紫色土 K⁺ 吸附解吸动力学研究^{*}

熊明彪^{1,2} 田应兵¹ 宋光煜¹⁻ 石孝均¹ 毛炳衡¹ (1 西南农业大学资源环境学院 重庆北碚 400716)

(2四川省水土保持生态环境监测总站,四川成都 610041)

摘 要 从国家紫色土肥力与肥料效益监测基地定位试验上,在第 10 年水稻收获后从 0~ 30 cm 土层 采取土壤样品,研究土壤 K⁺ 吸附、解吸动力学过程。结果表明,不同施肥处理土壤 K⁺ 吸附、解吸反应分别在 24~ 32 min 和 46~ 64 min 达到平衡,吸附、解吸平衡量分别为 14 1~ 19.2 cmol kg⁻¹和 11.6~ 17.5 cmol kg⁻¹。 相关分析说明,土壤阳离子交换量(CEC)及粘粒含量是影响吸附平衡时间、吸附平衡量的重要因素; CEC、交换 钾量是影响解吸平衡时间、解吸平衡量的重要因素。由此可见,长期不同施肥对土壤 CEC、粘粒及交换钾量产 生影响,从而影响了紫色土 K⁺ 吸附、解吸平衡时间及吸附、解吸平衡量。

平衡前钾离子的吸附、解吸速度及吸附、解吸率与反应时间 ln 间存在良好的线性关系。其中反应速度直 线和解吸率直线的斜率、初始反应速度及初始吸附率均与 CEC、粘粒含量密切相关。Elovich 方程和一级扩散 方程分别为描述紫色土 K⁺ 吸附、解吸反应的最优与最差模型,指数方程和抛物线扩散方程拟合性介于 Elovich 方程和一级扩散方程之间。由此可见,紫色土 K⁺ 吸附、解吸过程不是一个单纯的过程,而是一个包括 土体膨胀、吸附位活化、表面扩散等诸多因素的复杂过程。

关键词	K ⁺	;吸附解吸	动力学; 紫色土	
中图分类号		S143. 3	文献标识码	А

众所周知, 土壤水溶性钾和交换性钾(非特殊吸 附态钾+ 特殊吸附态钾) 是土壤钾库最活跃的组成。 钾离子在固、液相间的转化速率及数量取决于钾离 子与土壤固相表面的作用方式,并决定着肥料钾进 入土壤后的去向和土壤固钾能力。研究 K⁺ 在土壤 固、液相间转化的动力学性质,对于了解阳离子型养 分在土壤固相表面的作用机理及评价土壤保持、供 应钾素能力有重要的理论与实践意义。在前人的研 究中,土壤往往经过一定的预处理,被制成某种阳离 子(一般是 Ca^{2+} 或 Mg^{2+})的饱和土壤^[1~3],而现实 中,土壤溶液中的钾离子浓度时时刻刻处于变化之 中,土壤被一种离子饱和的情况也是不可能存在的。 为了使土壤钾离子吸附、解吸动力学更接近现实.我 国的一些研究者^[4,5]已经尝试用去离子水对土壤进 行预处理来研究十壤钾离子吸附、解吸动力学性质。 本研究继承前人研究方法,采用去离子水淋洗对土 壤进行预处理.并运用连续液流法测试土壤 K⁺ 吸

附、解吸动力学参数。目前,国内外就连续多年施肥 对土壤 K⁺ 吸附、解吸动力学性质是否存在影响的 研究尚无报道。为此,本文在国家紫色土肥力与肥 料效益监测基地长期定位试验小区上,就连续 10 年 不同施肥是否对紫色土 K⁺ 吸附、解吸动力学特性 产生影响作一探讨。

1 材料与方法

1.1 供试材料及试验处理

供试土壤(1991年)的基本农化性状及试验处 理方案参见文献[6]。本文试验处理为长期定位试 验处理方案的一部分,即:(1)CK、(2)M₁(文中表述 为M)、(3)N、(4)NK、(5)NP、(6)NPK、(7)M₂NPK(文 中表述为MNPK)共7个处理,小区面积为120m²。 所选7处理的施肥量及施肥方式参见文献[7]。

- 通讯作者

^{*} 本文系第一作者博士论文的部分结果

作者简介: 熊明彪(1973~), 男, 四川达县人, 工程师, 博士。从事水土保持、生态建设、植物营养方面的科研和管理工作。 通讯地址: 成都市双元街 99 号四川省水土保持生态环境监测总站, 610041; 联系电话: 028-82914494, 传真: 82974627 收稿日期: 2003-04-24; 收到修改稿日期: 2003-08-29

1.2 取样及测定

测试钾离子吸附解吸动力学参数的供试土壤样

品为定位试验第十年水稻收获后 0~ 30 cm 土层土 样, 其理化性质见表 1。

化工 计两丁吸附解吸动力于示码工场生活性。

Table 1	Physical and	chemical	properties	of the	soils used	for the	e determination	of K	adsorbing-	desorbing	kinetics
---------	--------------	----------	------------	--------	------------	---------	-----------------	------	------------	-----------	----------

处理 Treatment	pH pH(H ₂ O)	有机质 O. M. (g kg ⁻¹)	阳离子交换量 CEC (cmol(+)kg ⁻¹)	粘粒Clay(< 0 005 mm) (g kg ⁻¹)	交换性钾 Exchangeable K (mg kg ^{- 1})
СК	7.50	22.56	18 44	452 7	68 3
Ν	7. 01	27.64	20 56	480 1	63 8
NP	7.03	27.01	20 74	502 3	51.0
NK	697	28.22	20 58	524 8	77. 5
М	7.53	26.19	24 16	545 9	75 8
NPK	7.47	29.52	23 04	499. 7	78 9
MNPK	7.58	30. 51	26 54	563 9	84 8

1.2.1 K⁺ 吸附的测定 称取 2.000 g 土样(1 mm 筛)装入自制的交换柱中(图 1)。先用去离子水自 上而下以 1 ml min⁻¹的流速流经土柱,检验流出液 中的 K⁺ 浓度(四苯硼钠比浊法),直到检测无 K⁺ 为 止。将土柱中多余水分抽干后,用 0.05 mol L⁻¹氯 化钾(KCl) 溶液自上而下以 1 ml min⁻¹的流速流经 土柱。在 0~ 20, 20~ 40, 40~ 60 min 时间段内取样, 时间间隔分别为 2, 4, 6 min。滤出液中的 K⁺ 用原子 吸收分光光度计进行测定。

Fig. 1 Experimental set-up used for determination of K⁺ adsorbing desorbing kinetics

1.2.2 K⁺ 解吸的测定 称取 2.000 g 土样(1 mm 筛) 装入自制的交换柱中(图 1)。先用去离子水将 土样中能被水浸提的钾去掉。抽干多余水分,用 0.05 mol L⁻¹氯化钙(CaCl₂) 溶液进行浸提,在 0~ 20,20~40,40~90 min 时间段内取样,时间间隔分 别为 2,4,6 min。滤出液中K⁺ 浓度用原子吸收分光 光度计进行测定。吸附、解吸反应时间均据预实验 平衡时间确定。

1.2.3 K^+ 吸附、解吸量计算 各时间段的吸附、 解吸量(Δq)用下式计算:

$$\Delta q \pmod{\operatorname{kg}^{-1}} = \frac{\Delta C \times V \times \Delta t}{W}$$

式中 Δc 、 Δt 、V 及 W 分别为交换前后溶液 K⁺ 浓度差、滤液收集时间、蠕动泵流速及土样烘干重。

2 结果与讨论

2.1 平衡时间与吸附、解吸量

从图 2 看出, 十年不同施肥对土壤吸附、解吸 K⁺ 的平衡时间产生影响。CK 处理土壤在实验条件 下的吸附平衡时间为 24 min, N、NP、NK 三处理吸附 平衡时间为 28 min, M、NPK、MNPK 三处理为 32 min。 平衡后延长反应时间(CK、N、NP、NK 延至 32 min, NPK 延至 36 min, M、MNPK 延至 46 min)吸附量不变 或增加很少。K⁺ 解吸至平衡需要的时间比吸附平 衡时间长, CK、M 处理需 52 min 达到解吸平衡, NK、 NPK、N 处理需 58 min 达到解吸平衡, NP 处理需 46 min 达到解吸平衡, MNPK 处理需 64 min 才达到解吸 平衡。解吸平衡后延长反应时间, 解吸量不变。

356

图 2 钾离子吸附、解吸动力学曲线

Fig. 2 Kinetic curves of K adsorption-desorption

图2 还表明. 不同施肥处理土壤 K^+ 平衡吸附 量、解吸量和平衡时间差异较大,其吸附、解吸量为 14. 1~ 19. 2 cmol kg⁻¹和 11. 6~ 17. 5 cmol kg⁻¹, 吸 附、解吸平衡时间为 24~ 32 min 和 46~ 64 min。相 关分析发现,土壤阳离子交换量(CEC)及粘粒含量 是影响吸附平衡时间及平衡吸附量的重要因素。 CEC 与吸附平衡时间及 CEC 与平衡吸附量的相关 系数分别为 r= 0.911^{**} (回归方程为: γ= 10.094x + 6.926 6) 和 r = 0.903^{**} (回归方程: y = 0.580 9x + 4.2867),粘粒与吸附平衡时间及粘粒与平衡吸附 量的相关系数分别为 $r = 0.791^*$ (回归方程为: y =0.062.6x - 2.764.9)和 r = 0.947^{**} (回归方程为: y = 0.0435x - 5.1273),达到显著($r_{0.05}$ = 0.754, n= 7) 或极显著 $(r_{0.01} = 0.874, n = 7)$ 水平。在解吸反应 中, CEC 及交换钾是对平衡时间及平衡解吸量的影 响明显, CEC 与平衡解吸量相关系数 $r = 0.786^{*}$, 交 换钾量与平衡解吸量及交换钾量与平衡解吸时间相

0.163 6x + 2.794 2)和 $r = 0.796^*$ (回归方程为:y = 0.410 1x + 26.132),达到显著或极显著水平,说明在 解吸过程中,CEC 和交换钾量是影响平衡解吸时间 和平衡解吸量的重要因素。由此可见,长期不同施 肥后紫色土 K⁺ 吸附、解吸量及平衡时间发生变化, 主要是由于长期不同施肥土壤 CEC、粘粒及交换钾 量发生变化所致。

2.2 反应速度与时间的关系

反应速度是指单位时间内单位质量土壤吸附 (解吸)的钾量。

$$\overline{V}_{a}$$
= $(\overline{V}_{d}) = \frac{\Delta q_{ta}(\Delta q_{td})}{\Delta t}$

式中 q_{ta} 、 q_{td} 分别为某段时间内 K⁺ 吸附、解吸 量(cmol kg⁻¹), \overline{V}_{a} \overline{V}_{d} 为相应时段的平均吸附、解吸 速度(cmol kg⁻¹min⁻¹), Δt 为反应时间(min)。

实验表明,不同反应时段 K⁺ 平均吸附、解吸速 度(以下简称吸附、解吸速度)不同。随吸附或解吸 平衡状态趋近,反应速度不断降低。反应速度与反 应时间的关系符合方程:

$$V_{\rm a}(V_{\rm d}) = A + B \ln t$$

式中 t 为时间, A、B 为常数, 其中 B 反应了速度 随时间降低的快慢趋势, h 为自然对数^[1]。

由表 2 可知, 吸附及解吸反应速度与时间的自 然对数 ht 间存在良好的线性关系,达到显著或极 显著水平($r_{0.01}$ = 0.874, $r_{0.05}$ = 0.754, n= 7)。直线 截距(常数 A) 与土壤阳离子交换量(CEC)及粘粒含 量的相关系数达到显著或极显著水平,这表明紫色 土固相表面负电点的数量及粘粒含量高低是决定 K⁺ 吸附、解吸反应初期反应速度的决定因素,即 CEC 越大,粘粒越多,的相关性较差,未达到显著水 平,说明还有其它因素对紫色土 K⁺ 解吸率上升产 生影响。反应初期 K⁺ 吸附、解吸反应速度越大。 从表 2 中还可看出, B 均小于零,说明随时间延长反 应速度不断降低。从表中 SE(标准误差)可知,长期 不施肥(CK)、施氮肥(N)和氮磷肥(NP) 三处理,其吸 附解吸速度与反应时间 ht 的线性关系较差。

2.3 K⁺ 吸附、解吸率与时间的关系

某时刻 K⁺ 吸附(解吸) 量占平衡吸附(解吸) 量 的比率称为 K⁺ 的吸附(解吸) 率。由表 3、表 4 可 知, 10 年不同施肥后紫色土 K⁺ 吸附、解吸率发生了 一定的变化。10 分钟内 K⁺ 吸附率为 73.0% ~ 77.1%,其中秸秆还田配施化学肥料(MNPK) 处理吸 附率最高,为 77.1%, NK、M、NPK 三处理最低为 73.0%;10 分钟内 K⁺ 解吸率,不同施肥处理差异较 Table 2 Regression equations of velocity (V_a , V_d) versus time($\ln t$) for K⁺ adsorption-desorption reaction

处理			吸附Adsorpt	ion			解吸 De	sorption	
Treatmen	nt —	Α	В	r	SE ¹⁾	A	В	r	SE
СК		1. 6872	- 0 481 3	0 884**	0.43	1. 295 5	- 0 338 9	0.813*	0.63
Ν		2 137 4	- 0 630 6	0 897**	0.37	1.4787	- 0 395 9	0. 825*	0.56
NP		2 236 7	- 0 646 8	0 920**	0.28	0.9377	- 0 221 8	0.770*	0.74
NK		2 313	- 0 673 1	0 924**	0.15	1. 744 9	- 0 476 7	0. 921**	0.31
М		2 362 1	- 0 684 1	0 941**	0.12	1.7206	- 0 467 7	0. 923**	0.37
NPK		2 479 4	- 0 722 5	0 969**	0.08	1.509	- 0 393 8	0. 8 3 9*	0.45
MNPK		2 785 6	- 0 839 2	0 956**	0.14	2.0401	- 0 562 5	0. 943* *	0.29
相关系数(r)	CEC	0 915**	- 0 916**	—	0.747	- 0.868*	0 865*	—	0.668
Coefficient of	粘粒 Clay	0 873*	- 0 865*	—	0.785*	0.806*	0 793*	—	0.751
correlation									

1) SE: Standard error

表 3 紫色土钾离子吸附率随时间的变化

Table 3 Change of K^+ adsorption percentage with time(%)

时间				处理 Treatmen	ts			-
Time(min)	СК	Ν	NP	NK	М	NPK	MNPK	
2	7. 8	14. 8	15.3	16 1	18. 9	16. 9	19.8	
4	28.4	38. 1	35.9	36 2	37. 8	36. 5	39 1	
6	48.2	54. 8	52.9	54 6	54. 1	54. 5	57.3	
8	63. 8	67.7	64. 7	64 4	64. 3	64. 6	69.8	
10	76.6	76.8	73. 5	73 0	73. 0	73. 0	77.1	
12	85.1	82.6	79.4	79.3	78.9	80. 3	82 3	
14	90.1	87. 7	84. 7	84 5	83. 8	84. 8	87.0	
16	94. 3	91.6	89.4	89.1	87.6	88. 8	90 1	
18	97.2	94. 8	93. 5	92 5	91. 4	92. 7	93 2	
20	99. 3	97.1	97.1	96 0	94. 1	96.1	95 8	
24	100	99.4	98.8	98 9	97. 3	97.8	97. 9	
28	—	100	100	100	99. 5	98. 9	99.0	
32	—	—	_	—	100	100	100	

10 分钟内的吸附率明显, 变幅为 51.7%~74.3%, 其中氮磷处理最低为 51.7%, 单氮处理最高为 74.3%。不同施肥处理吸附、解吸率达到 90% 以上 所需时间也存在差异。总看起来, 吸附率达到 90% 以上所需时间较解吸率达到 90% 以上所需时间短, 这说明 K⁺ 吸附过程比解吸过程快。

由表 5 可知, K⁺ 吸附、解吸率与反应时间 ln*t* 间 也存在良好的线性关系。K⁺ 吸附率直线随时间的 上升趋势因不同施肥处理而异, 其斜率 B 变化在 30.554~41.101 之间, 粘粒含量高及 CEC 较大的处 理紫色土吸附率上升较慢($r_{0.05} = 0.754$, n = 7)。常 数 A 与阳离子交换量 CEC 及粘粒的相关系数分别 为 $r = 0.867^*$ 和 $r = 0.853^*$,分别达到显著水平,表 明粘粒含量高且 CEC 大的处理紫色土在反应初期 吸附较快。如 CK、MNPK 两处理土壤在 4 min 时的 吸附率分别为 28.4%和 39.1%(表 3),而后者具有 较高的阳离子交换量。K⁺ 解吸率虽与反应时间 ht 也存在较好的线性关系(相关系数 $r = 0.929^{**} ~$ 0.982^{**}),但直线斜率 B 与阳离子交换量及粘粒含 量的相关性较差,未达到显著水平,说明还有其它因

素对紫色土K⁺ 解吸率上升产生影响。

 $\label{eq:table_transform} Table \, 4 \quad \mbox{Change of K^{+} desorption percent age with time(\%)}$

时间				处理 Treatmer	nt		
Time(min)	СК	Ν	NP	NK	М	NPK	MNPK
2	6.3	7.4	6. 9	12 9	10. 1	12. 7	14. 9
4	19.5	22 1	16. 4	29 9	21. 5	28.7	34. 3
6	39. 1	39.7	29. 3	46 1	37.6	44. 6	45. 1
8	57.8	61.8	41. 4	59 1	52. 3	57.3	57. 1
10	70.3	74.3	51. 7	67.5	62.4	66.2	67.4
12	76.6	82 4	60. 3	74.3	72. 5	72.6	74. 9
14	81.3	86 8	69. 0	79.9	80. 5	77.7	81. 1
16	85.2	90 4	75.9	85 7	85.9	82. 8	86. 3
18	89.1	92 6	81. 9	89.6	90. 6	86.6	89. 7
20	92.2	94 1	87.9	92 9	93. 3	89. 8	93. 1
24	95.3	94 9	92. 2	94.8	96. 0	93. 0	95.4
28	96. 1	95 6	95. 7	96 1	96.6	94. 9	96. 6
32	97.0	96 3	97.4	96 7	97. 3	96.2	97.1
36	97.7	97.1	98. 3	97.4	98. 0	96.8	97. 7
40	98.4	97.8	99.1	98 1	98. 7	98. 1	98. 3
46	99. 2	98 5	100	98 7	99. 3	98.7	98. 8
52	100	99.3	—	99.4	100	99.4	99. 4
58	—	100	—	100	—	100	100

表 5 紫色土 K⁺ 吸附解吸率 与反应时间(lnt) 的回归方程

 Table 5
 Regression equations of K⁺ adsorption- desorption percentage versus reaction time(lnt)

		0 1		1 1	0	· /	
夂	理		吸附 Adsorption	$P_{ta}(\%)$		解吸 Desorption 1	$P_{td}(\%)$
Trea	itm ent	А	В	r	A	В	r
СК		- 22.301	41.101	0. 989 9**	- 9. 146 1	30. 952	0 958**
Ν		- 6. 226	34. 353	0. 990**	- 0. 929 9	28.323	0 929**
NP		- 7. 944 4	34. 323	0. 994**	- 25.39	35.019	0 982**
NK		- 6. 738 5	33 83	0. 995**	2 019	27.05	0 962**
М		- 1. 318 8	31.174	0. 992**	- 9. 949 5	31.062	0 963**
NPK	C.	- 3. 079 1	32 02	0. 989**	- 0. 126 6	27. 355	0 971**
MNP	K	2 3377	30. 554	0. 984**	3. 893 9	26. 548	0 962**
相关系数(r)	CEC	0 867 *	0.881*	—	0 401	0.568	—
Coefficient of	粘粒 Clay	0 853*	0. 854*	_	0 269	0.493	—
correlation							

注:* $q_{tal}(\%) = A + Blnt$; ** $q_{td}(\%) = A + Blnt$

数
1 \$ \$
Ř
SE
误
考
権
÷
<u> </u>
馼
WK-
ŧК
₩.
Ê
勳
箧
£
Ē
9
表

Table 6 Correlation coefficient (r), standard errors (SE) and parameters of four kinetic models

			Elovic	h 方程 emistion			指数 Fxronent	一 方程 emuation		Par	- 抛物线{ abolic diffu	r散方程 stion equation	-		—级 Firet diffusi	散方程 tion equation	
处	理 Treatment		$q_{la}(q_{ld}) =$	equation : A + B Int			$q_{\rm ta}(q_{\rm td})$) = At ^B		3	$q_{\rm la}(q_{\rm td}) =$	$A + Bt^{1/2}$			Lng _{ia} (q _{id}	$(\mathbf{A} + \mathbf{B}t)$	
		Y	8	-	SE	V	В	-	SE	Y	B	L	SE	Y	B	r	SE
	CK	- 3.158 6	5.800 2	**066.0	0.13	0.9043	0.975 6	0.945**	0.65	- 2.987 5	3.936 5	0.964 **	0.51	1.0616	0.088 2	0.787**	4.35
	N	- 0.968 9	5.3257	0.990**	0.07	2.108 4	0.676 6	0.944	0.78	- 0.135 2	3.384 3	0.950**	0.68	1.631 9	0.053 6	0.772**	5.72
吸	NP	- 1.375	5.850 2	0.994**	0.07	2.253 1	0.677 9	0.956**	0.36	0.579 6	3.752	0.963**	0.48	1.687 8	0.054 6	0.795**	3.28
	NK	- 1.112 4	5.862 4	0.995**	60.0	2.479 5	0.6504	0.960**	0.48	- 0.331	3.764 4	0.965**	0.45	1.744 1	0.052 7	0.802**	4.33
	W	- 0.254 3	5.769 9	0.993**	0.08	3.142	0.571 9	0.957**	0.88	1.144 4	3.4968	0.954 **	0.52	1.943 6	0.0408	0.786	5.25
兇	NPK	- 0.564 4	5.705 3	0.989**	0.15	2.773 3	0.605 1	0.948**	0.92	0.884 2	3.439 7	0.945	0.68	1.873 7	0.042 6	0.768**	6.34
	MNPK	0.425 9	5.874 8	0.985**	0.17	3.540 3	0.551 6	0.944**	1.03	2.017 1	3.514 7	0.934**	0.72	2.045 8	0.0387	0.761**	7.01
	平均(Average)	Ι	ł	116.0	0.11	I	I	0.951	0.73	I	1	0.954	0.58	1	Ι	0.782	5.18
	CK	- 1.180 6	3.964 2	0.958**	0.22	1.126 6	0.723 9	0.884**	1.24	1.422 8	1.924 7	0.878**	2.45	1.453 3	0.030 9	0.635 **	4.09
	Z	- 0.139 2	3.855 4	0.929**	0.35	1.556 8	0.633 9	0.860**	1.38	2.893 9	1.747 4	0.828**	3.08	1.678 1	0.023 9	0.595**	6.88
邂	NP	- 2.953 3	4.065	0.982**	0.17	0.7167	0.826 5	0.951 **	0.74	- 1.088 6	2.179 2	0.852**	2.98	1.047 3	0.042 9	0.754**	7.03
	NK	- 0.306 5	4.166	0.962**	0.15	2.521 5	0.519 0	0.902**	1.25	3.379 6	1.933 2	0.878**	1.88	1.913 4	0.020 6	0.657**	6.74
	W	- 1.491 5	4.631	0.963**	0.20	1.624 9	0.653 1	0.918**	0.98	1.428 5	2.2764	0.893**	2.04	1.665 0	0.029	0.685**	6.25
驳	NPK	- 0.022 5	4.295 5	0.971	0.32	2.447 1	0.530 6	0.911**	1.34	3.063 6	2.011 6	0.894 **	2.31	1.897 4	0.021 3	0.672**	6.88
	MNPK	- 0.672 6	4.649 3	0.962**	61.0	3.1661	0.4901	0.910**	1.07	4.083	2.161 8	0.880**	2.74	2.080	0.019 6	0.669**	7.15
	平均 Average	I	Ι	0.961	0.18	I	I	0.905	1.14	I		0.872	2.50	Ι	1	0.667	6.43

2.4 K⁺ 吸附、解吸动力学模型适用性比较

Sparks 和 Martin 提出了几种动力学模型, 用来 描述酸性砂质土吸附、解吸 K⁺ 及非交换性 K⁺ 释放 的反应过程^[2~3]。在连续液流条件下, 其中的几种 模型对紫色土中 K⁺ 的吸附、解吸过程也有较好且 程度不同的拟合性(表 6)。模型拟合性指由模型所 得计算值与实测值的符合程度, 常用相关系数(r)和 标准误(SE) 判定, r 愈大, SE 愈小拟合性愈好。

从表 6 看出, 在吸附、解吸反应中, Elovich 方程 和一级扩散方程分别为描述紫色土 K⁺ 吸附的最优 和最差动力学模型。其余两种动力学模型的拟合性 介于 Elovich 方程和一级扩散方程之间。可见, 紫色 $\pm K^+$ 的吸附、解吸过程不是一个单纯的过程,而是 一个包括土体膨胀、吸附位活化、表面扩散等诸多因 素的复杂过程^[3]。由表6还可看出,同一动力学模 型对不同施肥处理的土样的拟合性不同。如对 K⁺ 吸附拟合最优的 Elovich 方程中,7 种不同施肥处理 的紫色土 SE 变化范围为 0.07~ 0.17 cmol kg⁻¹,差 异很大, Elovich 方程对氮磷处理紫色土的拟合性最 优,对秸秆还田配施化学肥料(MNPK)处理紫色土拟 合性最差。在其它吸附及解吸动力学模型中,不同 施肥处理紫色土间拟合性的明显差异也存在。此 外,同一动力学模型对 K⁺ 解吸、吸附两种相反过程 的拟合性不同, 如抛物线扩散方程对 K⁺ 解吸、吸附 的拟合性差异很大,其SE平均值分别为0.58和 2.50. 相关系数平均值分别为 0.954 和 0.872。以上 分析结果表明. 经多年连续不同施肥处理后同一土 壤性质的变化、动力学模型的种类, 以及 K⁺ 吸附、

解吸反应类型的差异均影响模型对实验数据的拟合 程度。

参考文献

- [1] 薛泉宏, 尉庆丰, 李宝安, 等. 黄土性土壤 K⁺ 吸附、解吸动力 学研究 土壤学报, 1997, 34(2):115~122 Xue Q H, Wei Q F, Li B A, *et al.* Study on K⁺ adsorbing-desorbing kinetics of loesssial soil(In Chinese). Acta Pedologica Sinica, 1997, 34(2):115~122
- [2] Sparks DL, Zelazny LW, Martens DC. Kinetics of potassium exchange in paleudult from the coastal plain of Virginia. Soil Sci. Soc. Am. J., 1980, 44: 37~40
- [3] Sparks DL, Jardine PM. Comparison of kinetic equations to describe K-Ca exchange in pure and in mixed system. Soil Sci., 1984, 138: 115~ 122
- [4] 龙怀玉,李韵珠,蒋以超. K⁺ 浓度对潮土和褐土钾吸附动力
 学的影响. 土壤学报, 2001, 38(2):226~234. Long H Y, Li Y
 Z, Jiang Y C. K⁺ adsorption kinetics of fluwe-aquic and cinnamon soil under different K⁺ concentrations(In Chinese). A cta Pedologica Sinica, 2001, 38(2):226~234
- [5] 龙怀玉,蒋以超,李韵珠. 褐土和潮土 K+ 吸附动力学研究.
 土壤学报,2000,37(4):563~568. Long H Y, Jiang Y C, Li Y Z.
 Study on K⁺ adsorption kinetics of chao and cinnamon soils(In Chinese). A da Pedologica Sinica, 2000, 37(4):563~568
- [6] 熊明彪,田应兵,熊晓山,等. 钾肥对冬小麦根系营养生态的 影响. 土壤学报, 2004, 41(2): 285~291. Xiong M B, Tian Y B, Xiong X S, et al. Effects of potassium fertilizer on winter wheat root nutrimental ecology(In Chinese). Acta Pedologica Sinica, 2004, 41 (2): 285~291
- [7] 熊明彪,舒芬,宋光煜,等.施钾对紫色土稻麦产量及土壤钾 素状况的影响.土壤学报,2003,40(2):274~279. Xiong M B, Shu F, Song G Y, et al. Effects of long-term potassium application on yield and soil potassium in rice wheat cropping system in purple soil(In Chinese). Acta Pedologica Sinica, 2003, 40(2):274~279

Xiong Mingbiao^{1, 2} Tian Yingbing¹ Song Guangyu¹ Shi Xiaojun¹ Mao Bingheng¹

(1 College of Resources and Environment, Southwest Agricultural University, Beibei, Chongqing 400716, China)

(2 Sichuan Soil-Water Conservation and Ecology-Environment Monitored Base, Chengdu Sichuan 610041, China)

Abstract Soil samples were taken from 0~ 30 cm layer from selected plots with various fertilization treatments from a 10 years fixed site field trial in the National Purple Soil Fertility and Fertilizer Efficiency Monitored Base. Kinetics of K adsorption and native K desorption of the soil samples were studied. Results showed that K⁺ adsorption and desorption equilibrated in 24~ 32 min and 46~ 64 min, respectively, and the capacity of K⁺ equilibrium adsorption and desorption were 14. 1~ 19. 2 cmol kg⁻¹ and 11. 6~ 17. 5 cmol kg⁻¹, respectively. Correlation analysis indicated that soil cation exchange capacity (CEC) and clay content were important factors that affected the time and the capacity of K⁺ equilibrium adsorption. As mentioned above the effects of long-term different fertilizer application on soil CEC, clay content and exchangeable K content affected the time and capacity of K⁺ equilibrium adsorption. As mentioned above the effects of long-term different fertilizer application on soil CEC, clay content and exchangeable K content affected the time and capacity of K⁺ equilibrium adsorption affected the time and capacity of K⁺ equilibrium desorption.

There was a linear relationship between K^+ adsorption-desorption velocity and the reaction time $(\ln t)$, and the slope of reaction velocity regression equation and K^+ natural logarithm of desorptive percentage regression equation, the original reaction velocity and the original absorptive percentage were closely related with soil clay content and CEC. Elovich and first-order diffusion equations were the best and the worst models for K^+ absorption and desorption, respectively. Exponent and parabolic diffusion equations lay between Elovich and first-order diffusion equations. This indicated that the K^+ adsorption-desorption in purple soil were not a simple process, but a complex process that was affected by soil expanding, activation of soil adsorption sites activizing, soil surface diffusion, and so on.

Key words K⁺; Adsorption-desorption; Purple soil