱和土样。

1.2 方法

K+吸附、解吸测定用连续液流法。溶液含K+量用火焰光度计法^[2]。

收稿日期: 1994-03-30; 收到修改稿日期: 1996-09-14

34卷

表1 供试土壤理化性质"

Table 1 Physical and chemical properties of the soils studied

编号 No.	土 壤 Soil	采 地 Site	母 质 Parent material	层次 Horizon	深度 Depth (cm)	pH(水) pH(H₂O)	粘 粒 (<0.005 mm) Clay (<0.005 mm)	有机质 O. M.	CaCO ₃	阳离子 交换量 CEC cmol/kg
								g/kg		
1	埁 土	陕西杨陵	黄土	A _p	0-20	8.05	334.0	12.1	52.4	12.9
2	埁 土	陕西杨陵	黄土	\mathbf{B}_{i}	80 - 100	8.04	510.0	9.3	2.0	16.9
3	黑垆土	陕西洛川	黄土	A ²⁹	50 — 70	8.09	430.0	14.9	48.6	11.8
4	黄绵土	陕西米脂	黄土	A _p	0-20	8.45	175.0	5.5	81.6	4.5
5	黄褐土	陕西宁陕	黄土性土	A _p	0— 20	6.70	502.0	6.2	0	16.7

pH用水浸法(1:1)¹²,粘粒含量用吸管法¹¹¹,有机质用 K₂Cr₂O₇氧化法¹²,CaCO₃用气量法¹²,CEC 用醋酸钠法¹²;2) 埋藏腐殖质层。

1.2.1 K⁺ 吸附测定 称 2.000 g 钙饱和土样与 4.0 g 酸洗至无 K⁺ 的石英砂, 混匀后装人有机玻璃交换柱。用 0.06 mol/L KCl 在蠕动泵推动下以 l ml/min 的恒定流速自下而上通过交换柱, 液相 K⁺ 与固相吸附态 Ca⁺² 在 25±0.5℃下进行交换。待第 l 滴滤出液流出时准确计时, 以每 4 min 收集一个滤液样的速度在 40 min 内连续收集 10 个滤样, 至交换柱输入、输出端溶液含 K⁺ 量相同为止。

1.2.2 K⁺ 解吸测定 用钾饱和土样装柱,0.03 mol/L CaCl₂为解吸交换液。滤出液仍采用连续收集 法收集,1-10号滤样及11-16号滤样的收集时间分别为每个样品4min及每个样品10min,解吸 时间共100 min。其余步骤同K⁺吸附测定。吸附、解吸反应时间(40 min 或100 min)均据预实验平衡 时间确定。

吸附、解吸量计算: 各段时间的吸附、解吸量(Δq)用下式计算

$$\Delta q \,(\mathrm{cmol}/\mathrm{kg}) = \frac{\Delta C \times V \times \Delta t}{W}$$

式中 ΔC 、 Δt 、 $V \otimes W$ 分别为交换前后溶液 K⁺浓度差、滤液收集时间、蠕动泵流速及土样重。按时间顺序将各段时间的吸附、解吸量(Δq)逐一累加即得到供试土壤在第4、8、12、16、20、24、28、32、36、40、50、60、70、80、90 \otimes 100 min 时间的吸附(解吸)量。

2 结果与讨论

2.1 平衡时间与吸附、解吸量

从图 1 看出, 黄土性土壤吸附 K⁺ 很快。供试土壤在实验条件下的吸附平衡时间为 16 — 24 min, 平衡后延长反应时间(1、5 号延至 28 min, 3 号延至 40 min)吸附量不变 (1、3、5 号土)或增加很少(2、4 号土)。K⁺ 解吸至平衡需要较长时间(28 — 60 min)。 平衡后延长反应时间至 60 — 80 min, 1、5 号土的解吸量未增加, 2 号土以极慢速度增 加(0.005 cmol/kg·min), 而腐殖质含量较高的 3 号及质地较粗的 4 号土仍有 K⁺ 缓慢

Fig.1 Kinetic Curves of K adsorbing-desorbing

解吸,其速度分别为 0.009 及 0.013 cmol/kg・min。

图1还表明,不同土壤的 K⁺ 平衡吸附量、解吸量和平衡时间差异很大,其吸附、 解吸量为 3.5—18.4 和 2.9—12.7 cmol/kg,吸附、解吸平衡时间为 16—24 和 24—60 min。土壤阳离子交换量 CEC 及粘粒含量是影响吸附平衡时间及平衡吸附量的重要因 素,CEC 与吸附平衡时间及 CEC 与平衡吸 附量的相关系数分别为 r=0.980**及 r=0.935*,粘粒与吸附平衡时间的相关系数为 r=0.957*,达到显著或极显著水平 (P<0.05—0.01)。在解吸反应中,CEC 及粘粒对平衡时间及平衡解吸量的影响未达到 显著水平,说明还有其它因素影响 K⁺ 解吸过程。

2.2 反应速度与时间的关系

反应速度指单位时间内单位质量土壤吸附(解吸)的钾量,

$$\overline{V}_{a}(\overline{V}_{d}) = \frac{\Delta q_{ta}(\Delta q_{td})}{\Delta t}$$

式中 q_{ia} 、 q_{id} 分别为某段时间内 K⁺ 吸附、解吸量(cmol/kg), \overline{V}_a 、 \overline{V}_d 为相应时段 的平均吸附、解吸速度(cmol/kg·min), Δt 为反应时间(min)。

实验表明,不同反应时段 K⁺ 平均吸附、解吸速度(以下简称吸附、解吸速度)不同。随吸附或解吸平衡状态趋近,反应速度不断降低。反应速度与反应时间的关系符合 方程

$$\overline{V}_a(\overline{V}_d) = A + B \ln t$$

式中t为时间,A、B为常数,其中B反映了反应速度随时间降低的快慢趋势,ln为自然对数。

由表 2 可知,反应速度与时间的自然对数 lnt 间存在良好的线性关系,在吸附及解吸反应中,其相关系数分别为 0.944 — 0.995 及 0.923 — 0.972 (*P*<0.01 — 0.001)。直线截距(常数 *A*)与 CEC 及粘粒含量的相关性(*P*<0.05 — 0.10)表明,反应初期(如 *t*=1 min时) K⁺ 吸附、解吸速度取决于土壤固相表面负电点的数量及粘粒含量高低。*B*<0 表示

随时间延长反应速度不断降低。粘粒愈多及 CEC 愈大, B 愈大,反应速度降低愈快 (P < 0.05 - 0.10)。此外,从表 2 S_e (标准误差)及 R_{se} (相对标准误差)可知,粘粒较 多和 CEC 较大的土壤,其解吸速度与反应时间 lnt 的线性关系较差(P < 0.01 - 0.10);粘 粒愈多,吸附速度与时间 lnt 的线性关系愈差(P < 0.05)。

表 2 反应速度 $(\mathcal{V}_a, \mathcal{V}_a)$ 与反应时间(Int)的回归方程

Table 2 The regression equation of reaction velocity $(\mathcal{V}_{a}, \mathcal{V}_{d})$ and reaction time (lnt)

土壤编	号		ţ	吸附 adsorp	tion	解吸 desorption						
Soil N	ю.	A	В	r	S _c	R _{ve} (%)	A	В	r	S,	R _{se} (%)	
1		3.31	- 1.14	-0.982**	0.16	8.7	1.11	-0.29	-0.965***	0.07	9.6	
2		4.17	- 1.37	-0.982**	0.20	8.3	1.63	-0.45	-0.923***	0.15	11.7	
3		3.19	-1.13	-0.946*	0.28	15.1	1.71	-0.53	-0.972***	0.10	8.9	
4		0. 9 1	-0.32	-0.995**	0.02	4.2	0.21	-0.05	-0.951***	0.01	8.1	
5		3.09	-1.03	-0.944**	0.26	13.4	1.32	-0.41	-0.942***	0.11	12.2	
相关系	CEC	0.912*	0.890*	_	0.780	0.560	0.818=	0.782		0.919*	0.906*	
数(<i>r</i>)	粘粒	0.874=	0.859 =	—	0.882*	0.700	0 903*	0.900*		0.965**	0.843≖	

注: 1) =*、**、***分别指 P<0.10、0.05、0.01 及 0.001、以下各表与之相同。2) R_{sc}(%) = (S_c / V_m) × 100%, V_m 为最大反应速度, R_{sc} 为相对估计标准误, 用于土样间线性方程拟合优劣的比较; S_c 为标准误。

时间(分)	:	吸附率	$P_{i_a}(\%)$ a	dsorptio	n (%)	解吸率 P_{td} (%) desorption (%)					
Time					土壤编号	Soil No.					
(min)	1	2	3	4	5	I	2	3	4	5	
4	59	53	69	54	60	26	40	48	21	55	
8	85	80	89	80	81	50	64	72	34	78	
12	95	92	95	97	91	67	76	84	45	89	
16	99	97	98	100	95	79	83	92	52	94	
20	100	99	100	_	98	85	87	96	59	97	
24		100	_	_	100	89	91	99	66	98	
28						92	94	100	72	100	
32						95	95	_	76	_	
36						96	9 7	_	83	-	
40						97	98	_	86	_	
50						99	99	_	97	_	
60						100	100	—	100	_	

表3 K⁺ 吸附、解吸率随时间的变化 Table 3 The changes of K⁺ adsorbing desorbing percentage with time

注: $P_{ia}(\%) = (q_{ia}/q_{xa}) \times 100\%, P_{id}(\%) = (q_{id}/q_{xd}) \times 100\%, q_{ia}, q_{id} \mathcal{D} q_{\infty a}, q_{\infty d} \mathcal{D}$ 别为 t 时刻及平衡时的吸附、解吸量。

2.3 K⁺ 吸附、解吸率与时间的关系

某时刻 K⁺ 吸附(解吸)量占平衡吸附(解吸)量的比率称为 K⁺ 的吸附(解吸)率。从表 3 可见,在 4 min 内 K⁺ 的吸附、解吸量分别为平衡吸附、解吸量的 53 — 69% 及 21 — 55%,吸附、解吸率达到 90% 以上所需时间分别为 12 min 及 16 — 50 min,表明 K⁺ 吸附过程快于解吸过程。

由表 4 知 K⁺ 吸附、解吸率与反应时间 lnt 间也存在良好的线性关系。K⁺ 解吸率直线随时间的上升趋势因土样而异,其斜率 B 变化在 0.219 — 0.308 之间,粘粒含量高及 CEC 较大的土壤其解吸率上升慢(P < 0.05)。在解吸初期($t = 1 \min$),常数 $A = P_{td}$ (%)。A 与 CEC 及粘粒相关性(P < 0.01 - 0.05)表明,粘粒含量高且 CEC 大的土壤在反应初期解吸较快(表 4)。如 1、5 号土在 4 min 时的解吸率分别为 26% 及 55%,而后者具有较高的粘粒含量(表 3)。

K⁺吸附率虽与反应时间 lnt 间也存在较好的线性关系(r=0.968**-0.990**), 但直线斜 率 B 与 CEC 及粘粒的相关性未达到显著水平, 说明还有其它因素影响吸附率的上升(表4)。

± ±		吸	附 adsorption I	$P_{ia}(\%)$	解吸 desorption P _{1a} (%)				
Soil	No.	A	В	r	A	В	r		
1		0.265	0.261	0.970**	-0.053	0.281	0.971**		
2		0.210	0.265	0.968**	0.179	0.219	0.969***		
3		0.443	0.196	0.969***	0.136	0.272	0.988***		
4		0.066	0.349	0.990**	-0.290	0.308	0.988***		
5		0.320	0.223	0.982***	0.277	0.229	0.974***		
相关系	CEC	0.520	-0.685	-	0.914*	-0.929*			
数(<i>r</i>)	粘粒	0.638	-0.783	· <u> </u>	0.983**	-0.936*			

表4 K⁺吸附、解吸率与反应时间(Int)的回归方程¹⁾ Table 4 The regession equation of K⁺ adsorbing desorbing percent and reaction time (Int)

1) $P_{Ia}(\%) = A + B \ln t$, $P_{Id}(\%) = A + B \ln t$.

2.4 K⁺ 吸附、解吸动力学模型

Sparks 和 Martin 提出了几种动力学模型,用来描述酸性砂质土吸附、解吸 K⁺ 及 非交换性 K⁺ 释放的反应过程^[6-8]。在连续液流条件下,其中的几种模型对黄土性土壤 中 K⁺ 的吸附、解吸过程也有较好且程度不同的拟合性(表 5)。

模型拟合性指由模型所得计算值与实测值的符合程度,常用相关系数(r)和标准误差(S)及相对标准误(R_{se})判定,r愈大,S和R_{se}愈小拟合愈好。

从表 5 看出,在吸附反应中,4 种模型的 r 值按一级方程(0.996) > Elovich 方程 (0.975) > 双常数方程(0.953) > 扩散方程(0.943)排列, S_e及 R_{se} 则按相反顺序排列,表 明一级方程和扩散方程分别为描述 K⁺ 吸附的最优及最差模型。一级方程、扩散方程的 S_e 及 R_{se} 均值分别为 0.11、0.75 cmol/kg及 1.6%、6.2%。其余两种模型的拟合性介于 一级方程与扩散方程之间且差异较小。在解吸反应中,相关系数(r)均值按 Elovich 方程 (0.975) > 双常数方程(0.948) > 扩散方程(0.939) > 一级方程(0.918)排列, S_e及 R_{se} 也 以相反的顺序排列,表明 Elovich 方程与一级方程分别为描述 K⁺ 解吸的最优与最差方 程,其 R_{se} 均值分别为 4.4%、7.3%,双常数与扩散方程的拟合性介于 Elovich 与一级方

表 5 四种模型的相关系数(r)、标准误差(S_c)及相对标准误差(R_s)

Table 5 Correlation coefficients (r), standard errors (S) and relative standard errors (R_{rr}) of four kinetic models

土壤 Soil No	 First – or	级方程 der equation	1	Elovi Elovich	ich 方程 n equation		双常 Two-Cons	数方程 stant equation	on	扩散方程 Parabolic diffustion equation			
Soi	l No.	$\ln\left(1\right)$	$-\frac{q_{ia}}{q_{ia}}\Big)=-$	K' "t	$q_{i,i}(q_{ij})$	$= A + B \ln t$		$q_{\prime a}$	$(q_{id}) = At^{\mathrm{B}}$		$q_{\scriptscriptstyle Ia}(q_{\scriptscriptstyle Id})$	$=A+B\sqrt{t}$	
		r	S_c (cmol/kg)	R _e , (%)	r	S, (cmol/kg)	R _e (%)	r	S _c (cmol/kg)	R _e (%	, <i>r</i>	S, (cmol/kg)	R _{es} (%)
	1	0.999***	0.14	1.1	0.968**	0.62	5.0	0.941*	0.84	6.7	0.933*	0.89	7.1
吸	2	0.999***	0.07	0.4	0.968**	0.94	5.1	0.942**	1.26	6.8	0.928*	1.40	7.6
	3	0.999***	0.07	0.6	0.969**	0.39	3.6	0.939**	0.56	5.2	0.936**	0.56	5.2
附	4	0.983*	0.17	4.9	0.989*	0.13	3.7	0.979*	0.18	5.1	0.970**	0.20	5.7
	5	0.998***	0.13	1.0	0.981***	0.42	3.3	0.936**	0.58	4.5	0.949*	0.69	5.3
¥	均	0.996	0.11	1.6	0.975	0.50	4.1	0.953	0.68	5.7	0.943	0.75	6.2
	1	0.893***	1.10	10.8	0.970***	* 0.59	5.8	0.909***	* 1.02	10.0	0.930*	0.92	9.0
解	2	0.872***	1.16	9.1	0.967***	* 0.60	4.7	0.930***	* 0.87	6.9	0.897*	1.05	8.3
	3	0.958***	0.52	5.8	0.988***	* 0.29	3.3	0.964***	* 0.49	5.5	0.956*	0.53	6.0
吸	4	0.994***	0.08	2.8	0.987***	* 0.12	4. l	0.993***	* 0.09	3.1	0.996**	0.06	2.1
	5	0.874***	0.52	8.0	0.965***	* 0.28	4.3	0.942**	* 0.36	5.5	0.916*	0.43	6.6
.5	产均	0.918	0.68	7.3	0.975	0.38	4.4	0.948	0.57	6.2	0.939	0.60	6.4

注: 1) 解吸时、一级方程为 ln $\left(1 - \frac{q_{id}}{q_0}\right) = -K'_{d}t, K'_{a} n K'_{d} 分别为表现吸附、解吸速率常数,单位为min⁻¹。$ $2) <math>r = \sqrt{1 - \frac{\sum (\hat{q}_{i} - \hat{q}_{i})^{2}}{n-2}}; S_{c} = \sqrt{1 - \frac{\sum (\hat{q}_{i} - \hat{q}_{i})^{2}}{n-2}}; R_{w}(\%) = [S_{v}/q_{xd}(q_{xd})] \times 100\%. \hat{q}_{i}, \hat{q}_{i} 分 别为 t 时刻吸附(解$ $吸) 量测定值和计算值, n 为测定次数。 3) *, **、*** 分别指 P<0.05、0.01 及 0.001。 4) <math>q_{ia}, q_{id}$ 和 q_{xa}, q_{xd} 分别为 t 时刻和平衡时的吸附、解吸量, q_{0} 为解吸开始前的土壤吸附量, A, B为常数, t 为反应时间。

程之间,其 R_{se}分别为 6.2%、6.4%,差异很小,均可用于描述 K⁺ 解吸反应。

由表 5 还看出, 同一模型对不同土样的拟合性不同。如对 K⁺ 吸附拟合最优的一级方程中, 5 种土样的 S_e 及 R_{se} 分别变化在 0.07—0.17 cmol/kg 及 0.4—4.9% 之间, 差异很大, 即一级方程对 2 号土的 K⁺ 吸附拟合最优, 对 4 号土拟合最差。在其它吸附及解吸模型中, 土样间拟合性的显著差异均存在。此外, 同一模型对吸附、解吸两种相反过程的拟合性不同。如一级方程对吸附及解吸的拟合性差异很大, 其 S_e 均值分别为 0.11 及 0.68, R_{se} 均值分别为 1.6% 及 7.3%。其它 3 种模型对吸附、解吸两种过程的拟合性差异较小。以上分析表明, 模型种类、土样性质及反应类型均影响动力学模型对实验数据的拟合性。

2.5 反应速率差异及反应阶段划分

图 1 K⁺ 吸附、解吸曲线可分为陡峭、较平缓及平缓 3 段,分别代表快、中、慢反 应阶段,但 3 个阶段的转折点不明显。当分别用对 K⁺ 吸附及解吸拟合最差的扩散及一 级方程作图时,K⁺ 的吸附、解吸过程表现为 2 — 3 段斜率明显不同、线性关系很好且 转折点明显的直线(图 2、3,表 6、7)。由此看出,拟合差的模型对反应过程中的速率 变化比较"敏感",能够把吸附或解吸速率不同的几个阶段从表观上区分开,这对离子在 固液界面反应机制的深入探讨有重要的指示意义。图 2、3 中斜率由大到小的 2 — 3 段 直线代表 K⁺ 在土壤固相表面进行的快、慢或快、中、慢反应,表明土壤固相表面存在 高、中、低不同能态的吸附点。实际上,快、中、慢反应间并无截然界线,快中有慢或 慢中有快的现象是存在的,根据动力学模型图划分的反应阶段只是真实反应过程对外显 示的整体上的表观结果。据动力学模型图的反应的阶段划分可计算出各反应的速率常 数、反应时间及吸附、解吸量。

2.5.1 K⁺ 吸附的快、慢反应 从图 2 看出,供试土壤 K⁺ 的吸附过程表现为两段斜 率大小不同的直线,分别表示土壤高、低能吸附点上的快、慢吸附 K⁺ 反应。供试土壤 快、慢速吸 K⁺ 直线的斜率 B₁、B₂分别为 1.0 — 6.0 及 0.1 — 1.1,差异很大,所需时间 及吸附量分别为 8 — 12 min、8 — 16 min 及 3.4 — 16.8 cmol/kg, 0.1 — 2.4 cmol/kg, 其吸附量分别为平衡吸附量的 81 — 97% 及 3 — 19%,表明快反应为土壤吸 K⁺ 的主要 反应,高能吸附点数量大于低能吸附点(表 6)。

2.5.2 K⁺ 解吸快、中、慢反应 从图 3 及表 7 看出, K⁺ 的解吸过程表现为 2 — 3 段 斜率不同且线性关系相当好的直线(r=0.945 — 0.9996),分别代表土壤固相表面不 同能态位点上吸附态 K⁺ 解吸的快、中、慢反应,其斜率为表观速率常数 K_d[']。

从表7可知 K⁺ 解吸快、中、慢反应的 K_d['] 差异很大,其值分别变化在 (19.2 — 72.5)×10⁻³ /min、(12.0 — 23.3)×10⁻³ /min 及(2.5 — 6.3)×10⁻³ /min 之 间。1、2及3、5号土分别有3条及2条斜率明显不同的直线,而4号土3段直线差异 较小。供试土样间 K⁺ 解吸曲线条数、长度及斜率差异反映了土壤固相表面性质及负电 性吸附点在能态、数量上的不同。由图3分段结果可知,供试土壤快、中、慢解吸 K⁺ 反 应时间分别为12 — 40、12 — 20及16 — 32 min,解吸量为2.5 — 9.7、0.4 — .及

+	拉	<u>, 117</u> ,	圮
	壊	子	112

	34	卷
--	----	---

1.8

1.6

P (%)

14

9

	Tal	ble 6 Comp	表6 K ⁺ 奶 arison between f	b附快慢速反 ast and slow	这比较 adsorption	reactions of	of K ¹
土壤		快速反应	Fast reaction			慢速反	<u> 所</u> Slow reaction
Soil No.	B	t (min)	$q (\mathrm{cmol}/\mathrm{kg})$	P (%)	В	t (min)	$q (\mathrm{cmol}/\mathrm{kg})$

10.7

16.8

 ¢Ì:∙	t. a. n 分 别 为	反应时间	吸附(解吸)量	及甘古平和	新 073 形长(伯昇 0735)	备的比	家. B 为反应	速 家 蛍 数
5	3.4	8	10.8	81	0.8	16	2.4	19
4	1.0	12	3.4	97	0.1	8	0.1	3
3	2.7	9	10.0	93	0.4	15	0.8	7

86

91

1.1

1.0

12

14

衡 败 跗 (腁 吸り重 旳 **以** 兵 白 $(mol/kg \cdot \sqrt{min})$.

0.5-0.7 cmol/kg, 分别为平衡解吸量的 76-92%、8-19% 及 5-11%, 可见快反 应是土壤解吸 K⁺ 的主要反应(表 8)。

表7 K⁺ 解吸快、中、慢反应的相关系数(r)和表观解吸速率常数(K'_a)¹⁾

Table 7	Correlation	coefficients	(r)	and	apparent	rate	constants	(K'_d)) (of	K	desorption	reaction
---------	-------------	--------------	-----	-----	----------	------	-----------	----------	-----	----	---	------------	----------

土壤	快速反应		Fast reaction	中速反应 Medium reaction			慢速反应 Slow reaction			
Soil No.	r	n	$K'_d imes 10^{-3}$ /min	r	n	$K'_{d} \times 10^{-3} / \min$	r	n	$K'_{d} \times 10^{-3} / \min$	
1	0.9996***	4	63.3	0.9996***	4	23.3	0.985*	4	6.3	
2	0.997*	3	63.8	0.988**	5	18.0	0.972**	5	4.7	
3	0.995***	4	72.5	0.986**	4	19.8	_	_	_	
4	0.997***	10	19.2	0.972	3	12.0	_	—	_	
5	0.978	3	23.8	—	—	—	0.945*	5	2.5	

1) K' 据一级反应方程计算。

表8 K⁺ 解吸快、中、慢反应比较

Table 8 Comparison among the fast, medium and slow K⁺ desorbing reactions

快反	应 Fast reactio	on	中速反	瓦拉 Medium re	慢反应 Slow reaction			
t (min)	$q (\mathrm{cmol}/\mathrm{kg})$	p (%)	t (min)	q (cmol/kg)	p (%)	t (min)	q (cmol/kg)	p (%)
16	8.1	79	16	1.6	16	28	0.5	5
12	9.7	76	16	2.4	19	32	0.6	5
16	8.2	92	12	0.7	8	_	_	_
40	2.5	86	20	0.4	14	_	_	—
12	5.8	89	_			16	0.7	11
	快反) t (min) 16 12 16 40 12	快反应 Fast reaction t (min) q (cmol/kg) 16 8.1 12 9.7 16 8.2 40 2.5 12 5.8	快反应 Fast reaction t (min) q (cmol/kg) p (%) 16 8.1 79 12 9.7 76 16 8.2 92 40 2.5 86 12 5.8 89	快反应 Fast reaction 中速历 t (min) q (cmol/kg) p (%) t (min) 16 8.1 79 16 12 9.7 76 16 16 8.2 92 12 40 2.5 86 20 12 5.8 89 —	快反应 Fast reaction 中速反应 Medium re t (min) q (cmol/kg) p (%) t (min) q (cmol/kg) 16 8.1 79 16 1.6 12 9.7 76 16 2.4 16 8.2 92 12 0.7 40 2.5 86 20 0.4 12 5.8 89 — —	快反应 Fast reaction 中速反应 Medium reaction t (min) q (cmol/kg) p (%) t (min) q (cmol/kg) p (%) 16 8.1 79 16 1.6 16 12 9.7 76 16 2.4 19 16 8.2 92 12 0.7 8 40 2.5 86 20 0.4 14 12 5.8 89 — — —	快反应 Fast reaction 中速反应 Medium reaction 性 t (min) q (cmol/kg) p (%) t (min) q (cmol/kg) p (%) t (min) 16 8.1 79 16 1.6 16 28 12 9.7 76 16 2.4 19 32 16 8.2 92 12 0.7 8 — 40 2.5 86 20 0.4 14 — 12 5.8 89 — — — 16	快反应 Fast reaction 中速反应 Medium reaction 慢反应 Slow reaction $t (min)$ $q (cmol/kg)$ $p (\%)$ $t (min)$ $q (cmol/kg)$ 16 8.1 79 16 1.6 16 28 0.5 12 9.7 76 16 2.4 19 32 0.6 16 8.2 92 12 0.7 8 — — 40 2.5 86 20 0.4 14 — — 12 5.8 89 — — — 16 0.7

注: t、q、p分别为反应时间、解吸量及其占平衡解吸量的比率。

120

1

2

4.1

6.0

8

10

表9 K⁺ 吸附、解吸速率常数与土壤 CEC 及粘粒含量的相关系数(r)

Table 9 Correlaton coefficients (r) beteen K⁺ adsorption-desorption rate constants and soil

CEC and clay content

土壤性质 Soil properties	吸附 adsorption		解 附 desorption	
	K'_{a} (1/min)	K_a (kg/cmol · min)	$B (\text{cmol} / \text{kg} \cdot \text{min})$	A (cmol/kg)
CEC	-0.883*	-0.941*	-0.927*	0.891*
粘 粒	-0.933*	0.911*	-0.986**	0.941*
模 型	$\log\left(1-\frac{q_{ia}}{q_{xa}}\right) = -k'_a t = -k_a q_{xa} t$		$\log q_{td} = A + B \log t$	

2.6 K⁺ 吸附、解吸机制讨论

K⁺吸附、解吸速率常数反映了反应速度的快慢。表9表明,粘粒愈多及 CEC 愈 大,吸附、解吸速率常数愈小(P<0.01-0.05)。据此可以认为:</p>

2.6.1 K⁺ 的吸附、解吸是扩散控制过程 土壤颗粒表面存在电场和剩余力场,因而 会形成一层特殊的非自由态膜状水层。CEC 愈大、颗粒愈细及粘粒含量愈高,非自由 态水膜愈厚且膜状水愈多。土壤胶体双电层的反离子层就分布在膜状水中。土壤吸附 K⁺ 是自由液相 K⁺ 通过膜内外 K⁺ 浓度梯度作用进入膜状水层,并与水膜内反离子层 中 Ca⁺² 进行交换的过程。K⁺ 解吸则是自由液相 Ca⁺² 通过水膜内外浓度梯度作用进入 水膜内与反离子层 K⁺ 交换的过程。吸附时 K⁺ 进入和 Ca⁺² 逸出水膜及解吸时 Ca⁺² 进 入和 K⁺ 逸出水膜均通过扩散完成。水膜愈厚,膜状水愈多,扩散阻力愈大,吸附、解 吸速率就愈小。粘粒含量与 K⁺ 吸附、解吸速率常数的显著负相关(表 9) 正好说明了这 一点。至于 CEC 与 K⁺ 吸附、解吸速率常数的显著负相关(表 9) 可看作是 CEC 与粘粒 含量呈显著正相关(*r*=0.948*, *P*<0.05) 的反映,其详细机制尚待深入研究。

2.6.2 K⁺ 在土壤固相表面的吸附存在能级上的差异 K⁺ 吸附的快、慢反应及解吸时的快、中、慢反应可看作土壤固相表面存在不同能级吸附位点的证据。高能态吸附点吸附快而解吸慢,低能吸附点与之相反。Mengel (1983)认为 2:1 型粘土矿物吸附 K⁺ 时存在表面(p位)、边面(e位)和层间(i位)3种结合位¹⁰。谢鹏等(1988)也提出土壤胶体吸附 NH⁺ 时存在高、低能结合点^[5]。本研究提供了不同能态吸附位点存在的动力学证据。

参考文献

- 1. 中国科学院南京土壤研究所, 1978: 土壤理化分析。上海科学技术出版社。
- 2. 南京农业大学主编, 1981: 土壤农化分析。农业出版社。
- 3. 王光火, 1988: 土壤和高岭石与磷酸根反应动力学。浙江农业大学学报, 第 14 卷 4 期, 364 370 页。
- 何振立、袁可能、朱祖祥,1989: 我国几种代表性土壤磷酸根释放动力学的初步研究。土壤通报,第20卷6 期,256—260页。
- 5. 谢鹏、蒋剑敏、熊毅,1988: 我国几种主要土壤胶体的 NH4*吸附特征。土壤学报,第 25 卷 2 期,175 183 页。

¹⁾ K. Mengel、1983: 植物营养与施肥原理。农牧渔业部教育司、西北农业大学铅印, 70-71。

土

- Sparks, D. L. et al., 1980a: Kinetics of potassium exchange in a Paleudult from the coastal plain of Virginia. Soil Sci. Soc. Am. J. 44: 37--44.
- Sparks, D. L. et al., 1980b: Kinetics of potassium desorption in soil using Miscible Displacement. Soil Sci Soc. Am. J. 44: 1205-1208.
- Martin, H. W. et al., 1983: Kinetics of nonexchangeable potassium release from two coastal plain soils. Soil Sci. Soc. Am. J. 47: 883-887.

STUDY ON K⁺ ADSORBING – DESORBING KINETICS OF LOESSIAL SOIL

Xue Quanhong Wei Qingfeng Li Baoan and Zhao Chong (Northwest Agricultural University, 712100)

Summary

The characteristies of K^+ adsorbing-desorbing kinetics of five loessial soils were studied by the liquid flow technique. The results indicated that: ① K^+ adsorption and desorption equilibrated in 16 – 24 and 24 – 60 min, respectively, and the time and the capacity of K^+ equilibrium adsorption were closely related with soil clay content and CEC; ② there was a linear relationship between the K^+ adsorbing-desorbing velocity and the reaction time lnt, and the slop of reaction velocity regression equation and K^+ desorbing percentage regression equation, the original reaction velocity and the original desorbing percentage were closely related with soil clay and CEC; ③ First-order and Elovich equations were the best modles for K^+ adsorption and desorption, respectively; ④ it is demonstrated that there were different energy level sites of K^+ adsorption at the surface of soil colloid by the fast, medium and slow reactions of K^+ adsorbing-desorbing; and ⑤ the K^+ adsorption and desorption were controlled by the diffusion process.

Key words K⁺ adsoption, K⁺ desorption, Soil chemical kinetics