过氧化氢对铬在黄棕壤中电动过程的影响*

周东美 仓 龙 邓昌芬

(土壤与农业可持续发展国家重点实验室,中国科学院南京土壤研究所,南京 210008)

摘 要 研究了在阳极池中添加过氧化氢对铬在黄棕壤中电动过程的影响。结果发现:经过约 564 h 的电动处理后,土壤中六价铬的含量显著减少,最高去除率为 91.6%,同时总铬去除率最高达 39.6%。过 氧化氢的存在对电流的影响不大,但明显降低了电渗流量。加入过氧化氢引起土壤中部分六价铬被还原成 三价铬,降低了土壤中铬的移动性,从而使总铬的去除率减少,说明土壤中还原性物质的存在将不利于铬的 去除。

А

关键词 铬;过氧化氢;黄棕壤;电动过程 中图分类号 S153.4 文献标识码

电动修复技术由于操作简单、处理效率高且适 用于多种类型污染物和污染土壤类型等特点,目前 得到了迅速发展^[1-5],是近年来受到广泛重视的一 种新型污染土壤处理技术^[6-9]。该方法利用在电场 作用下土壤中污染物的电迁移、电渗流和电泳等可 将污染物质带出土柱,实现污染土壤的清洁。同时, 在电动过程中,将有一系列物理化学过程在土壤中 发生,包括吸附-脱附、沉淀-溶解和氧化-还原 等^[10,11]。

Reddy 等最近报道了利用腐殖酸、亚铁离子和 硫离子作为还原剂对铬电动过程影响的研究^[12]。 铬作为一种可以三价和六价两种价态共存并带有 不同电荷的重金属,它在电动过程中的反应机理 甚为复杂^[13,14]。其中,Cr(III)在土壤中吸附和沉 淀能力非常强,而电动处理过程需要污染物存在 于土壤溶液中,所以提高三价铬的脱附或者将三 价铬转化为吸附能力较弱的六价铬将可能增加土 壤铬的去除。研究表明,过氧化氢可以与三价铬 发生反应生成六价铬^[15],所以使用过氧化氢有可 能达到这样的效果。但是在酸性条件下,过氧化 氢又可以作为还原剂还原六价铬成三价铬^[16]。本 文研究添加过氧化氢对土壤铬电动过程的影响以 及土壤中六价铬和三价铬的变化过程,以期揭示 其作用机理。

1 材料与方法

1.1 供试土壤及铬污染土壤的培养

供试土壤为黄棕壤,采自江苏南京,为菜园土 (0~40 cm)。土壤采回后经风干捣碎,剔除草根和 其他杂质,研磨过 20 目筛。该土壤的 pH(土水比 I: 2.5)和有机质含量分别为 5.55 和 16 g kg⁻¹,阳离 子交换量为 16.5 cmol(+) kg⁻¹,重金属 Cr、Cu、Pb、 Zn和 Cd 的含量分别为 95.3、34.4、36.7、87.6 和 0.19 mg kg⁻¹。

该土与一定体积的重铬酸钾溶液(六价铬浓度 约为1000 mg L⁻¹) 混匀, 然后用瓷容器盛放, 并加水 使其处于淹水状态, 在室温下培养 30 d。培养后的 土壤经风干、磨碎, 过 20 目筛, 储存备用。培养后土 壤中的总铬含量为1086 mg kg⁻¹, 六价铬的含量为 396 mg kg⁻¹。

1.2 试验设计

试验装置如图 1。电动处理池体为长 12 cm、内 径 6.6 cm 的圆柱型有机玻璃,内装土 570 g 左右,压 实; 土柱两端分别放上烧结玻璃以隔离土体和溶液; 阴、阳两极各有一电解池,每个池体体积约为 78 cm³;电极为石墨棒。电解池及其两旁的溶液库(约 2 L)采用蠕动泵进行循环更新溶液,流速为 18 ml min⁻¹;在阴极溶液库插入 pH 电极,监测溶液库

* 国家自然科学基金项目(20207010)、国家 863 项目(2002 AA 649290) 和江苏省创新人才基金项目(BK2001419) 作者简介:周东美(1967~),研究员,主要从事土壤环境化学方面的研究。E mail: dmzhou@issas.ac.cn 收稿日期: 2004-02-14; 收到修改稿日期: 2004-06-25 溶液的 pH, 而 pH 控制采用自行设计的 pH 控制系统, 通过自动加入酸液可以有效地将溶液 pH 控制

在需要的范围内。

1. 直流电源; 2. 土柱; 3. 阳极; 4. 阴极; 5. 蠕动泵; 6. 不锈钢棒; 7. 烧结玻璃膜; 8. 阳极池; 9. 阴极池; 10. 阳极溶液库;
11. 阴极溶液库; 12. pH 控制系统; 13. 酸液瓶; 14. pH 电极

DC power; 2. Soil column; 3. Anode; 4. Cathode; 5. Peristaltic pump; 6. Stainless steel stick; 7. Fritted glass membrane;
8. Anolyte cell; 9. Catholyte cell; 10. Anolyte reservoir; 11. Catholyte reservoir; 12. pH controller; 13. Acid stock bottle;

14. pH electrode

图 1 电动处理装置图

Fig 1 A schematic diagram of electrokinetic apparatus

试验开始前先通水 24 h, 然后重新更换试验所 需的溶液, 试验设计如表 1。 阴极池的控制液为 2.0 mol L⁻¹的 NaH2PO4。试验中每两天测定土柱各部分 的电压降、土柱中的电流、 阴极和 阳极溶液库中的 pH、电导率, 及整个土柱的电渗流; 试验结束后将土 柱分成均等的 10 个层次, 测定每层土柱的 pH 和电 导率; 土样风干后测定总铬和六价铬浓度。 试验中每两天在阳极池中加入一定量的 H₂O₂, 以保持阳极溶液库中 H₂O₂的浓度达到试验设计浓 度(如表 1);试验进行到 180 h 时将阳极溶液库的溶 液全部倒出,加入更新溶液,以保持阳极池中铬的浓 度较低,减少铬离子向柱中的重新扩散。试验过程 中控制阴极溶液库 pH 为 5.5。

表1 铬污染土壤的电动处理试验设计

TADIC I Experimental design of deditoring in called
--

处理 Treatment	阳极池溶液 Anolyte	阴极池溶液 Catholyte	阴极 pH Catholyte pH	土重 Soil weight (g)	处理时间 Duration (h)
Exp-01	H ₂ O	$0.1 \text{ mol } L^{-1} \text{ NaH}_2 PO_4$	5.5	565	564
Exp- 02	$5 \ \rm mmol \ L^{-1} \ H_2O_2$	$0.1 \text{ mol } L^{-1} \text{ NaH}_2 \text{PO}_4$	5.5	535	564
Exp-03	10 mmol $L^{-1}H_2O_2$	$0.1 \text{ mol } L^{-1} \text{ NaH}_2 PO_4$	5.5	550	564
Exp-04	20 mmol $L^{-1}H_2O_2$	$0.1 \text{ mol } L^{-1} \text{ NaH}_2 \text{PO}_4$	5.5	575	564

1.3 分析方法及质量保证

土壤 pH、电导率直接用鲜土测定, 去 CO₂的蒸 馏水浸提(土水比 1: 2.5); 土壤中六价铬的测定采 用美国 EPA 的碱消化方法(METHOD 3060A),简介 如下:首先称取 2.5 g的土壤样品,加入 50 ml 20 gL⁻¹ NaOH+ 30 gL⁻¹ Na2CO3混合溶液,再加入体积 为 0. 5 ml、浓度为 1.0 mol L⁻¹的磷酸缓冲溶液(pH 7. 0),于 90~95℃下加热 60 min。冷却,加入 5. 0 mol L⁻¹硝酸溶液调节 pH 为 7. 5,然后过滤,定容,采

用 Hitachi180 ─80 原子吸收光谱仪测定六价铬浓 度。土壤中总铬的测定采用 HFHClO₄ HNO₃ 消化 法,原子吸收光谱仪测定。

表 2	试验前后土壤中铬总量平衡分析

Table 2 Mass balance of total Cr before and after electrokinetic treatments

处理 Treatment	初始量 Initial Cr amount (mg)		回收率		
		土壤中剩余量 Residual Cr in soil (mg)	阳极池含量 Cr in anolyte (mg)	阴极池含量 Cr in catholyte (mg)	(%)
Exp-01	614	371	205	1.67	94. 1
Exp- 02	581	441	150	1.35	102
Exp- 03	597	472	119	2.26	99. 3
Exp- 04	625	542	127	0.89	107

计算了每个试验的铬总量平衡数据, 见表 2。 从表 2 的数据中可以看出每个试验的总量平衡误差 基本上均小于 10%, 说明试验方法可靠。

2 结果与讨论

2.1 电动过程中电流和电渗流的变化

电动过程中电流的大小直接影响到金属离子在 土体中的迁移速率,同时它也与土柱中所包含的离 子浓度大小有关。图 2 是在阳极池中添加不同浓度 的H₂O₂时对电动过程中电流的影响。

结果表明,在整个电动处理过程中,电流的总体 变化趋势是先上升然后下降,再保持基本稳定。最 初的 48 h 电流迅速升高是由于土壤中离子的溶解, 而随处理时间的延长,土壤中可移动离子向阴阳电 解池的迁移而不断减少^[10],到 180 h 以后电流变化 趋于稳定。随着在处理 180 h 后对阴阳极池体溶液 的更新,电流很快下降并保持稳定。而在阳极添加 不同浓度的过氧化氢对电动处理过程中电流的影响 不大。

但是,电渗流的变化与过氧化氢浓度存在明显 关系。电渗流^[6]是指土壤表面双电层中带有与土壤 表面电荷相反的水分子层在电场作用下将发生与土 壤表面的滑动而向两极迁移的现象。由于该土壤是 恒电荷土壤,其表面带负电荷,所以电渗流的方向朝 向阴极。对于不同处理,电渗流总量随时间延长在

Fig. 2 Effect of H_2O_2 addition in analyte on current (A) and electroosmotic flow (B)

42卷

逐渐增加,但添加过氧化氢浓度越高,电渗流越小, 表明过氧化氢的加入改变了土壤的表面电荷密度或 土壤溶液性质,而土壤表面电荷和土壤溶液组成变 化将影响电渗流大小。根据分析结果,过氧化氢的 存在对土柱内土壤 pH 和电导率的影响均不大。

2.2 电动处理后土柱中六价铬的含量

虽然土壤培养过程中添加的铬为六价铬, 但经 淹水培养 30 d 后测定的土壤中六价铬含量为 396 mg kg⁻¹, 占土壤中总铬含量的 36.5%。经电动处理 后土壤中的六价铬含量显著降低, 结果见表 3, 说明 土壤中的六价铬在电场的作用下较易移出土壤。另 外, 随阳极池中添加 H_2O_2 浓度的增加, Cr(VI) 去除 率呈减少趋势, 表明 H_2O_2 可能将土壤中的 Cr(VI) 还 原为 Cr(III), 从而减少它的移动性。过氧化氢既有 氧化剂的性质($H_2O_2+2H^++2e^-=2H_2O, E^{\Phi}=$ + 1.776 V),同时又有还原剂的性质(O_2 + 2H⁺ + 2e⁻ = H₂O₂, E^Φ= 0.682 V),而铬酸根具有比较强的 氧化性($Cr_2O_7^{2-}$ + 14H⁺ + 6e⁻ = 2Cr³⁺ + 7H₂O, E^Φ= 1.333 V),所以过氧化氢作为氧化剂和还原剂分别 与三价铬和六价铬发生氧化还原反应在热力学上都 是可以发生的^[15,16]。

表 2 中列出了电动处理后铬在各个部分的分 布,其中在阳极池中的铬主要以六价铬形式存在,而 在阴极池中的铬基本上是三价铬,表明铬污染土壤 电动处理过程中移出土壤的铬主要以六价铬为主, 三价铬的移出量只占少数。而通过对六价铬的总量 平衡分析(见表 3)发现:加入过氧化氢后引起六价 铬总量(土壤+ 溶液)减少,从而进一步证实土壤中 六价铬的还原。

表3	电动处理后土柱中不同位置土壤中的六价铬含量
Table 3	Cr(VI) concentration in soil sections after electrokinetic treatments

处理 Treatment	土壤截面中六价铬含量 Residual Cr(VI) in soil sections (mg kg ⁻¹)				去除率 Removal percent	Cr(VI)还原量 Cr(VI) reduction amount	
	S1-S2 ¹⁾	S 3 S4	S5-S6	S7 S8	S9 S10	(%)	(mg)
Exp-01	65.6	28.4	35. 0	28.4	28.7	91. 6	0. 1
Exp- 02	74.7	46.2	35. 7	29.4	44.3	89. 1	39
Exp- 03	61.1	44.1	33. 7	31.9	49.4	89. 7	76
Exp- 04	83.4	68.0	35. 7	58.7	69.1	85.0	67

1) 从阳极自左向右 S1~ S10 from anode to cathode

2.3 电动处理后土柱中总铬的含量

图 3 显示了电动处理后总铬在土壤中的分布情况。由图可知,与土壤原有的总铬浓度相比,处理后靠近阳极池的土壤中所包含的铬浓度有所增加,而靠近阴极池的土壤中所包含的总铬含量均较对照要低,说明土壤中的六价铬在电动过程中向阳极池迁移,而三价铬在土柱中的迁移不明显^[12,13]。事实上,三价铬在土壤中的吸附量相当大。实验发现三价铬在 pH> 3.0 时其在土壤中的吸附百分数高于80%,说明三价铬在土壤中的移动性很差。

不同过氧化氢处理对土壤总铬去除率的结果 为:在未加过氧化氢时,总铬去除率为 39.6%,而在 阳极池中添加不同浓度过氧化氢时,总铬的去除率 则分别为 24.1%、20.9%和 13.2%。过氧化氢的存 在明显降低了铬的去除效率,主要原因是在电场作 用下过氧化氢的存在将六价铬还原为三价铬,从而 减少了总铬的去除效果。

图 3 添加不同浓度的H₂O₂处理后土壤各截面 的总铬含量

Fig. 3 Total Cr concentration in soil sections after electrokinetic treatments

3 小 结

 在铬污染土壤的电动处理过程中,过氧化氢 作为还原剂将土壤中的部分六价铬还原成三价铬, 且随过氧化氢浓度的增加而增强。

 2) 过氧化氢的存在影响了铬污染土壤中铬的环境 化学行为,降低了铬的移动性,减少了总铬的去除率。

3) 因为六价铬在电场作用下的迁移和过氧化氢 对土壤中六价铬的还原作用,电动处理后土壤中有 毒的六价铬浓度显著降低,去除率均在 85%以上。

参 考 文 献

- Alshawabkeh A N, Yeung A T, Bricka M R. Practical aspects of irr situ electrokinetic extraction. J. Environ. Eng., 1999, 125(1): 27~35
- [2] Virkutyte J, Sillanpaa M, Latostenmaa P. Electrokinetic soil remediation Critical overview. The Science of the Total Environment, 2002, 289 (1/3): 97~ 121
- [3] Lageman R. Electroreclamation application in the Netherlands. Environ. Sci. Technol., 1993, 27(13): 2648-2650
- [4] Ribeiro A B, Mateus E P, Ottosen L M. Electrodialytic removal of Cu, Cr, and As from chromated copper arsenate treated timber waste. Environ. Sci. Technol., 2000, 34(5): 784~788
- [5] Zhou D M, Zom R, Czurda K. Electrochemical remediation of copper contaminated kaolinite by conditioning analyte and catholyte pH simultaneously. J. Environ. Sci., 2003, 15(3): 396~400
- [6] Acar Y B, Alshawabkeh A N. Principles of electrokinetic remediation. Environ. Sci. Technol., 1993, 27(13): 2638~ 2647

- [7] Probstein R F, Hicks R E. Removal of contaminants from soils by electric fields. Science, 1993, 260:498~ 503
- [8] 周东美,邓昌芬. 重金属污染土壤电动修复的研究进展. 农业环境科学学报, 2003, 22(4): 505~ 508. Zhou D M, Deng C F. Review: Electrokinetic remediation of heavy metal contaminated soil (In Chinese). J. Agro Environ. Sci., 2003, 22(4): 505~ 508
- [9] Yeung A T, Hsu C, Menon R M. Physicochemical soil-contaminant interactions during electrokinetic extraction. J. Hazardous Mater., 1997, 55: 221~237
- [10] Zhou D M, Alshawabkeh A N, Deng C F, et al. Electrokinetic removal of chromium and copper from contaminated soils by adding lactic acid in cathode chamber as an enhancing reagent. J. Environ. Sci., 2004, 16(4): 512~516
- [11] Kawachi T, Kubo H. Model experimental study on the migration be havior of heavy metals in electrokinetic remediation process for cortaminated soil. Soil Sci. Plant Nutr., 1999, 45(2): 259~ 268
- [12] Reddy K R, Chinthamreddy S. Eletrokinetic remediation of heavy metal contaminated soils under reducing environments. Waste Marr agement, 1999, 19: 269~ 282
- [13] Reddy K R, Charlie Y. Assessment of electrokinetic removal of heavy metals from soils by sequential extraction analysis. J. Hazardous Marterials B, 2001, 84: 279~ 296
- [14] Zhou D M, Deng C F, Cang L. Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different err hancing chemical reagents. Chemosphere, 2004, 56: 265~ 273
- [15] Rock M L, James B R, Helz G R. Hydorgen peroxide effects on chromium oxidation state and solubility in four diverse, chromium err riched soils. Environ. Sci. Technol., 2001, 35: 4 054~ 4 059
- $[16] Pettine M, Campanella L, Millero F J. Reduction of hexavalent dromium by <math display="inline">\rm H_2O_2$ in acidic solutions. Environ. Sci. Technol., 2002, 36: 901~907

ELECTROKINETIC PROCESSES OF CHROMIUM IN YELLOW BROWN SOIL AS AFFECTED BY HYDROGEN PEROXIDE

Zhou Dongmei Cang Long Deng Changfen

(State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China)

Abstract Chromium usually existed in soil in two valences, Cr(VI) and Cr(III), which are different in charges. Previous studies showed that Cr electrochemical processes in soil were complex due to its varied valences and strong oxidation reduction reactions. This paper investigated Cr electrokinetic processes in Yellow brown soil as affected by hydrogen peroxide. The experiment was performed with a labrmade electrokinetic setup, made up of electric power supply, a soil column, a four channel peristaltic pump, two electrode chambers, a pH controller and two solution reservoirs. The results show that Cr(VI) concentration in the soil after 564 h electrokinetic treatment significantly decreased as compared with the initial value ($C_0 = 396 \text{ mg kg}^{-1}$). The presence of H₂O₂, as a model reductant of soil, caused Cr(VI) reduction to stable Cr(III). Effect of H₂O₂ on electrical current was not obvious, but it significantly decreased the electroosmotic flow rate, suggesting its influence on soil surface structures and soil solution physical and chemical properties. All 4 treatments resulted in removal of over 85% Cr(VI) from soil. However, the total removal rate of Cr in the presence of H₂O₂ decreased. The maximum removal rate of total Cr and Cr (VI) was obtained, being 39. 6% and 91. 6% respectively during the electrokinetic treatments.

Key words Chromium; Hydrogen peroxide; Yellow brown soil; Electrokinetic process