产漆酶真菌筛选及其对 PAHs 污染土壤

修复的初步研究*

潘 澄^{1,2} 茆 婷¹ 吴宇澄² 申卫收¹ 钟文辉^{1†}

(1 南京师范大学环境科学与工程系,南京 210097)

(2中国科学院土壤环境与污染修复重点实验室(南京土壤研究所),南京 210008)

摘 要 真菌漆酶可以高效转化多环芳烃 (PAHs),因此,产漆酶真菌在 PAHs 污染土壤修复中极 具应用前景。根据漆酶可将愈创木酚氧化为红色物质的特性,成功从土壤中筛选出一株能够分泌漆酶的真 菌菌株 F-1,初步鉴定该菌为疣孢漆斑菌 (*Myrothecium verrucaria*)。通过 Plackett-Burman 试验对菌株 F-1 的产酶能力进行了分析,发现特定培养条件组合可将其酶活提高近 300 倍,达 5 628 U L⁻¹,表明 F-1 的漆 酶活性受到环境条件的显著影响。应用菌株 F-1 对 PAHs 污染土壤进行了初步修复研究,结果表明,接种 F-1 对菲、荧蒽、芘、苯并 (a) 蒽、屈、苯并 (b) 荧蒽、苯并 (k) 荧蒽、苯并 (a) 芘、二苯并 (a,h) 蒽、苯并 (g,h,i) 苝、茚苯 (1,2,3-cd) 芘等 11 种 PAHs 均有不同程度的降解,提示产漆酶真菌在 PAHs 污染土壤修复中的应用潜力。

 关键词
 多环芳烃 (PAHs); 土壤污染; 真菌修复; 漆酶

 中图分类号
 X53
 文献标识码
 A

多环芳烃 (Polycyclic aromatic hydrocarbons, PAHs) 是一类由两个及两个以上苯环稠合形成的有 机化合物, 广泛分布于全球范围的土壤中。在我国环渤海、长江三角洲、珠江三角洲等经济快速发 展地区土壤中, 普遍存在着 PAHs 类污染物, 其含量在某些情况下可以高达 1 000~10 000 ppb 以上 ^[1-3]。PAHs 尤其是高分子量的 PAHs 能造成 DNA 损伤,产生"三致"效应。PAHs 进入自然环境后, 在各环境介质内发生迁移, 通过生物吸收或食物链进入动植物体内,导致生态及健康风险^[4]。

PAHs 污染土壤的真菌修复越来越受到重视。真菌可分泌胞外木质素氧化酶(包括 LiP、MnP 和 漆酶等),对 PAHs 往往具有高效的降解以及转化能力。研究较多的真菌有白囊耙齿菌^[5]、虎皮香菇 ^[6]、头孢霉属、曲霉属、镰孢霉属^[7]、青霉属、毛霉属^[8]等,其中多数为担子菌和子囊菌等高等真菌, 可以转化从二环到五环的多种 PAHs^[9]。但与极为多样的土壤真菌资源相比,目前已经分离的 PAHs 降解真菌的数量还非常有限,对 PAHs 降解真菌的分离筛选仍然是真菌修复的中心环节。

在 PAHs 降解真菌的筛选方法上,传统方法是以 PAHs 作为唯一碳源进行筛选,该方法针对性强, 但工作量大,时间较长,效率不高,且操作过程中需使用 PAHs,对于环境以及人体健康均有一定安 全风险。资料表明^[10],通过分离筛选具有漆酶活性真菌,可以高效、安全地获得对 PAHs 具有一定 降解能力的真菌菌株。漆酶(benzenediol: oxygen oxidoreductase, EC 1.10.3.2)属于一组催化中心含 铜原子的多酚氧化酶^[11],对 PAHs 的转化能力也已得到了广泛证实^[12],且应用中无需加入过氧化氢。 本研究即采用从土壤中分离筛选产漆酶真菌的策略,利用漆酶可将愈创木酚氧化为红色物质的特性, 进行菌种的快速筛选,通过培养条件优化提高其产酶活力。此外,通过进行土壤微域修复实验,初

^{*} 国际科学基金项目(IFS No. C/4471-1)及南京师范大学 "211 工程"重点学科建设项目(1843203623)资助

[†] 通讯作者, E-mail: zhongwenhui@njnu.edu.cn

作者简介: 潘 澄 (1986—), 男, 硕士研究生, 主要研究方向为污染土壤生物修复。Email:paazz10c@163.com 收稿日期: 2010-05-25; 收到修改稿日期: 2010-09-27

步确定所得菌株对土壤中 PAHs 的降解能力和修复条件,为今后进行 PAHs 污染土壤较大规模的生物 修复提供科学依据。

1 材料与方法

1.1 培养基

产漆酶真菌筛选培养基: 含 0.01% 愈创木酚的 PDA 培养基。

液体产(漆)酶培养基:新鲜马铃薯浸汁200g,蔗糖20g,K₂HPO₄3g,MgSO₄•7H₂O1.5g,蒸馏水1000ml,pH自然。

1.2 土壤产漆酶真菌的筛选与鉴定

真菌筛选所用土壤采自南京紫金山,采样时先除去上层落叶层,取表层 0~5 cm 深的土壤。将土壤悬浊液涂布于含 0.01 % 愈创木酚的 PDA 培养基平板上,28℃培养。如生长菌落处的培养基由乳白色变为铁红色,即为具有漆酶活性的真菌菌株^[13-14]。挑取单菌落进行菌种纯化,将纯化的菌株接种于不含愈创木酚的 PDA 平板上培养,观察菌落周围的培养基是否出现颜色变化,以确认颜色变化是否为菌落本身的颜色而非分泌漆酶所致。

采用 DNA 提取试剂盒(SK1375,上海生工)提取真菌 DNA,采用通用引物 NS1 (GTAGTCATATGCTTGTCTC)/NS8 (TCCGCAGGTTCACCTACGGA)^[15], PCR 扩增长约 1.6 kb 的真菌 18S rDNA 基因。PCR 反应参数为: 94 ℃变性 45 s,55℃退火 45 s,72 ℃延伸 1 min,共 30 轮循环。PCR 产物经过柱纯化,委托上海英潍捷基公司测序,DNA 序列经 BLAST 比对后,根据 Genbank 中最接近的记录进行菌株的系统分类地位推断。

1.3 漆酶活性的测定

将产漆酶真菌接种于 50 ml 产漆酶液体培养基中,28℃、140 r min⁻¹ 摇瓶培养。采用 ABTS-分光 光度计法测定培养液中漆酶活性^[16],确定产酶高峰期以及最高产酶活性。漆酶活性的计算公式:漆 酶活性(UL⁻¹) = (△A₄₂₀/36 000) ×20×10⁶,式中,△A₄₂₀ 指 420 nm 处吸光值每分钟的变化值。 1U 漆酶定义为每分钟转化 1 μmol 底物所需的酶量。

1.4 产酶条件的优化

挑取一环真菌菌株接种于 50 ml 液体培养基中,28℃、140 r min⁻¹摇瓶培养 5 d 左右。无菌条件 下将培养液连同菌体倒入玻璃匀浆器中,反复研磨,制得匀浆菌丝体。

1.4.1 不同碳、氮源的分析 进行碳源分析时,液体产酶培养基中碳源分别选用葡萄糖、乳糖、蔗糖、可溶性淀粉、羧甲基纤维素钠 (CMC-Na),浓度均为 20 g L⁻¹,装液量为 50 ml (150 ml 三角烧瓶),各瓶中分别加入 2 ml 匀浆菌丝体,28℃、140 r min⁻¹ 摇瓶培养,测定其最高酶活性并进行比较。进行氮源分析时,分别选用大豆粉、蛋白胨、尿素、(NH₄)₂SO₄、牛肉膏等作氮源,浓度均为 5 g L⁻¹,培养方法同上。

1.4.2 多因素影响的析因分析 采用 Plackett-Burman 的部分析因方法筛选漆酶活性影响因子。该方 法主要针对因子数较多,且未确定众因子相对于响应变量的显著性而采用的实验设计方法。通过对 每个因子取两水平来进行分析,通过比较各个因子两水平的差异与整体的差异来确定因子的显著性。 并结合计算机统计软件的应用,在不牺牲主因子效应的前提下,有计划地选择因子组合。因此通过 选取对产酶具有潜在影响的因子,设计一系列培养基组合,以各组培养条件下最高酶活性作为响应 变量进行分析,对影响菌种产酶的条件进行筛选。

1.5 土壤微域修复

供修复用土壤采自江苏无锡某地 PAHs 污染较重的农业土壤表层土(0~20 cm),土壤经风干、 磨细后,过 2 mm 筛,于暗处 4℃贮存。 微域设置:每个微域用 100g 土壤(以干重计),设置生物强化/生物刺激、生物强化、生物刺激 与对照 4 种处理。生物强化/生物刺激(记为 AS):将 5 ml 产漆酶菌株培养物匀浆后与 5 g 玉米粉混 匀,加入至土壤中并拌匀;生物强化(记为 A):土壤中仅加入 5 ml 产漆酶菌株匀浆体,不加入玉 米粉;生物刺激(记为 S):土壤中仅加入 5 g 玉米粉,不加产漆酶菌株匀浆体;对照(记为 CK): 土壤中不添加任何营养物质与微生物。每个处理设 5 个重复。

调节微域土壤水分含量为 25%~30%(即每个微域加 30 ml 水),并注意维持水分含量基本不变,于 30℃暗处培养 30 d。将土壤风干、磨细,过 0.9 mm 筛,4℃保存,待进一步 PAHs 的提取以及含量测定。

1.6 土壤中 PAHs 的提取与含量测定

采用索氏提取方法提取土壤中的 PAHs^[17]。取 2.0 g 冷冻干燥土壤,用 60 ml 二氯甲烷提取 24 h, 提取物旋转蒸干后用 2.00 ml 环己烷溶解,取 0.50 ml 过硅胶柱,用正己烷-二氯甲烷(体积比为 1:1) 混合溶液洗脱,弃去前 1 ml 洗脱液后开始收集,收集 2.00 ml 洗脱液,高纯氮气吹干。测定前用适 量乙腈溶解。

使用安捷伦 LC-1100 型高效液相色谱仪测定 PAHs 含量。分离柱为 Zorbax ODS C18 (4.6×250 mm,安捷伦),柱温 30℃,流动相为乙腈和水 (体积比为 80%:20%),流速 1.5 ml min⁻¹,紫外检测 波长 254 nm,荧光检测 Ex280 nm, Em428 nm。

1.7 数据处理方法

采用 SPSS 13.0 以及 Minitab 14 统计软件对实验数据进行显著性分析。

2 结果与讨论

2.1 产漆酶真菌的筛选及鉴定

漆酶可催化愈创木酚形成铁红色聚合物。在筛选用培养基中加入愈创木酚,菌落周围可形成铁 红色氧化圈,通过直接观察培养基颜色变化即可将土壤中的产漆酶真菌筛选出来,方法较简便可行, 减少了筛选工作量,提高了筛选的效率。采用这一方法,在供筛选森林土壤中获得了7株产漆酶的 真菌菌株(图1),其中真菌菌株 F-1 在液体培养基中表现出最高的漆酶活性,因此选取进行后续的 研究。

A: 平板上菌落形态; B: 试管斜面上菌落形态 A: On the petri dish; B: On the incline 图 1 具有漆酶活性的真菌菌株

Fig. 1 Fungi strains showing laccase activity

对真菌菌株 F-1 18S rRNA 基因的 PCR 扩增获得一段 1 662 bp DNA 片段(Genbank 序列号 HQ260599)。经 BLAST 比对,该序列与疣孢漆斑菌(Myrothecium verrucaria ATCC 9095)的相似性

程度达 100%。疣孢漆斑菌是常见的土壤真菌,可能具有漆酶活性^[18],但是迄今还未见其在 PAHs 污染土壤修复中的应用。

2.2 菌株 F-1 产酶条件的优化

2.2.1 碳源与氮源的分析 用不同碳源(葡萄糖、乳糖、蔗糖、可溶性淀粉、CMC-Na)和氮源 (大豆粉、蛋白胨、尿素、(NH₄)₂SO₄、牛肉膏)培养菌株 F-1,分别测定漆酶的最高酶活性,结果 见表 1。由于影响真菌产酶活性的因子较多,因此需要对各因子的相互综合影响做进一步的分析, 考虑到所选因子的代表性以及酶活测定操作时的简便性,选取 CMC-Na 和蛋白胨分别作为后续分析 中所采用的碳、氮源。

表1不同碳、	氮源对漆酶活性的影响
Table 1 Effect of different carbon	and nitrogen sources on laccase production

碳源	碳源 漆酶活性		漆酶活性	
Carbon source	Laccase activity (UL^{-1})	Nitrogen source	Laccase activity $(U L^{-1})$	
葡萄糖 Glucose	54.1b	大豆粉 Sybean powder	169c	
乳糖 Lactose	24.0d	蛋白胨 Peptone	389b	
蔗糖 Sucrose	26.4d	尿素 Urea	177c	
可溶性淀粉 Soluble starch	38.6c	$(NH_4)_2SO_4$	0.69d	
CMC-Na	261a	牛肉膏 Beef extract	3781a	

2.2.2 析因分析 影响真菌漆酶活性的因素众多,有碳源、氮源^[19]、金属离子(如 Cu^{2+ [20]}和 Mn²⁺)、 小分子酚类物质(如愈创木酚和藜芦醇)^[19]、乙醇^[21]、氧气^[22]、表面活性剂等。如果采用单因素方 法等传统方法分析因子效应及菌株产酶活性,人力、物力、时间消耗巨大。Plackett-Burman 是一种 部分析因方法,可以用较少的处理,对多个因子的产酶效应进行估计。本研究主要应用 P-B 方法评 估菌株 F-1 的产漆酶活性。结合上述碳、氮源的分析结果,选取对产酶具有潜在影响的碳源 (CMC-Na)、氮源(蛋白胨)、Cu²⁺、酚类(愈创木酚)、乙醇、表面活性剂(吐温 80)、氧气等 7 个因子,设计一系列 16 个培养基组合,接种 F-1 并检测酶活性变化。16 个培养基组分以及各组合最 高酶活数据如表 2 所示。

组合 Combination	CMC-Na (g L ⁻¹)	蛋白胨 Peptone (g L ⁻¹)	CuSO ₄ (mmol L ⁻¹)	愈创木酚 Guaiacol (mmol L ⁻¹)	乙醇 Ethanol (%)	吐温 80 Tween 80 (g L ⁻¹)	氧 Oxygen	漆酶活性 Laccase activity (U L ⁻¹)
1	5	10	1.0	0.1	0.5	0	1	592
2	5	5	1.0	0.5	2.0	0	0	55
3	10	5	1.0	0.1	0.5	1	0	100
4	10	10	1.0	0.1	2.0	0	0	96
5	10	5	0.2	0.1	2.0	0	1	3 997
6	10	5	0.2	0.5	2.0	1	0	137
7	10	10	0.2	0.1	0.5	1	1	306
8	5	10	0.2	0.1	2.0	1	0	32

表 2 培养基组合以及相应酶活数值 Table 2 Combination of media and respective laccase activities

9	10	10	0.2	0.5	0.5	0	0	31
10	10	5	1.0	0.5	0.5	0	1	1 226
11	5	10	1.0	0.5	0.5	1	0	19
12	5	5	0.2	0.1	0.5	0	0	101
13	5	5	1.0	0.1	2.0	1	1	1 389
14	10	10	1.0	0.5	2.0	1	1	5 628
15	5	5	0.2	0.5	0.5	1	1	2 811
16	5	10	0.2	0.5	2.0	0	1	622

注: 表中"氧"一栏,0 代表静置培养,1 代表振荡培养 Note: In the column of "oxygen", "0" representing stillness in incubation, "1" represengting shaking in incubation

由结果可见,对于不同培养基组合,漆酶活性有明显的差异(表 2)。最高(5628 UL⁻¹)较最低(19 UL⁻¹)高两个数量级以上,表明 F-1 的漆酶活性受到环境条件的强烈影响。

比较相关文献^[23],当所分泌漆酶酶活处于1000~10000UL⁻¹时,即属于酶活较高的产漆酶菌株品种,因此本菌株 F-1所产漆酶酶活处于相对较高的水平。同时可知对于实验用菌株 F-1,适量添加碳源与乙醇刺激,以及一定的酚类诱导与足够的供氧条件,有利于其产漆酶活性的提高,从而能在一定程度上增强对 PAHs 的转化效果。另外,过多氮源的添加反而可能对产酶有不利影响。

2.3 土壤微域的修复效果

不同处理条件下的土壤微域经 30 d 连续培养,测定土壤中残留的 PAHs 含量,结果见表 3 所示。 4 种不同微域处理中,AS、A 处理的 PAHs 含量以及降解率与其余两种处理存在明显差异,可 见添加真菌可以促进土壤中 PAHs 的降解。而 AS 与 A 两种处理之间差异则不明显,表明接种真菌 F-1 是导致土壤 PAHs 降解的主要原因。此外,由于供试土壤为长期污染的老化土壤,因此存在一定 具有降解功能的土著微生物,而通过添加营养物质可以在一定程度上刺激并强化其降解功能,使土 壤中 PAHs 含量与对照处理相比也有所下降(表 4)。

另一方面,菌株 F-1 可降解菲、荧蒽、芘、苯并(a)蒽、屈、苯并(b)荧蒽、苯并(k)荧蒽、 苯并(a) 芘、二苯并(a,h) 蒽、苯并(g,h,i) 苝、茚苯(1,2,3-cd) 芘共计 11 种 PAHs。作用的 PAHs 范围较为广泛,从低分子量至高分子量的 PAHs 均有覆盖,说明该株产漆酶真菌具有良好的广谱降 解作用。

在污染土壤中,高分子量 PAHs 较低分子量 PAHs 具有更强的疏水性及毒性,生物可降解性较弱,因此尽管土壤中低分子量 PAHs 降解菌较为普遍^[24],但对于高分子量 PAHs,尤其是毒性效应最为显著的苯并[a]芘,可用于降解的生物资源有限,导致其自然降解缓慢,从而在环境中持久存在。而本研究中的菌株 F-1 对于高分子量 PAHs,尤其是对苯并[a]芘的降解效果明显高于低分子量 PAHs(表3)。因此,该菌株在今后的土壤修复中,特别是对于高分子量 PAHs 污染的土壤,具有良好的应用前景。此外,迄今还未见有关疣孢漆斑菌用于土壤修复的报道。鉴于土壤真菌的高度多样性,从土壤中筛选具有漆酶活性的真菌菌株,是 PAHs 污染土壤修复的潜在生物资源。

	生物强化+生物刺激		生物刺激	生物强化		生物或	可激	对照	
PAHs	初始浓度	Bioaugmentation	Bioaugmentation/Biostimulation AS		entation	Biostim	ulation	Control	
	Initial	AS			А		S		СК
	concentration	浓度	降解率	浓度	降解率	浓度	降解率	浓度	降解率
	$(\mu g kg^{-1})$	Concentration	Degradation	Concentration	Degradation	Concentration	Degradation	Concentration	Degradation
		$(\mu g kg^{-1})$	(%)	$(\mu g k g^{-1})$	(%)	$(\mu g k g^{-1})$	(%)	$(\mu g \ kg^{-1})$	(%)
菲 Phe	245±16a	211±10ab	13.9±1.5	195±15b	20.3±0.9	191±12b	22.1±0.2	228±21ab	6.9±2.5
荧蒽 FluA	1 444 ±29a	1261±31b	12.7±0.5	1 249±19b	13.5±0.4	1 324±48ab	8.3±1.5	1 393±37a	3.6±0.6
芘 Pyr	1 423 ±203a	1 185±99bc	16.7±5.0	1 028±59c	27.8±6.3	1 213±26b	14.8±1.3	1 192±124bc	16.2±3.3
苯并(a)蒽+屈 BaA/Chr	745±2a	632±7c	15.2±0.7	610±16c	18.1±1.9	647±9bc	13.2±1.0	692±23b	7.1±2.8
苯并(b)荧蒽 BbF	1 238±65a	1 154±26ab	6.9±2.8	1 066±50b	13.9±0.5	1 166±31ab	5.8±2.4	1 150±16ab	7.2±3.6
苯并(k)荧蒽 BkF	564±4a	485±19b	14.1±2.8	504±37ab	10.6±5.9	489±13b	13.3±1.7	497±22ab	11.6±3.3
苯并(a)芘 BaP	1 128±10a	908±15ab	19.6±0.6	848±49b	24.9±3.7	980±105ab	13.2±8.5	1 043±61ab	7.6±4.6
二苯并(a,h) 蒽 DbA	901±24a	736±33cd	18.3±1.5	661±21d	26.6±0.4	780±28bc	13.5±0.8	837±17ab	7.0±0.6
苯并 (ghi) 苝+									
茚苯(1,2,3-cd)	0.40.57	704 411	25.2.0.1	(74.10)		752 . 24 1	20.0.1.2	740-06-1	20.5.0.0
芘 BghiP and	940±56a	/04±41b	25.2±0.1	6/4±13b	28.3±2.9	/52±34ab	20.0±1.2	/48±36ab	20.5±0.9
In[1,2,3-cd]P									
总计 Total	8 628±196a	7276±88b	15.7±2.4	6 835 ±49b	20.8±3.1	7 542±38ab	12.6±1.9	7 780±64ab	9.8±2.9

表3不同处理微域土壤中的 PAHs 含量和降解率

Table 3 PAHs concentration and degradation rate in different microcosms

3 结 论

利用漆酶转化愈创木酚生成红色物质,通过直接观察培养基颜色变化从土壤中筛选产漆酶真菌 而获得 PAHs 降解真菌,即将筛选 PAHs 高效降解真菌简化为筛选具有高漆酶活性的真菌,方法简便 可行。利用该方法,成功从土壤中筛选出一株能够分泌漆酶、降解 PAHs 的真菌菌株 F-1,初步鉴定 该菌为疣孢漆斑菌。通过析因实验,对真菌菌株 F-1 产漆酶条件进行了优化。在一系列培养基组合 中,漆酶活性可相差两个数量级以上,表明 F-1 的产酶活性受到培养条件的强烈影响,提示在土壤 修复中调节环境条件的重要性。对受污染土壤的初步修复试验显示,本研究中所得菌株 F-1 对土壤 中的多种 PAHs (尤其是高分子量的 PAHs)均有作用,特别对于苯并 (a) 芘的降解率达 24.9%,明 显高于低分子量 PAHs,提示真菌生物强化方法在 PAHs 污染土壤修复中的潜在应用。

参考文献

- [1] 汤莉莉,唐翔宇,朱永官,等.北京地区土壤中多环芳烃的分布特征. 解放军理工大学学报: 自然科学版, 2004, 5(2): 95-99. Tang L L, Tang X Y, Zhu Y G, et al. Distribution of polycyclic aromatic hydrocarbons in soil of Beijing (In Chinese). Journal of PLA University of Science and Technology: Natural Science Edition, 2004, 5(2): 95-99
- [2] 章海波, 骆永明, 黄铭洪, 等. 香港土壤研究 III.土壤中多环芳烃的含量及其来源初探. 土壤学报, 2005, 42(6): 936-941. Zhang H B, Luo Y M, Wong M H, et al. Hong Kong soil researches III. PAHs contents in soils and their origins (In Chinese). Acta Pedologica Sinica, 2005, 42(6): 936-941
- [3] Wang Z, Chen J W, Yang P, et al. Polycyclic aromatic hydrocarbons in Dalian soils: Distribution and toxicity assessment. Journal of Environmental Monitoring, 2007, 9(2): 199-204
- [4] 岳敏, 谷学新, 邹洪等. 多环芳烃的危害与防治. 首都师范大学学报: 自然科学版, 2003, 24(3): 40-44. Yue M, Gu X X, Zou H, et al. Killer of health: Polycyclic aromatic hydrocarbons (In Chinese). Journal of Capital Normal University: Natural Science Edition, 2003, 24(3): 40-44
- [5] Cajthaml T, Erbanova P, Sasek V, et al. Breakdown products on metabolic pathway of degradation of benzo[a]anthracene by a ligninolytic fungus. Chemosphere, 2006, 64(4): 560-564
- [6] Valentin L, Feijoo G, Moreira M T, et al. Biodegradation of polycyclic aromatic hydrocarbons in forest and salt marsh soils by white-rot fungi. International Biodeterioration and Biodegradation, 2006, 58(1): 15-21
- [7] Song X Y, Song Y F, Sun T H, et al. Adaptability of microbial inoculators and their contribution to degradation of mineral oil and PAHs. Journal of Environmental Sciences-China, 2006, 18(2): 310-317
- [8] Salvo V S, Gallizia I, Moreno M, et al. Fungal communities in PAH-impacted sediments of Genoa-Voltri harbour (NW Mediterranean, Italy).
 Marine Pollution Bulletin, 2005, 50(5): 553-559
- [9] Juhasz A L, Naidu R. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo[a]pyrene. International Biodeterioration and Biodegradation, 2000, 45(1/2): 57-88
- [10] Pickard M A, Roman R, Tinoco R, et al. Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by *Coriolopsis gallica* UAMH 8260 laccase. Applied and Environmental Microbiology, 1999, 65(9): 3 805-3 809
- [11] Baldrian P. Fungal laccases-occurrence and properties. FEMS Microbiology Reviews, 2006, 30(2): 215-242
- [12] Majcherczyk A, Johannes C, Huttermann A. Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of *Trametes versicolor*. Enzyme and Microbial Technology, 1998, 22(5): 335-341
- [13] 王宜磊,朱陶,邓振旭. 愈创木酚法快速筛选漆酶产生菌. 生物技术, 2007, 17(2):40-42. Wang Y L, Zhu T, Deng Z X. Using O-methoxyphenol to fast screen laccase produced fungus (In Chinese). Biotechnology, 2007, 17(2): 40-42

- [14] Coll P M, Fernandez-Abalos J M, Villanueva J R, et al. Purification and characterization of a phenoloxidase (laccase) from the lignin-degrading basidiomycete PM1 (CECT 2971). Appl Environ Microbiol, 1993, 59(8): 2 607-2 613
- [15] McErlean C, Marchant R, Banat I M. An evaluation of soil colonisation potential of selected fungi and their production of ligninolytic enzymes for use in soil bioremediation applications. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol, 2006, 90(2): 147-158
- [16] Thomas B, Miguel A, Volker S, et al. Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Appl Environ Microbiol, 2003, 69(2): 987-995
- [17] 钱薇, 倪进治, 骆永明, 等. 高效液相色谱-荧光检测法测定土壤中的多环芳烃. 色谱, 2007, 25(2): 221-225. Qian W, Ni J Z, Luo Y M, et al. Determination of polycyclic aromatic hydrocarbons in soil by high performance liquid chromatography with fluorescence detection (In Chinese). Chinese Journal of Chromatography, 2007, 25(2): 221-225
- [18] Woro T S, Jun O, Hiromi T, et al. Characterization of alkaliphilic laccase activity in the culture supernatant of *Myrothecium verrucaria* 24G-4 in comparison with bilirubin oxidase. FEMS Microbiology Letters, 2004, 230: 209-214
- [19] Arora D S, Gill P K. Laccase production by some white rot fungi under different nutritional conditions. Bioresource Technology, 2000, 73: 283-285
- [20] Palmieri G, Giardina P, Bianco C, et al. Copper induction of laccase isoenzymes in the ligninolytic fungus *Pleurotus ostreatus*. Appl Environ Microbiol, 2000, 66(3): 920-924
- [21] Lomascolo A, Record E, Herpoel-Gimbert I, et al. Overproduction of laccase by a monokaryotic strain of *Pycnoporus cinnabarinus* using ethanol as inducer. Journal of Applied Microbiology, 2003, 94: 618-624
- [22] Dekker R F, Barbosa A M. The effects of aeration and veratryl alcohol on the production of two laccases by the *ascomycete Botryosphaeria* sp. Enzyme and Microbial Technology, 2001, 28: 81-88
- [23] 韩晓磊, 严莲荷, 周申范. 漆酶分泌及其活性影响因素综述. 化学与生物工程, 2005, 7: 10-13. Han X L, Yan L H, Zhou S F. The influences on the production and activity of laccase: A review (In Chinese). Chemistry and Bioengineering, 2005, 7: 10-13
- [24] Juhasz A L, Naidu R. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo[a]pyrene. International Biodeterioration & Biodegradation, 2000, 45(1/2): 57-88

Screening for laccase-producing fungus and its potential in remediation of PAHs-contaminated soil

Pan Cheng^{1, 2} Mao Ting¹ Wu Yucheng² Shen Weishou¹ Zhong Wenhui^{1†}

(1 Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210097, China)

(2 Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, CAS, Nanjing 210008, China)

Abstract Fungal laccase can efficiently oxidize polycyclic aromatic hydrocarbons (PAHs), suggesting the potential of laccase-producing fungi for application to remediation of PAHs-contaminated soil. Based on its feature of being capable of oxidizing guaiacol into something red, a strain of laccase-producing fungus, F-1, was isolated from soil. According the BLAST alignment of near full-length 18S rRNA gene sequence, this strain is closely related to *Myrothecium verrucaria*. Both single factor and Plackett-Burman experiments were performed to assess F-1's laccase-producing capacity. The laccase activity was found to be greatly increased by 2 orders of magnitude in specific culture medium, suggesting the significant effect of environment factors on laccase activity of F-1. Soil microcosms were set up with or without inoculation of F-1, and the PAHs contents were determined after 30-days of incubation. Results show that PhA, FluA, Pyr, BaA, Chr, BbF, BkF, BaP, DbA, BghiP and In[1,2,3-cd]P were degraded to varying extent in fungus inoculated microcosms, confirming the remedial potential of F-1 in PAHs-contaminated soil.

Key words Polycyclic aromatic hydrocarbons (PAHs); Soil pollution; Fungal remediation; Laccase