红壤中铝的形态^{*}

邵宗臣 何 群 王维君

(中国科学院南京土壤研究所,210008)

摘 要

以改进的连续分级提取方法,用 1mol/L KCl,0.2mol/L HCl, 0.1mol/L Na₄P₂O₇ (pH8.5), DCB 溶液,0.33mol/L 柠檬酸钠 (pH7.3)和 0.5mol/L NaOH 为提取剂,把红壤中可提取的非晶态铝区分为交换态铝 (ExAl),吸附态无机羟基铝 (HyAl),有机配合态铝 (OrAl),氧化铁结合态 铝 (DCBAl),层间铝 (InAl)和非晶态铝硅酸盐 (NcAl)。每一种铝形态在其结构组成和性质上都 有自己固有的特征,并与红壤相应的性质和生态特征密切相关。在同一个土壤中,其数量上有 NcAl>InAl>DCBAl>OrAl>HyAl>ExAl 的趋势。除 ExAl 外,其余五种铝形态均为玄武岩发育 的红壤多于花岗岩发育的红壤。土壤中铝大部分以层状铝硅酸盐矿物存在。并以选择性溶解 方法单独提取作比较。

关键词 铝形态,连续分级提取,红壤

铝是地壳和土壤中最丰富的金属元素。土壤中铝主要存在于层状铝硅酸盐矿物的晶 格中,其余的铝以各种化学形态存在,如水溶性铝,交换态铝,羟基铝及其聚合物(包括表 面覆盖及层间铝),有机配合态铝,铝的氧化物及氢氧化物以及非晶态铝硅酸盐等^[1]。铝的 化学是极其复杂的。土壤中铝的存在形态直接影响土壤的结构和性质,影响人类和生物 生存的生态环境。土壤中铝形态的研究一直是土壤化学和环境化学所关注的重要课题。 中国南方的红壤在其成土过程中形成了一系列不同活性的铝形态,但对红壤中铝形态研 究甚少,因此,研究红壤中铝的形态更显其特殊的重要性。

1 样本和方法

1.1 土壤样本

23 个样本采自广东、福建、江西、浙江和海南等省,其中 1-14号样为 7 对,一个表土和一个底土,其余 均为底土。土壤类型有砖红壤、赤红壤、红壤和黄壤。母质包括玄武岩、花岗岩、第四纪红色粘土、凝灰 岩、第三纪红砂岩和石灰岩。样本过 60 目筛。土壤 pH、有机质和粘粒 (<1μm)用常规方法测定。有效阳离 子交换量 (ECEC),交换性酸度和可滴定酸度按 Shao 等 (1993)方法测定^[2]。无定形氧化铁 (Fe,)和游离氧

收稿日期: 1996-06-18; 收到修改稿日期: 1997-09-20

^{*} 国家自然科学基金(批准号:49271041)和中国科学院南京土壤研究所土壤圈物质循环开放研究实验室基金资助 项目。

	表1 土壤样	本的基本	t性质 。i sami	30		
	Adam Frank	*1 *1		冬梅存	可滴定	无定形
цd	H 711/10	11 1T	222			11. He

	E F	ing the state	년 고	世以			有机质	批約	FCFC	交换性	可滴定	无定形	尾抗	粘土矿物
		工場失望	년 고	気を	ų.	1	×11/1 E			H H H	影中	每小姓	有一个	
样本	Parent	Soil	Locality	Depth						耿炅	联灵	其他跃	₩ 7 5 ¥	(
Sample	material	tvne	•	(cm)	но	KCI	0. M.	Clay		Exchange	Titratable	Feo	Fea	Clay mineral
andrume										acidity	acidity			
								– <u>a/ke</u> –	1	cmo	I/kg	Fe2O3 •	g/kg	
-	出せた	単れたす	「七谷圃	00	4.59	4 01	38.5	451	2.83	2.33	4.17	3.67	140	Kt ¹⁾ ,Vm ²⁾ ,Gi ³⁾
- (A ₹	12 11 後 12 12 後 12 12 1	、小学園	001-001	4 97	4 66	0 11	526	0.73	0.15	3.09	3.78	144	Kt,Vm,G
-) r	A 其 子 宇	13.51. 後 赤尓禳	「金を見ていた」	0-1	5 54	4.63	36.0	493	6.29	0.28	2.91	4.12	126	Kt,Sm,Vm
n <i>−</i>	ていて	<u>赤红夜</u> 赤红幢	同年年間	2- 2 2-1-55	5.43	4.86	12.6	165	6.68	0.47	0.89	3.52	120	Kt,Sm,Vm
t v	ママク	がごえ	単雌江湖		4.83	4.15	42.2	561	8.59	0.77	3.67	7.06	76.1	Kt,Sm,Hm ⁴⁾ ,Vm
л ч	な学生	いて	新江藤見	3682	5.60	4.37	15.1	237	10.02	0.32	2.26	8.09	76.1	Kt,Sm,Hm,Vm
	ないない	<u> </u>	「木丁州」	0-22	3.79	3.30	36.0	295	5.54	5.20	3.04	4.67	53.5	Kt,Hm,Vm
- x	4 2 4 2 4 5 4 5 4 5 4 5 4 5 4 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	赤红壤	广东广州	63110	4.20	3.78	5.29	204	2.84	2.59	0.13	1.10	54.1	Kt,Hm,Vm
, o	た近が	に壊り	江西船山	0-10	4.40	3.64	49.7	217	6.48	5.41	2.08	4.37	38.4	Kt,Hm,Vm
r 1	ち て 七 正 十 正 十	なりな	计话路上	1035	4.76	3.77	13.4	232	4.85	4.32	0.70	4.37	42.5	Kt,Hm,Vm
2 :	ちても	1 书 夜	计用格计	010	4 95	3.81	9.89	230	3.19	2.59	1.34	10.1	24.6	Kt,Vm,Gi
12	5 2 2 2 2 2 2 3 3 3 3 3 5 3 5 3 5 5 5 5	K 黄 滚 壤	江西船山	100-200	4.86	3.73	7.45	283	3.92	3.33	0.11	5.55	25.7	Kt,Vm,Gi
13	第四纪	红壤	江西进贤	0-15	4.68	3.82	17.7	345	3.08	2.56	1.22	2.86	48.4	Kt,Hm,Vm
	乳巴粘土													
14	第四纪	红壤	江西进贤	5590	5.02	3.86	4.54	394	2.31	1.85	1.44	5.21	56.3	Kt,Hm,Vm
	红色釉土 大学马	「「」」	垣律昍褗	55—70	4 86	4.29	11.3	651	1.86	1.61	3.94	5.55	116	Kt,Hm,Vm
CI 71	ないた	に接	に、王王子王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王王	4060	5.02	4.10	5.96	365	4,49	4.02	1.89	2.69	53.6	Kt,Hm,Vm
01 [右 Z 4 近 1 1	" 赤红躔	「东埔罗	30 - 40	4.61	4,04	10.8	358	2.73	2.41	1.81	1.52	34.9	Kt,Hm,Vm,Gi
101	大 5 5 七 七 七	を見て	福建永安	30-45	4.56	4.04	8.55	371	4.41	4.12	1.74	1.70	20.9	Kt,Vm,Gi
10	た 立 立 立 立 立 た た つ た つ た つ つ た つ つ つ つ つ つ つ つ つ つ つ つ つ	次 4 砖灯壤	海南田罗山	40 - 60	5.09	4.05	7.64	431	1.42	0.61	0.70	1.18	21.6	Kt,Hm,G
6	为 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	たたな	广东谋江	40 - 50	5.12	4.08	8.82	715	5.84	3.97	2.38	4.39	78.4	Kt,Ha''
77	预 大山	後年に	海津城乐	50-70	5.05	4.17	10.4	278	4.12	3.67	1.85	5.91	22.8	Kt,Vm,G
17	张 八石 第一百斤早日	X Z X 译	计电子计	0000	517	4 09	2.16	280	3.80	3.62	0.89	0.45	27.4	Kt,Ha,Vm
77	弗二記乳砂石 たたら	し い で で 後 语	1111111111111111111111111111111111111	04 07	5 11 5	4 01	8.47	405	3.74	3.42	0.80	0.72	39.3	Kt,Ta ⁷⁾ ,Vm
23	白八石	12 K	面角石ぐ	5	11.7		;							

1) Kt, 高岭石; 2) Vm, 铝蛭石; 3)Sm,蒙皂石 4) Hm, 水云母; 5)Ha, 埃洛石; 6)Gi, 三水铝石;7)Ta, 滑石。

铝形态 提取剂 土液比 提取条件 Aluminum form Extractant Ratio of soil Condition to extractant (1) ExAl.交换态铝 1mol/L KCl 1:10 振荡30分钟,离心分离,提取2次。水洗1次。 (2) HyAl,吸附态羟基铝 0.2mol/L HCl 1:10 振荡30分钟,离心分离,提取2次。水洗1次。 (3) OrAl,有机配合态铝 0.1mol/L Na₄P₂O₇ (pH8.5) 1:20 振荡2小时,离心分离,提取2次。1mol/L Na₂SO₄洗1次。 0.3mol/L Na₃C₆H₅O₇/lmol/L (4) DCBAI,氧化铁结合 1:40/5 80℃水浴,搅拌15分钟,离心分离,提取2次。 态铝 NaHCO3; 固体Na2S2O4 1mol/L NaCl 洗1次。 (5) InAi 层间铝 0.33mol/L Na₃C₆H₅O₇ 1:100 100℃保温箱中,密闭保温24小时,冷却、过滤, (pH7.3) 1mol/L NaCl洗1次。 (6) NcAl,非晶态铝硅酸 0.5mol/L NaOH 1:500 镍锅中,煮沸2.5分钟,冷却,离心分离。水洗 盐及三水铝石 1次。

表2 土壤中铝形态的连续分级提取

Table 2 Sequential extraction techniques employed to fractionate aluminum forms in soils

表3 连续提取的土壤中铝的形态

Table 3 Sequential extraction of the aluminum forms in soils

	交换态铝	吸附态	有机配		氧化铁结		层间铝	非晶态铝	
		羟基铝	合态铝	(Ex+Hy	合态铝	(Ex+Hy+Or	InAl	硅酸盐	ΣΑΙ
Sample	ExAl	HyAl	OrAl	+Or)Al	DCBA1	+DCB)A1		NcA1	
		Al ₂ O ₃	mg/kg —			<u> </u>	Al ₂ O ₃ g/kg		-
1	265	1814	2071	4150	22.06	26.21	27.93	129.8	183.94
2	15.3	1058	1300	2373	20.71	23.08	27.76	145.9	196.74
3	3.02	1058	2843	3904	15.42	19.32	14.67	76.02	110.01
4	0	983	2979	3962	16.48	20.44	14.61	80.87	115.92
5	90.7	1966	2616	4673	8.60	13.27	10.74	46.68	70.69
6	16.6	1777	3016	4810	8.33	13.14	11.42	51.16	75.72
7	818	1172	1572	3562	7.03	10.59	10.57	44.38	65.54
8	612	491	726	1829	5.10	6.93	9.49	42.62	59.04
9	798	1134	1633	3565	4.73	8.30	8.90	32.87	50.07
10	679	718	1472	2869	5.92	8.79	11.72	28.58	49.09
11	452	1285	17 99	3536	6.44	9.98	15.78	24.78	50.54
12	635	1172	1588	3395	7.03	10.43	16.12	25.48	52.03
13	514	1399	1898	3811	9.02	12.83	13.74	26.23	52.80
14	527	1361	1913	3801	9.03	12.83	15.69	28.67	57.19
15	280	1247	2253	3780	27.54	31.32	16.33	66.00	113.65
16	524	945	1777	3246	8.20	11.45	13.31	28.92	53.68
17	348	605	1066	2019	10.81	12.83	12.98	68.23	94.04
18	662	1096	1913	3671	8.47	12.14	21.91	41.03	75.08
19	144	529	1081	1754	5.25	7.00	11.06	59.38	77.44
20	588	983	2298	3869	14.82	18.69	11.93	67.32	97.94
21	614	1588	2442	4644	8.52	13.16	17.54	26.86	57.56
22	609	454	1164	2227	6.37	8.60	10.21	9.73	28.54
23	433	378	1043	1854	7.03	8.88	10.77	32.15	51.80

40

表4 单独提取的土壤中铝的形态

Table 4 Individual extraction of the aluminum forms in soils

样本	全铝	活性态铝	游离态铝	有机态铝	非晶态铝	柠檬酸钠	层间铝
						提取的铝	
Sample	Al_t	Alo	Ald	Alp	Ala	Alc	ΔAl^{1}
				– Al ₂ O ₃ g/kg ·			
1	284	5.62	28.6	1.98	167	36.82	31.20
2	298	4.15	25.9	0.76	188	32.26	28.11
3	236	5.74	19.3	0.92	81.7	18.09	12.35
4	261	5.31	17.3	0.79	89.0	14.76	9.45
5	144	5.91	10.3	1.27	42.4	14.55	8.64
6	171	6.32	10.1	0.70	53.1	15.72	9.40
7	263	3.26	8.87	2.16	62.0	14.69	11.43
8	297	2.00	5.78	0.84	56.6	11.06	9.06
9	208	5.06	8.12	2.18	44.3	11.83	6.77
10	232	5.20	7.26	1.50	52.4	13.80	8.60
11	180	7.94	9.26	1.75	55.6	21.05	13.11
12	181	5.44	8.54	1.59	55.8	21.95	16.51
13	138	4.27	10.1	1.84	52.8	19.79	15.52
14	159	4.89	11.6	1.66	58.7	19.69	14.80
15	214	5.90	31.7	1.67	105	25.65	19.75
16	188	4.13	6.99	1.36	60.2	16.22	12.09
17	229	2.95	8.51	0.93	93.4	14.08	11.13
18	224	4.37	10.4	1.67	91.6	29.43	25.06
19	268	1.87	5.59	0.63	83.7	13.08	11.21
20	192	6.37	5.59	1.77	113	19.15	12.78
21	171	6.14	17.0	2.55	63.4	25.50	19.36
22	95.4	1.77	10.4	1.07	34.5	15.35	13.58
23	140	2.24	7.50	0.88	68.9	12.83	10.59

1) ΔAl=Alc-A。层间铝。

化铁 (Fe_d)分别用酸性草酸铵和 DCB 方法提取,邻菲啰啉比色测定^[3]。土壤样本的基本性质见表 1。

1.2 红壤中铝形态的区分

1.2.1 铝形态的连续分级提取 以改进的连续分级提取方法,区分红壤中铝的存在形态(表 2)。以
1mol / L KCl,0.2mol / L HCl和 0.1 mol / L Na₄P₂O₇(pH8.5)分别连续提取交换态铝(ExAl),吸附态羟基铝(HyAl)和有机配合态铝(OrAl)^[4],接着以 DCB 方法提取与氧化铁结合态铝(DCBAl)^[3],以柠檬酸钠(0.33mol / L, pH7.3)提取层间铝(InAl)^[5],最后以 0.5mol / L NaOH 提取非晶态铝硅酸盐及三水铝石(NcAl)^[3]。以铝试剂比色法或等离子光谱法测定提取的铝。同时提取的铁和硅用比色法测定(表 3)。

1.2.2 铝形态的单独提取 以常用的选择性溶解方法单独提取红壤中各种形态铝,与连续提取作比较。以酸性草酸铵法,DCB法,0.1mol/L Na₄P₂O₇和 0.5mol/L NaOH分别提取土壤中活性态铝 (Al_o)、游离态铝(Al_a)、有机态铝(Al_o)和非晶态铝硅酸盐(Al_a)^[3]。以 0.33mol/L 柠檬酸钠提取的铝(Al_o)减去

酸性草酸铵提取的活性态铝 (Al_o)计算层间铝 (ΔAl)^[5]。土壤中全铝 (Al_i)用 浓HF-HClO₄消化法提取。提 取的铝用等离子光谱法或铝试剂比色法测定,用比色法测定提取的铁和硅 (表 4)。

2 结果与讨论

2.1 交换态铝 ExAl

中性1mol / L KCI 提取的交换态铝,主要是静电引力吸附于土壤固相表面的交换性 铝离子。铝是红壤中主要的交换性离子,交换态铝决定着土壤的交换性酸度,在很大程度 上制约着土壤的 pH 值。结果表明,土壤 ExAl 与土壤交换性酸度呈极显著正相关 (r = 0.942^{•••}),而与 pH 呈极显著负相关,与在 KCI 和水中的 pH 的 r 值分别为 - 0.820^{•••}和 - 0.621^{••}(表 5)。土壤 pH 在 5.5 左右时, ExAl 已很少,几乎没有,如土样 3,4 和 6。在 pH5 左右时交换态铝开始有意义^[6]。

交换态铝是被羟基化了的,其程度与粘土矿物、氧化铁等性质有关^闭。结果表明, ExAl

```
表5 土壤铝形态与性质之间的相关系数(r) (n=23)<sup>1)</sup>
```

Table 5	The	correlation	coefficients	(r)	between	aluminum	form	and	soil	properties	(n	=23	5
---------	-----	-------------	--------------	-----	---------	----------	------	-----	------	------------	-----	-----	---

铝形态	pН	pН	有机质	粘粒	无定形	游离	交换性酸度	可滴定酸度	有效阳离
Al form	(H ₂ O)	(KCl)	O. M.	Clay	氧化铁	氧化铁	Exchange	Titratable	子交换量
					Fe₀	Fed	acidity	acidity	ECEC
连续提取									-
ExAl	-0.621**	-0.820***				-0.655***	0.942***		
HyAl					0.725***			0.609**	
OrAl			0.534 ^{*2)}		0.580**				
(Ex+Hy+Or)Al					0.700***			0.504*	
DCBAI				0.771***		0.849***		0.671***	
(Ex+Hy+Or+DCB)Al				0.739***		0.851***		0.715***	
InAl									-0.419*
NcAl				0.572**		0.830***		0.575**	
ΣΑ1				0.610**		0.850***		0.617**	
单独提取									
Al₀					0.869***			0.393	
Al _p			0.316		0.345				
Al _p -ExAl			0.456*		0.536**				
Ald				0.498*		0.770***		0.659***	
Ala				0.663***		0.690***		0.506*	
ΔΑΙ									-0.501*

1) * p<0.05; ** p<0.01; *** p<0.001.

2) *n*=16

与土壤游离铁含量呈显著负相关 (r=-0.655^{***}),因为游离铁与 pH(KCl) 呈正相关 (r=0.630^{**})^[4]。发育于玄武岩的红壤其 Fed量明显高于花岗岩红壤,因此,玄武岩红壤的 ExAl 明显低于花岗岩红壤。

我国南方红壤其粘土矿物均以高岭石为主,所以交换态含量均很低,仅在 0—818 mg/kg Al₂O₃之间,平均 419mg/kg(表 6)。约占可提取的六种形态铝总量(ΣAl)的 0.73%, 占全铝量的 0.23%(表 7)。但交换态铝与土壤溶液,天然水体中铝密切相关,对生物的危 害关系极大^[1,7,8],也是土壤中各种铝形态转化的重要环节,所以特别引起人们的关注。

2.2 吸附态无机羟基铝 HyAI

用 0.2mol / L HCl 提取的 HyAl,主要是以无机胶膜吸附于矿物表面和边缘的羟基铝 和氢氧化铝,以及某些非晶形铝硅酸盐。它通常由交换性铝聚合或矿物中铝在 H⁺作用下 转化而来,是铝形态转化的产物^[4]。实验结果证明,HCl 提取的铝量大大超过硅量,说明被 提取的产物主要是羟基铝和氢氧化铝。0.2mol / L HCl 对有机态铝提取很少,仅提取无机 态羟基铝,这样把两种非晶态的铝加以区分开来。X 射线衍射结果表明,0.2mol / L HCl 对层状铝硅酸盐矿物溶蚀作用不明显(图 1)。

HyAl 与单独提取的铝形态相比较,它是酸性草酸铵提取的活性铝 Al_o中的一部分,与 Al_o呈极显著正相关 ($r = 0.722^{***}$),也与 Fe_o呈极显著正相关 ($r = 0.725^{***}$)。HyAl 与反映 红壤中水合氧化物表面特性的可滴定酸度呈显著正相关 ($r=0.609^{**}$)。

HyAl 与土壤全铝量无相关性^[4]。主要与成土母质有关,玄武岩发育的红壤大于花岗 岩红壤(表 6)。红壤中 HyAl 的量多于交换态铝,尤其是玄武岩红壤,但仍只占可提取铝总 量的 1.58%,全铝量的 0.57% 左右(表 7)。

2.3 有机配合态铝 OrAl

表6 红壤中各种形态铝的数值范围

Table 6 Amount and range of various aluminum forms in red soils

		样本		上中国		9.01.0 0
	- T . PP	'1T^ F	Z, 124,4	コーサ灰	16,1017	了马灰
铝形态	Total s	samples	Basalt pare	nt material	Granite par	ent material
Aluminum form	范围	平均	范围	平均	范围	平均
	Range	Average	Range	Average	Range	Average
			Al ₂ O ₃	g/kg	· · · ·	
ExAl	0-0.818	0.419±0.266	0-0.280	0.096±0.125	0.144-0.818	0.567±0.20
HyAl	0.378-1.966	1.096±0.440	0.983-1.966	1.415±0.421	0.491-1.285	0.915±0.30
OrAl	0.726-3.016	1.846±0.647	1.300-3.016	2.440 ± 0.617	0.726-1.913	1.463 ± 0.38
DCBAI	4.73-27.54	10.56 ± 6.08	8.33-27.54	17.02±7.06	4.73-10.81	6.90 ± 1.87
InAl	8.90-27.93	14.57±5.17	10.74-27.93	17.64±7.24	8.90-21.91	13.18±3.90
NcAl	9.73—145.9	51.46±33.19	46.68-145.9	85.20±38.27	24.78-68.23	39.63±14.70
ΣΑΙ	28.54—196.7	79.96±41.81	70.69—196.7	123.8 ± 49.0	49.09-94.04	62.66±15.14
MinAl	66.86-238.0	127.6±43.22	73.31-145.1	150.9±23,1	129.0-238.0	164.4±36.6

表7 红壤中各种形态铝的分布

Table 7 The distribution of various aluminum forms in red soils

铝形态	Ali	/ΣΑ1	Ali	/Al _t
Aluminum form	范围	平均	范围	平均
Ali	Range	Average	Range	Average
		9	%	
ExAl	0-2.13	0.73±0.58	0-0.64	0.23±0.16
HyAl	0.54-2.78	1.58 ± 0.77	0.17-1.37	0.57 ± 0.30
OrAl	0.66-4.24	2.66 ± 1.04	0.24-1.82	0.96±0.41
DCBA1	6.78-24.23	13.43 ± 3.95	1.72-12.87	5.19 ± 2.48
InAl	12.18-35.77	20.46 ± 7.44	3.20-10.70	7.32 ± 2.29
NcAl	34.09-76.68	61.14±11.03	10.20-48.96	23.69 ± 10.66
MinAl			33.98-80.12	62.04 ± 12.84

用0.1mol/L 焦磷酸钠 (pH8.5) 提取土壤中有机配合态铝。由于焦磷酸钠也能溶出部分 无机羟基铝和氢氧化铝,因此连续提取中置于 0.2mol/L HCl 之后。OrAl 也是一种非晶态 铝,对 KCl 是非交换性的。有机配合态铝的生成增加了铝在土壤中的移动性,也降低了铝 对生物的毒性。经 0.2mol/L HCl 和焦磷酸钠处理后,土壤胶体的 X 射线衍射图高岭石峰 更明显,尤其是花岗岩母质,说明焦磷酸钠对矿物无明显破坏作用(图 1)。

 1. 花岗岩黄壤胶体(样本 18)。2. 玄武岩红壤胶体(样本 15)。
a. 原土胶体,未处理; b. 胶体经1 mol/L KCl和0.2mol/L HCl提取;
c. 原土胶体经 DCB 法处理; d. 胶体经1mol/L KCl, 0.2mol/L HCl 和0.1 mol/L Na,P,O, 连续提取后,再经 DCB 法处理。

图 1 土壤胶体 (<1µm) X 射线衍射图 Fig.1 X-ray diffraction patterns of soil colloids (<1µm)

质之间相关系数为 0.454*(n = 23), 明显好于 OrAl 和 Al_n。

OrAl 也是非晶态铝,属于 Al。中一部分。OrAl 与 Al。之间有极显著正相关 (r = 0.743^{***})。Al。应包括 ExAl,HyAl 和 OrAl,它们之间的相关性更好 (r=0.803^{***})。结果表明, ExAl,HyAl 和 OrAl 之和略小于 Al。,可能与酸性草酸铵对铝硅酸盐的溶解有关。

有机质不仅对铝,同时对铁有较强的配合作用。OrAl 与 Fe_o之间有良好的相关性 ($r = 0.580^{\text{\cdot\cdot}}$),而 ExAl,HyAl 和 OrAl 之和与 Fe_o之间相关性更好 ($r=0.700^{\text{\cdot\cdot\cdot}}$)。Al_p – ExAl 也有良好正相关 ($r = 0.536^{\text{\cdot\cdot}}$)。(Ex+Hy+Or)Al 与可滴定酸度之间也呈正相关趋势 ($r=0.504^{\text{\cdot}}$)。

红壤中 OrAl 量高于 ExAl 和 HyAl,约在 726-3016mg Al, O, / kg 范围,平均

OrAl 主要与有机质相 关, 尤其与焦磷酸钠提取液 中有机质有良好正相关^[4]。 结果表明, 不论 OrAl 还是单 独提取的有机态铝 Al_p, 以及 OrAl/Al₄和 OrAl/ΣAl 比, 均 有表土大于底土的趋势。从 16 个底土的统计, OrAl 与有 机质量呈良好正相关 ($r = 0.534^*$)。

OrAl 与 Al_p之间也有良 好的相关性,除 7 个玄武岩 母质样本外, OrAl 接近于 Al_p,两者之间平均偏差为 2.96%,相关系数为 0.832^{•••}。 玄武岩发育的红壤,因其高 岭石结晶稍差,含铁高,加上 土壤中各种胶体互相包裹或 覆盖,连续提取去掉较多无 机胶膜,因此 OrAl 高于 Al_p。

Lazerte 和 Findeis(1994) 认为, Al_p减去交换性铝才真 正代表有机态铝^[9]。根据本 研究结果, Al_p-ExAl 与有机 1846mg / kg 左右。玄武岩母质的红壤 OrAl 量明显高于花岗岩母质(表 6)。红壤中 ExAl, HyAl 和 OrAl 三部分铝的量约在 1754—4810mg Al₂O₃ / kg 之间,平均 3361mg / kg,约占 可提取铝总量的 1.21—8.07%,平均 4.97%;占全铝量的 0.62—3.25%,平均 1.76%。这三部 分铝虽在量上不大,却是各级铝形态中较活性的部分,尤其在生态环境和铝形态转化上具 有重要意义。

2.4 氧化铁结合态铝 DCBAl

DCB 起初主要用于去除土壤矿物表面的非晶形氧化物胶膜和结晶氧化铁,以利于土壤和矿物的理化分析。后来被广泛用来提取土壤中游离铁、铝、锰和硅。经过上述 KCl, HCl 和焦磷酸钠连续提取后, DCBAl 主要是与氧化铁结合的游离铝。

DCBAI主要与土壤中游离铁 (Fed),尤其与同时提取的 DCBFe 呈显著正相关,相关系数分别为 0.849^{•••}和 0.864^{•••}。由于游离氧化铁集中于粘粒部分, DCBAI 也与土壤的粘粒含量显著正相关 (r=0.771^{•••})。DCBAI 与可滴定酸度也呈显著正相关 (r=0.671^{•••})。

DCBAI与用 DCB 法单独提取的游离铝 Ala密切相关 (r=0.897^{***}), 尤其是 ExAl, HyAl, OrAl 和 DCBAI 之和与 Ala关系更密切。结果表明, 由于在连续分级提取中, 无机和有机胶 膜层层剥落, 四者之和稍大于 Ala。 ExAl, HyAl, OrAl 和 DCBAI 之和与游离铁和可滴定酸 度等的相关性也明显好于 DCBAI。

由于 DCBAI 与氧化铁 密切相关,含游离铁高的玄 武岩母质红壤的 DCBAI 明 显高于花岗岩母质红壤。同 是玄武岩母质, DCBAI 有砖 红壤>赤红壤>红壤 的趋 势。23个红壤样本中, DCBAI量在4.73—27.54g Al₂O₃ / kg之间,平均 10.56g/kg,明显高于前三级 之和(表 6)。

2.5 层间铝 In Al

层间铝是一种非交换性 聚合羟基铝,位于 2:1型层状 矿物的层间。本研究参照 Soon(1993)方法,使用 pH7.3 的 0.33mol / L柠檬酸钠溶液 提取层间铝 InAl^[5]。X射线 衍射结果显示,柠檬酸钠溶 液能去除层间铝(图 2)。

在单独提取中,常用 0.33mol/L柠檬酸钠溶液从

花岗岩黄壤胶体(样本 18)。2. 玄武岩红壤胶体(样本 15)。
a. 原土胶体经 1mol/L KCl, 0.2mol/L HCl, 0.1mol/L Na₄P₂O₇和
DCB 法连续提取; b. 上述胶体(a)再经 0.33mol/L 柠檬酸钠提取层间铝;
c. 上述胶体(b)再经 0.5mol/L NaOH 提取。

图 2 土壤胶体 (<1µm) X 射线衍射图

Fig.2 X-ray diffraction patterns of soil colloids ($< 1\mu m$)

原土中提取的铝(Al_o),减去酸性草酸铵提取的铝(Al_o),来计算层间铝(ΔAl)^[5]。研究结果 表明,连续提取的层间铝 InAl 值,颇为接近单独提取用差减法计算的层间铝ΔAl。23 个样 本中,两者平均偏差仅 2.18%,两者相关系数 为0.939***。

InAl 数值相对大小也与粘土矿物组成的 X 射线衍射结果相一致。其中玄武岩母质的 砖红壤 (样本 1,2), 黄壤 (样本 11,12,18,21) 和第四纪红土红壤 (样本 13,14) 层间铝含量 较高。由于层间羟基铝的生成, 降低了层间负电荷量, 使土壤阳离子交换量降低。本研究 中, 层间铝量与 ECEC 呈良好负相关, InAl 和 ΔAl与 ECEC 的相关系数分别为-0.419*和 -0.503*。

红壤中层间铝组成有两类。一类以羟基铝及其聚合物为主,柠檬酸钠提取的铝量 (mol/kg)大大超过硅量,层间羟基铝吸附一定量硅。如本研究中一些层间铝量较高的样 本如玄武岩砖红壤(样本1和2)、黄壤(样本11、12、18和21)和第四纪红壤(样本13和 14)。另一类样本,柠檬酸钠提取的铝量等于或约小于硅量。这部分层间物以铝硅酸盐或 羟基铝一硅酸复合体为主。原因是一部分与硅酸盐阴离子结合的聚合羟基铝阳离子进入 层间,也可能一部分以无定形铝硅酸盐形态,即硅酸盐取代了聚合体中某些羟基配 体^[5,10,11,12]。

2.6 非晶态铝硅酸盐和三水铝石 NcAI

用 0.5mol/L NaOH溶液煮沸 2.5分钟,提取样本的非晶态铝硅酸盐和三水铝石。在 23 个样本中有五个样本,NaOH溶液所提取的铝量 (mol/kg)超过硅量。一般认为铝硅酸盐铝 硅比应为 1,说明有三水铝石的存在。铝与硅摩尔数之差可作为三水铝石的估计(表 8)。 结果与 X 射线矿物分析的结果一致。砖红壤(样本 1、2 和 19)有明显的三水铝石,黄壤(如 样本 18)也含一定的三水铝石。图 2 中经 0.5mol/L NaOH溶液提取后,X 射线衍射图显示 三水铝石的去除。

	Al	Si	Al/Si	Al-Si	Al(OH)
Sample	mo	/kg		(mol/kg)	(g/kg)
1	2.55	1.91	1.34	0.64	49.9
2	2.86	2.15	1.33	0.71	55.4
17	1.34	1.19	1.13	0.15	11.7
18	0.80	0.77	1.04	0.03	2.34
19	1.16	1.01	1.15	0.15	11.7

表8 0.5mol/L NaOH提取的铝和硅 Table 8 Aluminum and silicon extracted with 0.5 mol/L NaOH

NcAl 量与样本的粘粒、游离铁含量和可滴定酸度呈显著正相关,相关系数分别为 0.572^{**},0.830^{***}和 0.575^{**}。不同母质发育的红壤, NcAl 量差距极大。玄武岩红壤 NcAl 较 大,可达 46.68—145.9g / kg Al₂O₃,平均 85.20 g / kg,占全铝量的 30% 以上,而花岗岩红壤 NcAl 仅在 24.78—68.23g / kg;平均 39.63g / kg,占全铝量不到 20%(表 6)。

2.7 可提取铝总量ΣAI

ΣAI为连续提取中可提取的6种形态铝量的总和。红壤样本的ΣAI与单独提取中 0.5mol/LNaOH溶液提取的非晶态铝硅酸盐量Al_a颇为接近。23个样本两者平均偏差仅 为0.68%,相关系数为0.945^{***}。这说明用0.5mol/LNaOH溶液单独提取也可提取连续提 取中所能提取的铝的几乎全部, NaOH 溶液对各种形态的非晶态铝均有较强的溶解能力, 尤其对高岭石结晶好的花岗岩红壤。对含铁量高、高岭石结晶较差的玄武岩发育的红壤, 可提取铝的总量稍大于单独用 NaOH提取的 Ala。说明由于土壤中各种胶体互相包裹或结 合,游离氧化铁对非晶态铝有掩盖作用^[3],而连续提取中由于各类胶膜层层剥离和游离铁 的去除,使可提取的非晶态铝硅酸盐量增加。ΣAI量也与游离铁、粘粒含量和可滴定酸度 呈显著正相关(表 5)。

可提取铝中,一般有 NcAl > InAl > DCBAl > OrAl > HyAl > ExAl 的趋势。各种形态铝的量与母质有关,除 ExAl 外,其余 5 种形态铝均有玄武岩母质的样本大于花岗岩母质的趋势,总量 Σ Al也如此。结晶较差的玄武岩和凝灰岩母质红壤的 Σ Al / Al_t一般在 40% 以上,而花岗岩母质均小于 30%。

2.8 矿物态铝 MinAl

结果表明,红壤中铝除了上述可提取的外,大部分铝是以层状铝硅酸盐矿物存在,它不 能为上述提取剂和选择性溶解所提取。这部分铝称矿物态铝 MinAl, MinAl = Al, - ΣAl。

矿物态铝与全铝之比 (MinAl / Al,)表示了红壤中矿物态铝的相对比例。23 个样本的 矿物态铝平均约占全铝的 62.04%(表 7),说明红壤中铝主要以层状铝硅酸盐矿物存在。其 中玄武岩发育的红壤在 33.98—55.72% 之间,平均 47.39%,而花岗岩母质在 58.93—80.12% 之间,平均 72.11%,其它几种母质也均在 60% 以上。

3 结 语

1. 以改进的连续分级提取,把红壤中可提取的非晶态铝区分为交换态铝(ExAl),吸附态无机羟基铝(HyAl),有机配合态铝(OrAl),与氧化铁结合态铝(DCBAl),层间铝(InAl)和非晶态铝硅酸盐(NcAl)。每一种铝形态在其结构组成和性质上都有自己固有的特征,并与红壤的相应性质和生态特征密切相关。而单独提取的铝形态,在其特征、性质和意义上没有连续提取的铝形态那么明确,往往是一些非晶态铝的组合。

2. 连续提取的铝形态,在同一土壤中在其数量和 Al_i / ΣAl与 Al_i / Al_i比例的分布上,均有 NcAl > InAl > DCBAl > OrAl > HyAl > ExAl 的趋势。ExAl, HyAl和 OrAl 三种铝形态,虽 然量很少,约占可提取铝总量的 5% 以下,不到全铝量的 2%。但是在所有铝形态中是较活性的,在生态环境和形态转化上有重要意义。红壤中铝大部分仍以层状铝硅酸盐矿物存在。

 3. 除了交换态铝外,其它五种铝形态的量和可提取铝总量均为玄武岩母质的红壤大 于花岗岩母质。矿物态铝是花岗岩红壤超过玄武岩红壤。

参考文献

- 1. 王维君,陈家坊.土壤铝形态及其溶液化学的研究.土壤学进展,1992,20(3):10-18
- Shao, Z. C., He, Q., Wang, W. J. Titratable acidity and alkalinity of red soil surfaces. Pedosphere, 1993, 3(2):107-117
- 3. 陈家坊,何群. 土壤胶体中氧化物矿物的化学区分. 见熊毅等编著,《土壤胶体》第二册, 北京:科学出版社, 1985, 241--303

- 4. 王维君。我国南方一些酸性土壤铝存在形态的初步研究。热带亚热带土壤科学,1995,4(1):1-8
- 5. Soon, Y. K. Fractionation of extractable aluminum in acid soils: A review and a proposed procedure. Commun. in Soil Sci. Plant Anal., 1993, 24(13 & 14): 1683-1708
- 6. Thomas, G. W. Beyond exchangeable aluminum: Another ride on the merry-go-round. Commun. in Soil Sci. Plant Anal., 1988, 19(7-12):833-856
- 7. 王维君,陈家坊,何群。酸性土壤交换性铝形态的研究。科学通报,1991,36(6):460-463
- 8. McLean, E. O. Chemistry of soil aluminum. Commun. in Soil Sci. Plant Anal., 1976, 7(7):619-636
- 9. Lazerte, B. D., Findeis, J. Acidic leaching of a podzol Bf horizon from the Percambrian Shield Ontario Canada. Can. J. Soil Sci., 1994, 74(3):321-333
- Lou, G., Huang, P. M. Hydro-aluminosilicate interlayers in montmorillonite: implications for acidic enviroments. Nature, 1988, 335:625-627
- Matsue, N., Wada, K. Interlayer materials of partially interlayered vermiculites in Dystrochrepts derived from Tertiary sediments. J. Soil Sci., 1988, 39:155-162
- Wada, K., Kakuto, Y. Intergradient vermiculite-kaolin mineral in Korea Ultisols. Clays Clay Miner., 1983, 31:183-190

FORMS OF ALUMINUM IN RED SOILS

Shao Zong-chen He Qun Wang Wei-jun

(Institute of Soil Science, Academia Sinica, Nanjing, 210008)

Summary

Extractable noncrystalline aluminum in red soils could be fractionated into exchangeable Al (ExAl), adsorbed inorganic hydroxy–Al (HyAl), organic complexed Al(OrAl), Fe oxide bound Al (DCBAl), interlayered Al (InAl) and noncrystalline aluminosilicate (NcAl), by the 1 mol / L KCl, 0.2mol / L HCl, 0.1 mol / L Na₄P₂O₇ (pH8.5), DCB solution, sodium citrate (0.33 mol / L, pH7.3) and 0.5 mol / L NaOH sequential extraction. All Al forms were characterized by the intrinsic feature in their composition and properties and closely related to the corresponding properties and ecological characteristics of red soils. In the same soil sample the amounts of various Al forms were of the order NcAl > InAl > DCBAl > OrAl > HyAl > ExAl. With the exception of ExAl content the contents of other five forms of aluminum in the red soils derived from basalt were higher than those from granite. In soils most of the aluminum existed in layer aluminosilicate minerals. Individual extraction of the Al forms in soils was compared with the sequential extraction method.

Key words Aluminum form, Sequential extraction, Red soil