砂姜黑土连续施肥对作物生长 及土壤肥力的影响^{*}

张效朴 詹其厚 尹楚良

(中国科学院南京土壤研究所,南京 210008)

EFFECT OF CONTINUOUS APPLYING FERTILIZER ON CROP GROWTH AND SOIL FERTILITY IN VERTISOL

Zhang Xiao-pu Zhan Qi-hou Yin Chu-liang
(Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008)

关键词 砂姜黑土,磷,钾,定位试验中图分类号 S147

砂姜黑土是黄淮海平原主要中低产土壤之一,以往的研究认为它缺 N、少 P 而富 $K^{[1]}$,因此施肥一般皆为 N、P 肥。随着近 10 多年来耕作施肥活动的加强,土壤养分肥力已发生较大变化^[2]。本研究是通过连续施肥的定位试验,探讨其 N, P, K 养分的持续供给能力。

1 试验材料与方法

田间试验设置在怀远县包集镇。供试田块土壤为砂姜黑土中的黄姜土属。其表层 30cm 内为暗灰色 壤粘土,其下为浅黄棕色壤粘土,45cm 以下即为砂姜层。一般化学性质如表 1。这种土壤在淮北有较广泛的代表性。

pН	有机质	全氮	全磷	全钾	速效磷	速效钾
(水土比1:2,5)	(g/kg)	(N, g/kg)	$(P_2O_5, g/kg)$	$(K_2O, g/kg)$	$(P_2O_5, mg/kg)$	(K ₂ O, mg/kg)
6.78	14.0	0.91	0.96	17.0	24.9	136.0

表1 供试土壤一般化学性质

鉴于本试验重点是探讨土壤 P和 K的持续能力及其肥料效应,而 N肥则是公认的作物高产必不可少的,因此试验设 5 个处理(表 2)。 小区面积 $33m^2$,区间设 1m 宽隔离带,小区随机排列,重复 4 次。实行小麦一玉米轮作,一年两季,从 $1992\sim1997$ 年连续试验 5 年,计 10 季作物。

收稿日期: 1998-03-03; 收到修改稿日期: 1999-04-01

表2	试验处理
----	------

EL WILL IN ET	肥料用量	施肥方法				
处理代号	(kg/ha)	小麦	玉米			
1 (CK)	0(不施肥)					
2(N)	N225	N肥80%基施,				
3 (NP)	N225, P ₂ O ₅ 75	20%追施; P ₂ O ₅ 、	N肥基、追肥各50%,			
4 (NK)	N225, K ₂ O90	K ₂ O肥皆作基肥	P2O5、K2O肥皆作基肥			
5 (NPK)	N225, P ₂ O ₅ 75, K ₂ O90					

注: N肥用尿素; P肥用过磷酸钙; K肥用氯化钾。

2 结果与讨论

2.1 作物对 N、P、K 肥反应规律的变化

10 季作物的产量结果统计后列于表 3。可以看出,在中等肥力的砂姜黑土上,小麦和玉米对 N、P、K 肥的反应大致有如下规律: (1)不论是小麦还是玉米, N 肥都是首先出现的、主导的增产因素,若连续三年不施 N 肥,作物难以生长; (2)在前 4 季, P 肥主要只表现对小麦有较显著增产作用,对玉米基本无效;而 K 肥则主要表现对玉米有较显著增产效果; (3)从第 5 季始, P 肥不仅对小麦的效应进一步扩大,田间已出现缺 P 症状,且对玉米也开始显效。从而表明,若连续两年不施 P 肥,必须增施 P 肥才能满足作物高产的需求; (4)同样,连续两年种植后, K 肥不仅对玉米的效应进一步扩大, 不施 K 肥的 NP 区已出现典型缺 K 症状,而且对小麦也开始显效。从而表明,这类土壤的 K 素持续能力即使对需 K 较少的小麦

表3 不同施肥处理对小麦—玉米籽粒产量的影响(kg/hm²)

	第一季 小麦		第二	第二季		季	第四	季	第五	季
处理			玉米		小麦		玉米		小麦	
	$\overline{\mathbf{x}}$	S_{x}	$\overline{\mathbf{x}}$	Sx	$\bar{\mathbf{x}}$	S_{x}	x.	Sx	$\overline{\mathbf{x}}$	S_{x}
CK	4977	352	3954	375	775	126	1102	208	628	196
N	5346	205	9343	603	3549	234	7957	288	2719	262
NP	5752°	132	9763	618	4084°	111	7833	268	4000°	234
NK	5664	79	10933**	457	3477	348	8566°	265	2856	357
NPK	5823**	75	11355**	168	4296**	53	8595*	426	4795**	231
	第六季		第七季		第八季		第九季		第十季	
处理	玉	玉米		小麦		玉米		小麦		*
	x	S_x	$\bar{\mathbf{x}}$	S_x	$\overline{\mathbf{x}}$	Sx	x	S_{x}	x	Sx
CK	406	40	1468	181	2466	340	1909	127	2623	439
N	6961	334	3172	283	4050	225	3912	394	6099	484
NP	7827*	511	6042**	507	3724	429	6076**	441	5809	1320
NK	8475**	98	2959	433	4375°	155	3750	855	7348°	258
, NPK	9055**	393	6963 **	468	4696**	225	7443 **	354	9196 **	202

注:用Duncan法进行了显著性测验;表中只给出了与单施N处理作对比的显著性程度;*Poos显著性,**Pool显著性。

也只能持续两年,随着种植季数的增加,将愈加显示增施 K 肥的必需性和迫切性。此外,表 3 还表明,不同处理的年产量是变化的,主要与不同年份的气候条件等因素有关。但是,唯 NPK 三要素配合的处理在试验 5 年后年单产仍能达到每公顷 15 吨以上。从而说明,为了实现吨粮田的持续,以往当地只施 NP 两种化肥而不施 K 肥及有机肥的习惯施肥法是必须改变的。

2.2 连续施肥对作物养分吸收的影响

2.2.1 不同处理对作物养分浓度的影响 表 4 给出了小麦和玉米各 4 季养分浓度的平均值。可以看出,凡有 N 处理者其籽粒和秸草的含 N 量皆显著高于对照区;有 P 处理的含 P 量皆高于不施 P 处理。对照区秸草中含 P 量反高于其它处理,估计是作物自身繁殖需吸收 P 素,却因 N 素缺乏,致籽粒形成受阻,从而使吸收的 P 素大部分滞留秸草所致。而施 K 处理两种作物都表现在秸草中 K 浓度显著提高,但籽粒的 K 浓度受施 K 影响较小,这是符合一般规律的。此外,对比两种作物又可看出,小麦籽粒中 N、P 含量皆高于玉米,尤其是 N 多高出 70% 左右,表明小麦籽粒的蛋白质营养价值远高于玉米。然而秸草中 N、P 含量规律却相反,玉米秸含 N 达 $8.0 \, \text{g/kg}$,含 $P_2 \, \text{O}_5 \, 2.0 \, \text{g/kg}$,而小麦秸秆分别只有 $5.4 \, \text{g/kg}$ 和 $1.4 \, \text{g/kg}$ 。从而表明,作为牛饲料而言,玉米秸比小麦秸更富营养。

作物	处理		籽粒		秸草				
1F10)	2012年	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O		
小麦	CK(0)	17.4±0.9	9.0±1.2	4.4±0.6	3.6±1.6	2.5±1.6	9.7±0.9		
	N	23.3 ± 3.0	5.7 ± 0.1	3.8 ± 0.9	5.5 ± 1.8	1.5 ± 0.2	9.7±2.3		
	NP	21.6 ± 0.7	8.5 ± 0.2	4.5±0,9	6.3 ± 2.8	1.5 ± 0.3	9.6±2.5		
	NK	21.4±3.7	6.0 ± 0.6	3.9 ± 0.8	4.8 ± 1.7	1.1 ± 0.2	12.8±0.2		
	NPK	21.9±2.2	8.3 ± 0.9	4.1 ± 0.3	5.1 ± 1.4	1.6 ± 0.4	13.1±1.		
玉米	CK(0)	11.7±1.7	6.4±0.9	4.1±0.4	6.6±1.5	4.9±2.8	8.8±1.3		
	N	13.0 ± 0.2	5.2 ± 1.1	3.8 ± 0.3	8.3 ± 1.5	1.6±0.6	9.5±1.3		
	NP	13.6±0.2	7.0 ± 0.9	4.2 ± 0.4	8.4 ± 1.7	2.2 ± 0.4	8.9±1.1		
	· NK	12.8 ± 0.7	5.3 ± 0.9	4.2 ± 0.3	7.4 ± 1.8	1.5 ± 0.6	14.9±3.		
	NPK	13.2±0.9	7.1 ± 0.9	4.4 ± 0.5	7.8±0.9	2.5±0.8	12.7±3.4		

表4 不同处理对作物养分含量(g/kg)的影响(4季平均值)

2.2.2 养分收支平衡情况 根据生物产量及养分含量计算而得的养分吸收总量举例列 于表 5 和表 6。可以看出,多数处理玉米对 N、P、K 的吸收总量皆高于小麦,尤以 K 更甚。

处理 -	1994年夏			1995年夏			1997年夏		
	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O
CK(0)	18.4	11.2	14.8	14.7	8.8	11.4	35.2	17.4	28.4
N	111.0	26.4	57.2	83.4	18.8	41.0	90.6	25.5	44.4
NP	121.1	41.4	66.4	112.2	37.4	56.2	140.4	53.7	70.2
NK.	109.8	26.8	72.4	90.3	21.2	60.8	87.9	22.8	55.8
NPK	121.4	47.0	83.6	131.1	48.2	82.6	165.6	60.6	105.9

表5 不同处理下小麦的养分吸收状况(kg/hm²)

处理 -	1993年夏				1995年夏		1997年夏		
	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K₂O	N	P ₂ O ₅	K ₂ O
CK(0)	61.5	58.4	54.9	17.0	12.8	15.8	43.0	18.4	40.5
N	143.1	61.4	69.6	138.8	41.7	74.4	104.0	28.1	75.9
NP	175.4	83.1	77.8	161.6	68.4	96.6	93.9	36.4	62.2
NK	175.8	77.4	124.6	165.3	53.4	163.8	113.8	34.5	117.0
NPK	192.0	100.8	122.6	187.2	93.8	172.2	152.6	65.4	120.0

表6 不同处理下玉米养分吸收状况(kg/hm²)

从而表明,为了高产稳产,对玉米的 N 肥和 K 肥用量应高于小麦。至于 P 肥,由于玉米可利用小麦季的 P 肥后效,加之温度效应使玉米季的土壤有效 P 提高^[3,4],所以在 P 肥分配上应以小麦为主。

对比养分吸收总量与肥料施用量可知, NPK 处理最高一季玉米的吸 N量相当于当季 N肥用量的 85.3%, 最高一季小麦的相应数值为 73.6%, 若用差减法换算成 N肥当季利用率, 两者分别达 75.7% 和 57.9%, 显然这是很高的 N肥利用率^[5]。而磷肥的吸收量最高一季玉米竟超过当季肥料用量 25%, 小麦最高一季相当于 P 肥用量 80.8%; 又作物对 K 的吸收多数生长季皆超过 K 肥施用量。显然, P和 K 的吸收总量中有相当一部分是由土壤提供的。总之, 由于 P 肥在土壤中移动性小, 后效较长, 某些处理吸收的 P 一部分可能来自于前几季 P 肥的残留; 但 K 却易流失, 不但超过施肥量的部分必然来自于土壤本身 K 的释放, 而随水流失的部分也必是由土壤释放所补充的。因此, 本试验中每公顷 90kg K₂O 的用量在每公顷产 15 吨粮的条件下, 必将造成土壤 K 的亏损。

2.3 连续施肥和种植对土壤养分含量的影响

土壤分析结果表明,连续施肥和种植 10 季后土壤农业化学性质有较大变化: (1) 不施肥的对照区各种养分都明显下降,尤以速效 N,P,K 为明显; (2) 凡施 N 处理,其土壤有机质、全 N 及碱解 N 含量基本与种植前相近; (3) 施 P 处理,尤其是无 K 的 NP 处理全 P 含量略有上升,速效 P 则有较大幅度升高;而不施 P 的三处理速效磷含量则有大幅度下降(图 1)。从而表明,每公顷每季施 75 kg P_2 O_5 即可维持土壤磷素肥力,又可满足 15 吨粮产量的需求; (4) 不施 K 肥的各处理速效 K 大幅度下降,即使施 K 处理也有下降的趋势(图 2)。从

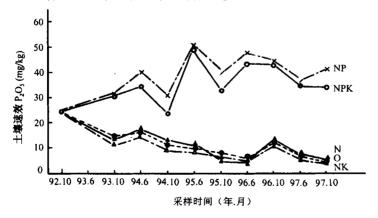


图1 不同处理下土壤速效磷含量的变化

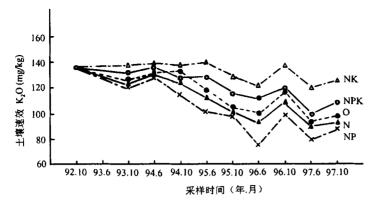


图2 不同处理下土壤速效钾含量的变化

而再次表明,每公顷每季施用 $90kgK_2O$ 尚不能满足 15 吨粮产量的需要,而只能减轻或延缓土壤钾的耗竭程度。此外,对比作物产量差异显著时土壤速效 P、K 的分析值看出,玉米 缺 K 的临界值应为 $K_2O120mg/kg$ 左右;小麦为 $K_2O100mg/kg$ 左右。而玉米缺 P 的临界值约为 P,O,10mg/kg 左右;小麦为 P,O,15mg/kg 左右。

参 考 文 献

- 1. 张俊民、论砂姜黑土的生产潜力和综合治理,见:砂姜黑土综合治理研究,合肥:安徽科技出版社,1988.2~12
- 2. 张效朴.主要作物均衡增产的营养调节对策.见:周明枞、姚培元主编:淮北地区水土资源开发与治理研究.北京: 科学出版社,1992.61~73
- 3. 张效朴.淮北砂姜黑土的肥力特点与高产高效粮食生产的施肥管理技术研究.农业现代化研究,1996,17(4): 218~224
- 4. Singh BR Plant availability of P at different temperature from previously heavily fertilizer soils. 15th world cong. Soil Sci., 1994 Vol.5b, 373~374
- 5. 张绍林,朱兆良,徐银华,黄泛区潮土一冬小麦系统中尿素的转化和化肥氮去向.核农学报,1989,3(1):9~15