ACTA PEDOLOGICA SINICA

土壤氮氧化物排放及其对中国地区对流层光化学 特性影响的数值模拟研究^{*}

谢 1,2 王体健1 张美根2 杨修群1

(1 南京大学大气科学系,南京 210093)

(2中国科学院大气物理研究所大气物理与大气化学开放实验室,北京 100029)

摘 要 利用 Williams 的模型估计中国地区土壤氮氧化物(NO_X,包括 NO 和 NO₂)的排放,并运用中尺 度气象模式 MM5 以及光化学模式 Calgrid 模拟不同季节和不同人为源情况下土壤 NO_X 排放对中国地区光化 学的影响。模拟结果表明,中国地区土壤 NO_X 排放总量为 225.8 Gg N,是人为源的 7 %,这一比例在夏季将达 到 23.4%;排放量有明显季节变化和空间变化。土壤源不仅使 NO_X、O₃、HNO₃ 和过氧乙酰硝酸酯(Peroxyacetyl Nitrate, PAN) 的全国平均浓度增加,还显著改变了污染物的空间分布。4 种污染物全国平均浓度的最大增量分 别为 2 37、26 08、9 79 和 0.43 μ g m⁻³,增量在夏季 明显高于其他季节,在各地区的增减随排放源、气象条件和 光化学特性的不同而不同。随着人为 NO_X 排放的增加,土壤源在光化学中的作用会更加显著。土壤 NO_X 排 放在对流层光化学过程中的作用不容忽视。

Α

关键词 土壤源; 氮氧化物; 光化学反应; 数值模拟 中图分类号 P461.4; X515; 0242.1 文献标识码

 NO_X 是对流层大气化学中的重要痕量气体,是 光化学烟雾形成的重要前体物,它们在很大程度上 影响着对流层大气 O3 以及 OH, RO2 和 HO2 等自由 基的浓度和分布状况,进而对对流层的氧化效率产 生重要影响。燃烧过程产生的 NOx, 如汽车尾气、化 石燃料燃烧等,是工业区和城市空气中氮氧化物的 主要来源. 对城市环境和人类身体健康有着直接的 影响,因此它也是人们重点研究和控制的对象。然 而,在乡村地区, NOx 浓度较低而植物排放的挥发 性有机化合物(Volatile Organic Compound, VOC) 浓度 相对较高, NOx 浓度对臭氧浓度变化影响较大^[1]。 近年来一些研究表明,土壤中微生物过程产生的NO 是乡村地区 NOx 非常重要的来源, 对区域尺度的 O3 形成有一定的影响[1~3]。研究土壤氮氧化物的排放 不仅有助于了解乡村地区的光化学特性,对区域尺 度的光化学污染的控制也有重要意义。

NOx 在土壤中是由微生物的硝化作用(NH⁴ 氧 化为 NO₂ 和 NO₃)和反硝化作用(NO₂ 和 NO₃ 厌 氧反应生成 NO、N₂O 和 N₂)^[4~6]产生的。目前大多 数的研究者认为土壤排放的 NO_x 是 NO, 但是也有 观测表明土壤还会排放比较可观的 NO₂。对此, De-

lanv 认为这是由于 NO 在土壤上层同 O₃ 反应的结 果, 土壤产生排放的主要还是 $NO^{[1]}$ 。影响 NOx 排 放的因子很多很复杂,研究者普遍认为比较重要的 控制因子为土壤温度、土壤湿度、土壤有效 N 含量、 N 吸收率、硝化/反硝化速率、土壤化肥施用量等。 当前在有限的认识条件下比较可行的土壤 NO 排放 模式有:(1) 生物排放清单系统第二版(Biogenic Emissions Inventory System II, BEIS-2) 中采用的 Williams的模型,它用下垫面类型和土壤温度两个 变量来参数化土壤 NO 排放^[2]; (2) Yienger 和 Levy 建立的复杂的模式,它考虑了降水、土温、土壤湿度、 冠层作用、施肥作用等因子^[3]; (3) Davidson 和 Kingerlee 的模式,它用最新的实验结果直接给出每 种下垫面的年排放估计^[7];(4)欧洲环境保护署的 联合 EMEP/ CORINA IR 大气排放清单中采用的 Skiba 的模式, 它通过 N 的输入来确定土壤 NO 的排放^[8]。 Simpson 用上述 4 种模式估计了欧洲地区土壤排放 的 NO 对总的 NO_X 排放的贡献。不同模式得到的结 论不同, 从< 1% 到约 20%^[9,10]; Stohl 利用 Williams 的方法对欧洲的土壤 NO 排放做了估计,并利用这 个结果和简单的一维光化学模式对土壤排放 NO 对

^{*} 国家重点基础研究发展规划项目(2002CB410811)和中国科学院大气物理研究所大气物理与大气化学开放室联合资助 作者简介:谢 (1978~),男,博士研究生,主要研究方向为大气环境与大气化学。E-mail: autumnxie@sina_com 收稿日期: 2004-10-23; 收到修改稿日期: 2005-06-03

光化学过程的影响做了研究。得出的结论是土壤排 放 NO 不仅在量级上不容忽视,而且在光化学过程 中扮演重要角色^[1]。

基于土壤氮氧化物排放的重要性和模拟研究方面的一些进展,本文将对中国地区的土壤氮氧化物的排放做出估计,并用先进的三维大气光化学模式 Calgrid 结合所得的土壤 NO 排放清单研究其对中国地区对流层光化学特性的影响。

1 研究方法和模式系统

本研究主要包括土壤 NO 排放估计和大气光化 学模拟两个部分,采用的模式有中尺度气象模式 MM 5,土壤 NO 排放模式和中尺度大气光化学模式 Calgrid。模拟的区域为 18.6°N~53.5°N,90.6°E~ 151.8°E,大致覆盖中国地区。

气象模式 MM5 是美国宾州大学与美国国家大 气研究中心发展的有限区域中尺度模式。该模式对 区域尺度的天气过程有较好的模拟能力,比较适合 于为区域大气污染物的输送和沉降研究提供气象 场。本文用 MM5 模拟排放模式和化学模式所需的 气象场,水平格距为 75 km,模式顶气压为 100 hPa; 垂直方向分为 10 层,相应的 σ 值为 0,0 15,0 3, 0.45,0.6,0.75,0.85,0.93,0.97,0.99,1;采用 Blackadar 的高分辨率边界层方案、时间变化边界条件和 Anthes-Kuo 的深厚积云对流参数化方案。

在土壤排放 NO 的估计中,本研究利用 Williams 在大量的实测研究的基础上提出的参数化方法建立 了简单的模式。并在此基础上考虑了次网格效应对 NO 排放的影响,次网格格距为 25 km;考虑了 24 种 下垫面,数据来源于美国地理调查(U.S. Geological Survey, USGS)全球资料,空间分辨率为两分。模式 采用的排放表达式为:

R = *A* exp[(0.071 ±0.007)•*T*] *R* 为 NO 的排放速率(N ng m⁻² s⁻¹); *A* 同下垫面类 型有关的排放因子(N ng m⁻² s⁻¹); *T* 为土壤温度 (℃)。式中, *A* 是最重要的因子,直接影响最终的模 拟结果。本研究根据 Williams 的相关研究并参考 Stohl 的一些修正得到了各种下垫面 *A* 的值^[1,2]。其 中草地、森林、城市、内陆水域、永久作物等下垫面的 值为固定值; 而可耕作耕地的 *A* 值在农业耕作期还 与农田的单位面积氮肥使用量有关。Stohl 在其研 究中定义: 耕作季节(5~8月) 耕地的 *A* 值表达式为 *A* = 0.05•*F*, 式中 *F* = 总的氮肥消耗/总的耕地面 积, 是同氮肥施用量有关的量(N kg hm⁻² a⁻¹); 对于 非耕作期耕地, A 取固定值^[1]。本研究沿用了这个 关系计算耕作期不同省份耕地的 A 值, 计算 F 值时 采用的各省氮肥使用量和耕地面积数据来自于三农 数据网(www.sannong.gov.cn) 1999 年的资料。表达 式中的另一个因子 T 在排放过程中也非常关键, 可 以影响生物反应速率和土壤气体排放传输速率。 Williams 等^[2]、Stohl 等^[1]研究者是通过土壤温度和 地面气温之间对应关系计算土壤温度,本研究则直 接利用 MM5 气象模式模拟得到土壤温度来消除中 间误差。

Calgrid 是欧拉型中尺度光化学传输和扩散模 式,包含了较为完整的物理和化学过程,如大气输送 与扩散、气相化学反应、干沉降过程、地面及高架排 放源等。实际应用证明 Calgrid 模式具有较好的稳 定性,并且对于大气光化学过程的模拟有很强的针 对性^[11]。Calgrid 采用地形随动坐标, 传输和扩散用 的是 Yamartino 提出的方案, 干沉降考虑了气体和粒 子的沉降、并分别提出了不同的方案, 气相化学机制 可以选择机制 SAPRG 90 或碳键机制(Carbon Bond Mechanism IV, CBM- IV), 化学积分方案也可以选择 混合解法(Hybrid) 或者拟稳态近似法(Quasi Steady State Approximation, QSSA)。本文将研究区域分为 66×56 网格, 水平网格距 75 km; 垂直方向分为 10 层,分别为 20 m、80 m、160 m、260 m、410 m、660 m、 1 200 m、2 200 m、3 600 m、5 000 m; 选择的气相化学 机制为 SAPRG-90, 包括 54 种物质和 129 个反应式, 选择的化学积分方案为 OSSA。化学模式所需的 2000年中国地区人为源资料来自中国环境科学院, 包括面源与高架点源,含NO、NO2、CO、HCHO(甲醛)、 MEK(酮类)、CCHO(乙醛和高级醛)、ALK1(烷烃)、 ALK2(高级烷烃)、ARO1(芳香烃)、ARO2(高级芳香 烃)、ETHE(乙烯)、OLE1(高级烯烃)、SO₂ 等 13 种物 质。土壤排放 NO 由上述简单排放模式估计得到,按 照 Stohl 的做法,在将土壤排放氮氧化物输入化学模 式时,将N素按90%NO和10%NO2的比例划分^{11]}。

模拟选取 2000 年为研究年份, 分为春(3 月~5 月)、夏(6 月~8月)、秋(9月~11月)、冬(12 月~2 月) 四季来研究, 每季选取一个代表性的时段, 春季 为 4月 16日~4月 30日, 夏 7月 16日~7月 30日, 秋 9月 16日~9月 30日, 冬 1月 16日~1月 30日。 利用动力学模式获得的气象资料和模拟的土壤 NOx 排放运行 Calgrid 模式。每段时间的 16日~19日为 预积分时段, 获得的稳定的物种浓度作为初始场输 入模式,模式的边界条件取物种的背景浓度。

2 结果与讨论

2.1 中国地区土壤氮氧化物的排放

利用上述简单的模式估计 2000 年中国地区的 土壤 NO 排放,结果显示中国地区土壤 NO 的年排放 总量为 225.8 Gg N(表 1)。而Yienger 和 Levy 在其全 球土壤 NO 排放的研究中得出的东亚地区(中国和 日本)的 NO 年排放总量为 310 Gg N^[3],扣除日本的 土壤排放量,本文模拟的结果与他们的研究结果是 接近的。将上述模拟与 2000 年中国地区人为 NO_X 排放量(TRACE-P 期间估计为 3 229 Gg N)^[12]比较, 可得中国地区土壤排放 NO 是人为源的 7%;而在夏 季这个比例还会增大到 23.4%(土壤 NO 排放量为 163.5 Gg N)。这两个比值与 Stohl 研究给出的欧洲 地区土壤排放 NO 与人为源比值是接近的(全年 8%、夏季 27%),可见土壤是 NO_X 重要的排放源。

表2 给出了主要的下垫面类型的排放量。由表可见不同的下垫面对 NO 的排放有很大影响: 耕地下垫面的年排放量占全国总排放量的 76.8%; 草地占 12.4%; 森林占 4.3%。耕地下垫面的排放比重最大, 在夏季该比值甚至高达 80.4%。一般研究认为, 森林地区, 高大树木的冠层作用对 NO 的排放影响很大, 所以排放量较小; 耕地排放 NO 很大程度是氮肥转化的作用, 所以其排放量很大, 是最主要的土壤 NO 排放源。此外, 相同下垫面的土壤 NO 排放有明显的季节变化: 春季土壤 NO 排放占总排放的21.2%, 夏季 72.4%, 秋季 5.2%, 冬季 1.2%, 春、夏排放量占总排放的绝大多数。可见夏季气温高、农事活动频繁, 对土壤排放有很大促进作用。以上两点结论与国外学者的研究结论也是一致的^[1~3]。

表1 2000 年各省土壤排放 NO 总量

Table 1	Estimated soil N	emissions of the	provinces of	China in 2000	(N,	Gg a ⁻¹	
---------	------------------	------------------	--------------	---------------	-----	--------------------	--

省份	年排放总量	省份	年排放总量
Province	Annual emission	Province	Annual emission
安徽 Anhui	10. 84	吉林 Jilin	10. 30
北京 Beijing	2.71	辽宁 Liaoning	6 35
福建 Fujian	3. 67	宁夏 Ningxia	0 54
甘肃 Gansu	2.31	青海 Qinghai	2 30
广东 Guangdong	19.70	山东 Shandong	14 72
广西 Guangxi	13.91	上海 Shanghai	1. 09
贵州 Guizhou	5. 28	山西 Shanxi	4 89
河北 Hebei	8. 80	陕西 Shaanxi	3 76
黑龙江 Heilongjiang	4.70	四川 Sichuan	23 04
河南 Henan	16.86	西藏 Tibet	2 49
湖北 Hubei	14. 10	天津 Tianjin	0 42
湖南 Hunan	7.64	新疆 Xinjiang	7.37
内蒙古 Inner Mongolia	10.08	云南 Yunnan	2 54
江苏 Jiangsu	14. 57	浙江 Zhejiang	2 25
江西 Jiangxi	8. 30	合计 Total	225 75

表 2	主要下垫面类型的土壤 NO	非放
-----	---------------	----

	Table 2	Soil NO	emission	by	category	and	season	(N.	Ge
--	---------	---------	----------	----	----------	-----	--------	------	----

						_
下垫面类型	全年排放	春季	夏季	秋季	冬季	
Landuse type	Annual emission	Spring	Summer	Autumn	Winter	
耕地 Cultivated land	173 4	36 17	131.4	4. 53	1. 29	-
森林 Forests	9.64	2 04	6 34	1.01	0.25	
草地 Grassland	28 01	6 25	16 67	4.28	0. 79	
其他 Others	14 66	3 34	9.09	1.92	0.31	
合计 Total	225 8	47.80	163 5	11. 74	2.64	

从 2000 年土壤 NO 排放率来看(图 1), 土壤源单个 网格最大值为 322.4 g s⁻¹,比人为源的 7 129 g s⁻¹要小 一个量级;但是在空间分布上,土壤源分布比人为源均 匀得多,部分地区甚至超过了人为排放。对照下垫面 类型,可以清楚地看到人为源排放率只在城市等人口 聚居的地方大,在森林、农田等广大区域则非常的小; 而土壤排放率在相同下垫面类型和气候条件下大致相

同,其中东北平原、华北平原、长江中下游平原、四川盆 地、华南等农耕区明显较高。另外,在土壤 NO 排放最 大的季节夏季,土壤源排放率最高值将达 991.5g s⁻¹, 是年均的 3 倍多,接近人为面源的年均排放强度。因 此区域尺度上土壤排放的 NO 不容忽视,特别是在夏 季,光化学反应比较容易发生且强烈,土壤 NO 排放对 对流层光化学过程的影响更为强烈。

图 1 2000 年土 壤 NO 排放强度分布 Fig. 1 Distribution of NO emission rates from soils in China in 2000

2.2 土壤排放氮氧化物对光化学影响的模拟研究 2.2.1 土壤源对污染物平均浓度的影响 本研 究利用 Calgrid 模式进行模拟,设计了两种方案: (1)排放源清单中只考虑 NOx 人为源的排放;(2)同 时考虑 NOx 的人为源和土壤源排放。以上方案分 别对 2000 年 1、4、7、9 月进行模拟,表示考虑春、夏、 秋、冬不同季节条件下的光化学反应。方案(2) 一方 案(1)即可反映在目前的 NOx 人为源排放水平上土 壤排放 NO 对中国地区光化学的影响。图 2 是两种 方案模拟的 O3 全国平均浓度的逐时变化曲线 (NOx, HNO3 和 PAN 图略)。

从这些图可以看到,考虑土壤NO_X 排放之后主 要光化学污染物的全国平均浓度都有不同程度的增加: NO_X、O₃、HNO₃ 和 PAN 的最大增量分别达到 2.37 μ g m⁻³、26.08 μ g m⁻³、9.79 μ g m⁻³ 和 0.43 μ g m⁻³、NO_X 浓度平均增加了 0.45 μ g m⁻³, 改变 15.7%; O3 浓度平均增加了 7.76 μ_{g} m⁻³, 改变 15.3%; HNO3 浓度平均增加了 2.14 μ_{g} m⁻³, 改变 25.5%; PAN 浓度平均增加了 0.11 μ_{g} m⁻³, 改变 6.5%。这个变化是与 NO_X、O₃、HNO₃ 和 PAN 本身 的光化学性质有关的: NO_X 与 VOC 等物质的相互关 系是高度非线性的, 在考虑土壤源排放之后 NO_X 最 终浓度增加了, 但这种增加并不是简单的递增关系; O₃ 在区域和洲际尺度上对 NO_X 变化非常敏感¹¹, 由 于中国地区整体 NO_X 平均水平不高, 当 NO_X 浓度增 加时 O₃ 浓度也增加; HNO₃ 产生的主要途径是 OH 自由基和 NO₂ 反应, PAN 是过氧乙酰基和 NO₂ 反应 的产物, 所以当 NO₂ 浓度增加时这两种物质的浓度 也有一定程度的增高。

另外, NO_X、O₃、HNO₃和 PAN 浓度的变化还有明显的季节差异: NO_X 浓度在春、夏、秋、冬分别平均 增 加 了 0.17 μ g m⁻³、1.44 μ g m⁻³、0.20 μ g m⁻³、

图 2 模拟时段 O₃ 全国平均浓度逐时变化

Fig 2 Hourly variation of countrywide mean ozone concentration during the modeling time

0.03 μg m⁻³,比不考虑土壤源改变了 5.5%、 76.3%、8.1%、0.5%; 03浓度则分别平均增加了 $6.09 \ \mu g \ m^{-3}$, $18.09 \ \mu g \ m^{-3}$, $6.77 \ \mu g \ m^{-3}$, 0.11 μ_{g} m⁻³, 增加百分比分别为 12.1%、26.7%、10.0%、 0.7%; HNO3 浓度分别平均增加了 0.70 以g m⁻³、6.81 μg m⁻³、1.01 μg m⁻³、0.03 μg m⁻³, 增加百分比分别 为9.0%、79.0%、8.0%、0.6%; PAN 浓度分别平均 增加了 0.11 µg m⁻³、0.22 µg m⁻³、0.11 µg m⁻³、 0.0001 µg m⁻³, 增加百分比分别为 4.9%、19.4%、 4.9%、0.01%。总之,夏季增加量最大,冬季增加量 最小.春季和秋季的改变量值居中。分析气候和排 放条件不难发现这种季节差异同土壤排放以及光化 学反应的季节差异有关。夏季气温高、辐射强,是最 有利于光化学反应发生的季节:冬季气温低、辐射 弱, NOx、O3 等在大气中的寿命变长、光化学反应活 性低。另一方面土壤排放的规律与气温、辐射一样, 也是夏强冬弱春秋居中。可见,两者共同作用造成

了上述季节差异。

土壤源对污染物空间分布的影响 2.2.2 图 3 反映了土壤 NO 排放对模拟的 NO $_X$ 和 O₃ 四季平均 浓度(对模拟的4个时段取平均)的影响。由图3可 知考虑土壤排放 NO 后,全国范围内 NO_X 年平均浓 度增加. 最大增加量为 13.68 以 m⁻³。 NOx 增加量 较大的地区主要分布在华北、东北、江浙、广东等地。 这些地区不仅土壤排放 NOx 量很大,而且还有较大 的人为排放,可见 NO_X 浓度变化依赖于局地排放源 的状况。造成这种局地性的主要原因是 NO_X 在大 气中的寿命较短, 流场输送对其作用很小, 局地光化 学作用是主要的影响因子。HNO3 年平均浓度变化 类似于 NO_X, 也是增加的, 最大增加量为 18.29 lg m^{-3} 。HNO₃ 浓度增值较大的区域主要在东部以及 四川、陕西等拥有大片农田的地区,而西部其他地区 增量大多小于 1.5 µg m⁻³。另外 HNO3 浓度变化分 布局地性并不明显,这应该是由于HNO3消耗反应

谢

图 3 土壤源对主要污染物四季平均浓度的影响

Fig. 3 Impact of soil NO emission on averaged concentrations of the main pollutants of the four seasons

很弱(与OH反应及光解)、化学性质较稳定^[13],输送、扩散、沉降对其分布有较大影响。

O₃和 PAN 的浓度变化不同于 NO*x*和 HNO₃,存 在明显的东西部差异。O₃浓度变化在西部地区都 是增大,增幅多在 8~17.5 l/g m⁻³之间,最大增加量 为 29.57 μ_{g} m⁻³;在东部的京津唐、沪宁杭、珠江三 角洲以及辽宁等地区是减小,最大减小量为 7.29 μ_{g} m⁻³,除此以外的东部地区增幅大多小于 4 μ_{g} m⁻³。 O₃ 是一种强氧化剂,它与 NO_X 的生消作用是高度非 线性的: 当 NO_X 浓度增加时,在 NO_X 浓度高值区, O₃

浓度是下降的,在 NOx 浓度低值区, O3 浓度是增加 的。而我国东部是工农业最为集中、经济发展最为迅 速的地区,大气污染类型有由煤烟型向光化学污染型 过渡的趋势^[14];西部发展相对滞后、污染排放较少, 污染气体尤其是 NOx 浓度相对东部低。因此, 中国 地区 NOx 浓度东高西低的形势造成了考虑土壤源排 放后 O3 浓度改变东减西增的现象。PAN 浓度变化没 有 O₃ 那么明显的东西部差异。其浓度增加的区域主 要集中在河北、山东、内蒙、吉林、甘肃、陕西、四川等 地, 增值最大在内蒙吉林一带达 0.59 μg m⁻³; 浓度减 小的区域都分布在东部,为京津唐、沪宁杭、珠江三角 洲、山东、山西以及东北的辽宁等地、大致与 03 减小 区域吻合,减小最多在山西一带达 0.27 µg m⁻³。PAN 是光化学烟雾的主要成分之一,其浓度不仅取决于 NOx,而且强烈依赖于大气中的过氧乙酰基。在不同 NMHC/NOx 比值下. NOx 化学转化特征和产物有很 大区别。NMHC/NOx 比值高时,光化反应的产物主要 是 PAN; NMHC/NO_x 比值低时, PAN 等有机氮较 少^[13~15]。考虑土壤源后 NMHC/ NO_X 减小, PAN 的浓 度必然发生改变。不同地区 NMHC/NOx 的比值就造 成了 PAN 浓度变化的地区差异。

2.2.3 NO_X 人为源增加后土壤源产生的影响 随着我国经济的迅猛发展,工农业、交通造成的空气 污染日益加重,量将不断增高。为了了解NO_X 人为 源排放增加后土壤 NO_X 排放对中国地区光化学性 质的影响,本研究设计了另两个方案:方案(3) 排放 源清单只考虑 NO_X 人为源的排放,但源强加倍;方 案(4) 同时考虑 NO_X 的土壤源和源强加倍的人为 源。方案(4) 一方案(3) 即可反映人为 NO_X 排放增 加的情况下土壤 NO_X 排放的影响。夏季是光化学 反应和土壤源排放最强的季节,具有较强的代表性, 方案(3) 和方案(4) 主要讨论夏季的情况。

模拟结果显示 NO_X 人为源排放增加后土壤 NO_X 排放还是造成了几种主要污染物浓度地增加: NO_X 浓度 较不考虑土壤源时平均增加了 1.79 μ_{g} m⁻³,增加45%;O₃ 浓度平均增加了 9.60 μ_{g} m⁻³, 增加 12.9%;HNO₃ 浓度平均增加了 6.27 μ_{g} m⁻³,增 12.9%;HNO₃ 浓度平均增加了 6.27 μ_{g} m⁻³,增 13.5.4%;PAN 浓度平均增加了 0.05 μ_{g} m⁻³,增 4.4%。NO_X、HNO₃ 浓度在模拟时段均增加,最大增 值分别为 3.87 μ_{g} m⁻³和 9.88 μ_{g} m⁻³。O₃、PAN 模拟 的浓度有增有减,O₃ 最大增加量为 18.39 μ_{g} m⁻³、最 大减小量为 3.66 μ_{g} m⁻³,PAN 这两个量值分别为 0.19 μ_{g} m⁻³和 0.19 μ_{g} m⁻³。可见人为源增加后土 壤源对 O₃ 和 PAN 浓度变化有较大影响。比较 2.2.1 可见,从全国范围来看,人为源增加后土壤源 对 NO_X、HNO₃ 的浓度影响增加了,而对 O₃、PAN 浓 度的影响有所减小。

从土壤 NO 排放对模拟的主要污染物的四季平 均浓度地影响来看, NO_X 浓度虽然依旧是大部分地 区都在增加、土壤源排放大的地区增量大, 但是增加 的量值更高, 最大增量达 18.34 μ_{g} m⁻³; 并且在上 海、新疆等地出现了值减小的情况, 减小量最多达 13.68 μ_{g} m⁻³。O₃ 浓度变化仍然是东减西增, 但这 种东西差异更加的明显: 长江中下游及山东地区出 现了大片的负值区, 最大减小量达 37.29 μ_{g} m⁻³; 西 部地区的增量也在 20 μ_{g} m⁻³左右。HNO₃ 浓度变化 基本与 2.2.2 一致, 但是量值更大, 最大增量出现在 京津唐地区为 38.54 μ_{g} m⁻³。PAN 浓度减小区域明 显加强, 最大减小量为 1.13 μ_{g} m⁻³; 其浓度增大区 域也有所增强, 最大增加值为 1.46 μ_{g} m⁻³。可见, 人为源排放增加后, 土壤源显著地影响了 NO_X、O₃、 HNO₃ 和 PAN 浓度的空间分布。

2.3 不确定性分析

本文虽然定量地给出了土壤 NOx 排放对对流层 光化学过程地影响,但是研究结果仍然存在一定的不 确定性,主要来源于对土壤氮氧化物排放的估计。国 外的研究一般认为 T 和 A 因子的不确定性造成了土 壤氮氧化物排放的模拟不确定, Williams 在其研究中 估计这种不确定性为 100%~200%^[2], Stohl 的估计也 接近这个数字,为 200%~300%^[1]。综合前人的研究 成果、结合模拟的实际情况,本研究认为这种不确定 性为 200%。为了了解这种不确定性对光化学模式模 拟结果的影响,本研究又设计了两个方案:(5)将排放 源清单中的土壤源排放值增加到原来 3 倍;(6)将排 放源清单中的土壤源排放值减小到原来 1/3,并将其 与方案(2)比较(只对夏季进行分析)。

图 4 给出了不同方案模拟的夏季全国平均浓 度。方案(5) 与方案(2) 比较, NO_X 、 HNO_3 夏季全国 平均浓度分别平均增大了 4.43 μ_g m⁻³和 11.05 μ_g m⁻³, 增加 133% 和 71%; 而 O₃和 PAN 浓度分别 平均增大 1.61 μ_g m⁻³和平均减小 2.44 μ_g m⁻³, 增加 1.9% 和减少 2.0%。方案(6) 与方案(2) 比较, NO_X 、 HNO_3 夏季全国平均浓度分别平均减小了 0.98 μ_g m⁻³和 4.52 μ_g m⁻³, 降低 29.6% 和 29.3%; O₃ 和 PAN 浓度分别平均减小了 8.66 μ_g m⁻³和 0.10 μ_g m⁻³, 降低 10.1% 和 8.2%。可见, 由于大气化学 谢

不确定性为 2%~ 10%。

的非线性作用,光化学模拟的不确定性小于土壤 NO_X 排放估计的不确定性。对 NO_X、HNO₃ 而言,光

3 结 语

本文利用 Williams 的模型估计中国地区土壤氮 氧化物的排放,并运用中尺度气象模式 MM5 以及光 化学模式 Calgrid 模拟不同季节和不同排放源情况 下土壤排放对中国地区光化学的影响,得到的主要 结论有: (1) 土壤 NO 排放是 NOx 排放源的重要组成 部分。中国地区土壤排放年总量为 225.8 Gg N,是 人为源的 7%,这个比例在夏季达到 23.4%。土壤 NOx 排放具有明显的空间和季节变化特征:一般农 田下垫面排放量最大,森林下垫面排放较小;夏季排 放量最大,冬季排放最小。(2) 若考虑土壤 NOx 排 放,NOx、O3、HNO3 和 PAN 的全国平均浓度将增加, 分别增大 15.7%、15.3%、25.5% 和6.5%,最大增 量分别为 2.37、26.08、9.79 和 0.43 μ g m⁻³。通常夏 季增加最大,冬季增加最小。(3) 土壤排放 NOx 无 论是在人类活动集中的地区还是在人迹罕至的偏远 地区对主要光化学污染物浓度都有比较明显的改 变,对物种浓度的空间分布有着重要影响。这种影 响不仅取决于光化学反应,还与排放源状况、气象条 件等因素关系密切。(4)从全国范围来看,在人为 NOx 排放增加的情况下,土壤源对 NOx、HNO3 浓度 的影响增加,而对 O3、PAN 浓度的影响有所减小;但 是对不同区域的影响却有显著的加强。

化学模拟的不确定性为30%~100%;对 O3和 PAN,

随着我国经济的发展, 土壤氮氧化物排放对大 气环境质量的影响将不容忽视。但是, 在目前的认 识水平上, 土壤 NO 排放的模拟还不是很成熟, 存在 相当的不确定性, 这种不确定性对光化学模式模拟 有一定的影响。因此, 需要加强对土壤 NO 排放的 研究, 这包括发展完善的土壤模式来提供更加准确 的土壤温度, 进行更多的野外试验, 确定考虑了土壤 特性和下垫面类型的 *A* 值, 建立更为完善的土壤排 放模式。

参考文献

- [1] Stohl A, Williams E, Wotawa G, et al. A European inventory of soil nitric oxide emissions and the effect of these emissions on the photochemical formation of ozone. Atmospheric Environment, 1996, 30: 3741~ 3755
- Williams E J, Guenther A, Fehsenfeld F C. An inventory of nitric [2] oxide emissions from soils in the United States. J. Geophys. Res., 1992, 97(D7): 7 511~ 7 519
- [3] Yienger J J, Levy H. Empirical model of global soil-biogenic NO_x emissions. J. Geophys. Res., 1995, 100(D6): 11 447~ 11 464
- [4] Li XH, Zhu ZL, Cai G X, et al. Nitrification-denitrification loss of added nitrogen in flooded rice rhizosphere. Pedosphere, 1994, 4(2): 145~ 152
- 冉炜, 沈其荣, 郑金伟, 等. 土壤硝化作用过程中亚硝态氮的 [5] 累积研究. 土壤学报, 2000, 37(4): 474~481. Ran W, Shen Q R, Zheng J W, et al. Nitrite accumulation in the process of nitrification in different agriculture soils of China (In Chinese). Acta Pedologica Sinica, 2000, 37(4): 474~ 481
- [6] 王连峰,蔡祖聪,水分和温度对旱地红壤硝化活力和反硝化 活力的影响. 土壤, 2004, 36(5): 543~546. Wang LF, Cai ZC. Effects of temperature and water regime on nitrification and denitrification activity of upland red soils(In Chinese). Soils, 2004, 36(5): 543~ 546
- [7] Davidson E A, Kingerlee W. A global inventory of nitric oxide emissions from soils. Nutr. Cycling Agroecosys., 1997, 48:91~104
- Skiba U, Fowler D, Smith K A. Nitric oxide emissions from agricul-[8] tural soils in temperate and tropical climates: Sources, controls and

mitigation options. Nutr. Cycling Agroecosys., 1997, 48:139~153

- [9] Simpson D, Guenther A, Hewitt N, et al. Biogenic emissions in Europe 1. Estimates and uncertainties. J. Geophys. Res., 1995, 100(D11):22 875~ 22 890
- [10] Simpson D, Winiwarter W, Borjesson G, et al. Inventory emissions from nature in Europe. J. Geophys. Res., 1999, 104 (D7): 8 113~ 8 152
- [11] Jiang W, Hedley M, Singleton D. Comparison of the MC2/ CALGRID and SAMM/UAM-V photochemical modeling systems in the Lower Fraser Valley, British Columbia. Atmospheric Environment, 1998, 32: 2 969~ 2 980
- [12] Streets D G, Bond T C, Carmichael G R, et al. An inventory of gaseous and primary aeresol emission in Asia in the year 2000. J. Geophys. Res., 2003, 108(D21): 8 809~ 8 832
- [13] 朱彬, 孙照渤, 安俊岭. 对流层氮氧化物光化学转化特征研 究. 大气科学, 2002, 26(4): 487~495. Zhu B, Sun Z B, An J L. A research of photochemical transformation of NO_X in Troposphere(In Chinese). Chinese Journal of Atmospheric Sciences, 2002, 26(4): 487~ 495
- [14] 谢,王体健,高丽洁,等.香港地区一次光化学污染过程的特 征分析. 热带气象学报. 2004, 20(4): 433~442. XieM, Wang T J, Gao L J, et al. Study on the characteristics of a photochemical pollution episode in Hong Kong(In Chinese). J. Tropical Meteorology, 2004, 20(4):433~ 442
- [15] 韩志伟, 张美根, 胡非. 生态 NMHC 对臭氧和 PAN 的影响的数 值模拟研究.环境科学学报, 2002, 22(3): 273~278. Han ZW, Zhang M G, Hu F. Numerical model study of the effect of biogenic NMHC on ozone and PAN (In Chinese). Acta Scientiae Circumstantiae, 2002, 22(3): 273~ 278

MODELING OF NO_X EMISSIONS FROM SOIL AND THEIR EFFECT **ON TROPOSPHERIC PHOTOCHEMISTRY IN CHINA**

Xie Min^{1, 2} Wang Tijian¹ Zhang Meigen² Yang Xiuqun¹

(1 Department of Atmospheric Science, Narjing University, Narjing 210093, China)

(2 State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,

Institute of Atmospheric Science, Chinese Academy & Science, Beijing 100029, China)

Abstract Based on the work of Williams *et al* in 1992, an inventory of soil NO_X emissions for China was developed. With the aid of a mesoscale meteorological model MM5 and a photochemical model Calgrid, effects of these emissions on tropospheric photochemistry in China were investigated. For the year 2000, it was estimated that the annual soil emissions in China amounted to 225.8 Gg N, i.e. 7% of the anthropogenic emissions. In summer, this fraction increased up to 23.4%, showing the importance of soil emissions to photochemical reactions. These emissions caused rise in average concentration of NO_X , O_3 , HNO_3 and PAN (peroxyacetyl nitrate) and variation of spatial distribution of the pollutants as well. Their maximum increments on average reached 2.37, 26.08, 9.79 and 0.43 µg m⁻³, respectively, and the rising trend was much higher in summer than in any other seasons. The rise varied with the sources of emission, meteorological conditions and photochemical characteristics. With increasing anthropogenic emissions, the role of NO_{χ} emission from the soil will be more significant in tropospheric photochemistry and can not be neglected.

Key words Soil emission; NO_X ; Photochemical reaction; Numerical simulation