DOI: 10.11766/trxb201507280291

外源性 NH_4^+ 和 NO_3^- 输入对亚热带人工林土壤 $N_2O排放的影响^*$

王 磊¹ 程淑兰² 方华军^{1†} 于贵瑞¹ 党旭升¹ 李晓玉¹ 司高月² 耿 静¹ 何 舜² (1中国科学院地理科学与资源研究所, 生态系统观测与模拟重点实验室, 北京 100101) (2中国科学院大学资源与环境学院, 北京 100049)

摘 要 中国亚热带人工林处于全球氮沉降高值区,土壤氮素相对富集,土壤氧化亚氮(N_2O) 产生与排放对外源性氮素输入响应敏感。然而,现有氮沉降模拟控制实验多采用单一氮肥类型,没有 原位区分氧化态氮与还原态氮素影响的差异。以千烟洲亚热带湿地松林为研究对象,增氮控制实验采 用随机区组设计,包括2种形态(NO_3^- 、 NH_4^+)和3个施氮水平(0、40、120 kg hm⁻² a⁻¹)。利用静态 箱一气相色谱法高频(8次 J^{-1})测定土壤 N_2O 净交换通量以及温度、水分、溶解性氮含量等相关环境 变量,分析土壤 N_2O 通量对外源性氮素输入的响应特征及主控因子。结果表明:施氮不影响亚热带人 工林土壤温度和水分,显著增加了土壤 NO_3^-N 、 NH_4^+ -N和总溶解性氮(TDN)的含量,对溶解性有机 氮(DON)含量无显著影响。施氮显著促进亚热带人工林土壤 N_2O 排放,增幅为378%~847%,施加 $NH_4Cl的促进效应显著高于NaNO_3$ 。土壤 N_2O 通量与10 cm土壤温度、10 cm土壤体积含水量呈正相关, 土壤 N_2O 通量的变化量与土壤无机氮含量的变化量呈正相关。上述研究结果表明,虽然水热因子驱动 着亚热带人工林土壤 N_2O 的排放,但是氮素富集条件下土壤 N_2O 的增加主要由底物可利用性的变化所 致,并且还原态 NH_4^+ 的促进效应显著高于氧化态 NO_3^- 。

关键词 大气氮沉降; 土壤N₂O通量; 主控因子; 硝化; 反硝化; 亚热带人工林 中图分类号 0154 文献标识码 A

氧化亚氮(N_2O)是大气中第三大温室气体, 百年尺度上单分子 N_2O 的增温潜势(GWP)是CO₂ 的298倍,对全球变暖的贡献约占6.01%^[1]。除温 室效应外, N_2O 进入平流层被进一步氧化为NO,破 坏臭氧层^[2]。全球 N_2O 排放源估计为 17.7 Tg a⁻¹, 陆地植被和土壤贡献约 53.1%^[1]。其中,热带和 亚热带森林 N_2O 释放量估计为 $0.9 \sim 3.6$ Tg a⁻¹,占全球 N_2O 收支平衡的14% ~ 23%^[2]。大气中的 N_2O 通过一 系列光解反应生成含氮化合物,并最终通过干湿沉 降返回地表,全球N₂O的汇估计为12.6 Tg a^{-1[1]}。 过去250年来,人类活动导致大气氮沉降增加了3 倍^[3],相应地增加了陆地生态系统氮的可利用性 和N₂O排放量,进而加剧了全球变暖,并扰乱了陆 地生态系统碳氮平衡^[4]。

土壤N₂O主要通过硝化和反硝化过程产生,受 温度、水分、氮素有效性、溶解性碳含量以及pH

收稿日期: 2015-07-28; 收到修改稿日期: 2015-09-10

^{*} 国家自然科学基金项目(41471212,31470558,31290221)、国家重点基础研究发展计划项目(2012CB417103)和中国科学院地理科学与资源研究所"秉维"优秀青年人才基金项目(2011RC202)共同资助 Supported by the National Natural Science Foundation of China (Nos. 41471212, 31470558, and 31290221), the National Key Research and Development Program (No. 2012CB417103), and the Bingwei's Funds for Young Talents of Chinese Academy of Sciences (No. 2011RC202)

[†] 通讯作者 Corrosponding author, E-mail: fanghj@igsnrr.ac.cn

作者简介:王 磊(1991-),男,内蒙古海拉尔人,硕士研究生,主要从事土壤碳氮生物地球化学研究。E-mail: jingtian-551@163.com

等多个因素的影响^[5]。大气NH₄⁺和NO₃⁻沉降直接 增加介导土壤硝化、反硝化功能微生物群落的底 物,能够增加^[6]、降低^[7]或不改变^[8]土壤N₂O排 放,取决于生态系统氮饱和状态。基于全球氮添加 实验数据的集成分析(Meta analysis),Lu等^[9] 得出氮添加导致土壤N₂O释放平均增加了216%。 虽然土壤N₂O排放对外源性氮素输入的响应以促进 为主,但是其相对贡献依然存在硝化和反硝化之争 论,响应曲线也存在线性和非线性之分歧^[5]。例 如,一些研究发现反硝化作用是亚热带森林土壤 N₂O排放的主要来源,而另外一些研究却认为硝化 作用在土壤N₂O排放中起主导作用^[10-11]。研究结 果的不一致可能归因于生态系统初始的碳氮状态、 施氮类型、剂量和持续时间。然而,过去模拟氮沉 降控制实验研究多采用一种氮肥(如NH₄NO₃或尿 素)^[12],没有区分氧化态NO₃⁻和还原态NH₄⁺输入 对土壤氮素累积和N₂O排放影响的差异,加上观测 频率较低,难以准确评价土壤N,O通量对外源性氮 素输入的响应机制。

作为一种重要的森林类型,人工林生态系统在 区域碳氮循环和碳平衡中起着举足轻重的作用。一 般而言,人工林通常年龄较轻,群落结构单一,系 统稳定性差,对外界干扰更为敏感^[13]。我国人工 林面积高达0.62亿hm²,占森林总面积1/3,居世界 之首^[13]。南方亚热带常绿针叶林占全国人工森林 面积的54%,也是全国大气氮沉降最高的地区(> 30 kg hm⁻² a⁻¹)^[14]。通过室内模拟实验,一些研 究者发现施加NO₃-N对亚热带人工林土壤N₂O产生 的促进作用显著高于NH⁴,并且与土壤持水量密切 相关^[15]。过去有关大气氮沉降输入对森林生态系 统碳、氮循环的影响研究多集中在自然森林生态系 统中,对亚热带人工针叶林关注较少,野外原位区 分NO₃⁻和NH₄⁺输入对土壤N₂O排放的影响研究并不 多见^[5]。

鉴于以上研究现状与不足,本研究的主要目的是:(1)研究不同形态(还原态NH4和氧化态NO3)和剂量的氮素输入对亚热带人工林土壤N2O排放通量和年累积量的影响,阐明亚热带人工林 土壤N2O排放通量的主要控制因子;(2)研究土 壤可溶性氮含量(NH4-N,NO3-N,溶解性有机氮 DON)的季节变化及其对施氮类型和剂量的响应特 征,评价氮素富集条件下土壤硝化和反硝化过程对 土壤N2O排放的相对贡献。研究结果有助于深入理 解亚热带人工林土壤氮素转化及N₂O排放过程对大 气氮沉降增加的响应机理,并且在提高亚热带人工 林氮素利用率、控制土壤N₂O排放、降低区域碳源 汇评估的不确定性等方面也具有重要的理论与实践 意义。

1 材料与方法

1.1 研究区概况

研究区位于江西省泰和县灌溪镇中国科学院 千烟洲试验站(26°44′39″N, 115°03′33″E)。该 区属于典型的亚热带季风气候,年均气温17.9℃, 最高温(7月)和最低温(1月)分别为31.3℃和 4.8℃;年均降水量为1 505mm,春夏秋冬四季降 水比例分别为24%、41%、23%和12%,秋季高温少 雨易产生季节性干旱^[16]。实测和模型模拟表明,千 烟洲地区大气氮沉降量约为30~40 kg hm⁻² a^{-1[13]}。 由于长期的人类活动干扰,该区的原生植被亚热 带常绿阔叶林已消失殆尽,逐渐形成以湿地松、 马尾松和杉木为主要树种的人工林景观。千烟洲 地区人工林种植始于1985年,至1997年人工林 总面积达到122.7 hm^{2[17]}。其中,湿地松林占人 工林总面积的33%。湿地松林平均树高11.0 m, 平 均胸径为15.9 cm, 地上生物量为104.1 t hm^{-2 [17]}。 林下分布有灌木和蕨类,灌木主要有黄端木 (*Adinandra millettii*)、米饭花(*Lyonia compta*) 和檵木(Loropetalum chinense)等, 草本主要 有狗脊蕨(Woodwardia japonica)、暗鳞鳞毛蕨 (Dryopteris cycadina) 和芒萁 (Dicranopteris pedata)等。土壤为典型红壤,国际土壤学 会(IUSS)分类系统将之归属于雏形土纲 (Cambosols),成土母质为砂岩和砂砾岩。0~20 cm层土壤有机质含量20.44 g kg⁻¹, 全氮1.10 g kg⁻¹, 全磷1.12 mg kg⁻¹, pH 4.26, 土壤容重1.54 g cm^{-3[17]}。土壤粒径分布如下: 2.0~0.05 mm $(\,17\%\,)$, $0.05\sim 0.002$ mm ($68\%\,)$, <0.002 mm (15%) ^[24]

1.2 增氮控制实验设计

2011年11月,三块林龄约为30年的湿地松林 用于布置模拟氮沉降控制实验。考虑千烟洲地区的 实际氮沉降量(40 kg hm⁻² a⁻¹),实验采用随机区 组设计,包括NH₄Cl和NaNO₃两种氮肥类型,以及 0、40、120 kg hm⁻² a⁻¹三个施氮剂量,模拟未来大 气NH₄⁺或NO₃⁻沉降量增加1倍和3倍情景下,亚热带 人工林生态系统碳、氮循环关键过程和碳平衡如何 变化。具体而言,该实验包括3个区组(Block), 每个区组含有5个实验处理,即对照(CK)、低 剂量氯化铵(LN-NH₄Cl)、低剂量硝酸钠(LN-NaNO₃)、高剂量氯化铵(HN-NH₄Cl)、高剂量 硝酸钠(HN-NaNO₃),共15个样方。每个样方面 积为20 m×20 m,相邻样方间隔至少为10 m。施 氮开始于2012年4月。于每月月初,将各样方所施 氮肥溶于20 L水中,利用喷雾器均匀喷洒于森林地 表,对照样方喷施等量的水,以减少各处理间因增 水所产生的差异。

1.3 土壤N₂O通量及辅助因子监测

采用静态箱一气相色谱法测定土壤一大气界面 N_2O 净交换通量^[17]。静态箱为不锈钢材质,由一 个正方形底座(50 cm×50 cm×10 cm)和一个带 气压平衡管的盖箱(50 cm×50 cm×15 cm)组成。 土壤 N_2O 通量的观测频率为每周2次,采样时间为上 午9:00至11:00,40分钟内连续用注射器采集5 次,在24 h内利用气相色谱(Agilent7890A,Santa Clara,California,USA)完成所有气体样品 N_2O 浓度的测定。该气相色谱采用高纯氩甲烷和氢气作为 载气和燃气,利用电子捕获器(ECD)检测 N_2O , ECD的工作温度为350℃,柱箱温度保持在55℃。 根据 N_2O 浓度与时间的线性或非线性回归方程的斜 率来计算土壤 N_2O 通量^[18]。本研究中,所有 N_2O 通量计算的相关系数(R^2)均大于0.9。

采集气样的同时,同步测定每个静态箱的箱 内温度、10 cm土壤温度和10 cm土壤体积含水 量。箱内温度和土壤温度利用便携式电子温度计 (JM624, Living-Jinming Ltd., China)测定,土 壤体积含水量(%)利用时域反射仪(TDR100, Spectrum, USA)进行测定。

1.4 样品采集与分析

气样采集结束后,在静态箱附近利用土钻(直径2cm)采集0~15 cm深度土壤样品,每个样地随机采集5钻混合为一份样品,采样频率为每周1次。所有土壤样品在野外立即过2 mm筛,去除土壤中的粗根和石块。利用2M KCl溶液提取土壤样品,土水比为1:10,振荡1h。利用Whatman 40[#]滤纸对土壤悬浊液进行过滤,利用流动化学分析仪(AA3, Seal Company, Germany)测定滤液中的NH⁴₄-N、NO⁵₃-N和总可溶性氮(TDN)浓度。可溶

性有机氮(DON)为总可溶性氮(TDN)和可溶性 无机氮(TIN=NH $_{4}^{+}$ -N+NO $_{3}^{-}$ -N)含量之差。

1.5 数据处理

采用重复测定方差分析(RAVOVA)比较观测日期、施氮水平和施氮类型对土壤温度、水分、可溶性氮含量以及N₂O通量的影响,实验处理作为组间变量,观测日期作为组内变量,利用Tukey's HSD进行均值比较。利用线性和非线性回归分析检验月尺度上土壤N₂O通量与各个土壤变量之间的关系。利用SPSS16.0软件进行统计分析,利用Sigmaplot12.5软件进行绘图。

2 结 果

2.1 土壤温度和体积含水量

5 cm土壤温度呈现单峰季节变化,最低值 与最高值分别出现在1月份(7.2℃)和7月份 (27.3℃),季节变化显著(图1,*p*<0.001); 施氮类型与施氮剂量对土壤温度无显著影响。

10 cm土壤含水量亦有明显的季节变化,与降水的季节变化密切相关(图1)。10 cm土壤含水 量在5月份强降雨期间达到最高值(47.2%),在 12月份最低(25.0%),且秋季存在明显的季节 性干旱。就某个月份而言,施加NH₄Cl倾向于增加 10 cm土壤含水量,而施加NaNO₃结果相反,施氮 类型间的差异不显著。总体而言,施氮不改变土壤 含水量。

2.2 土壤可溶性氮含量

各处理样方土壤NO₃-N浓度随着时间的延长 呈现逐渐积累的趋势,季节变化显著(图2)。对 照处理土壤NO₃-N浓度从1月份的1.30 mg kg⁻¹增加 至12月份的4.46 mg kg⁻¹,平均浓度为2.30 mg kg⁻¹ (图2a)。施氮水平显著改变土壤NO₃-N含量,高 氮处理土壤NO₃-N累积更为明显,平均增幅198% (图3a)。此外,施氮类型对土壤NO₃-N含量影响 不显著,但是施氮剂量和施氮类型之间存在显著的 交互作用,即HN-NaNO₃处理土壤NO₃-N累积最为 明显(图2c和图3a)。

各处理样方土壤NH₄⁺-N含量也存在显著的季节 变化(图2d~图2f)。对照样方土壤NH₄⁺-N含量变 化范围为4.84~7.48 mg kg⁻¹,最大值出现在7月, 平均值为6.28 mg kg⁻¹(图2d)。施氮类型和施氮 水平均显著改变土壤NH₄⁺-N含量。与对照相比,

图1 10cm土壤温度和10cm土壤体积含水量的季节变异及其对增氮的响应

Fig. 1 Seasonal variations of soil temperature at the 10cm depth and soil moisture at the 10cm depth and their responses to N addition

施加NH₄Cl倾向于增加土壤NH⁴₄-N浓度(图2e); 相反,LN-NaNO₃处理土壤NH⁴₄-N的累积效应反 而高于HN-NaNO₃处理(图2f)。总体而言,土壤 NH⁴₄-N含量随着施氮剂量的增加先增加后降低,平 均增幅为35.4%和24.7%(图3b)。

各处理土壤DON浓度在整个观测期内季节 变化不显著。对照样方土壤DON含量变化范围 为4.11~8.19 mg kg⁻¹,平均为5.69 mg kg⁻¹(图 3c)。此外,低氮倾向于增加土壤DON含量,而高 氮倾向于降低土壤DON含量,但是上述施氮效应统 计学上并不显著(图3c)。总溶解性氮(TDN)含 量对增氮的响应与NO₃-N相似,随着施氮水平的增 加而增加(图3d)。

2.3 土壤N₂O排放通量

各处理样方土壤N₂O排放通量季节变化显著, 呈明显的单峰曲线,梅雨季节(5月份)土壤N₂O的 排放通量最高,夏季次之,秋冬季节较低且趋于平 稳(图4)。对照处理土壤N₂O排放通量变化范围为 0.94~11.39 μ g m⁻² h⁻¹,平均为5.15±1.11 μ g m⁻² h⁻¹, 对应的年累积通量为0.60±0.09 kg hm⁻² a⁻¹(图 4d)。施氮水平和施氮类型均显著改变土壤N₂O 排放通量。与对照相比,施加低剂量的NH₄Cl 和NaNO₃导致土壤N₂O通量分别增加了522%和 378%,而施加高剂量的两种氮肥增加幅度分别为 847%和641%(图4d)。

2.4 土壤N₂O排放通量与环境因子之间的关系

土壤N₂O排放通量与土壤温度变化趋势一致, 呈现明显的单峰季节变化,两者之间的关系符合 指数增长方程,土壤温度能够解释土壤N₂O排放通 量74%以上的变异(图5a~图5c,表2)。此外, 施氮倾向于增加土壤N₂O排放通量的温度敏感性, Q₁₀增幅变化范围为37.8%~206%(图5)。月尺

图2 土壤NO₃-N、NH₄-N和DON含量的季节变异及其对增氮的响应 Fig. 2 Seasonal variations of soil NO₃-N, NH₄-N, and DON contents and their responses to N addition

图3 土壤NO₃-N、NH₄-N、DON和TDN随施氮水平的变化 Fig. 3 Variations of soil NO₃-N, NH₄-N, DON and TDN contents with N addition rate

度上土壤N₂O排放通量与土壤体积含水量之间呈 现显著的正相关,两者符合线性方程,土壤体积 含水量能够解释其50%以上的变异。此外,土壤 N₂O通量的变化与土壤NH₄-N和NO₃-N含量的变化 成正相关,分别符合线性和指数增加的方程关系 (图6)。

注: (a) (d)、(b) (e)和(c) (f)分别表示对照、NH₄Cl和NaNO₃处理(a) (d), (b) (e) and (c) (f) represent control, NH₄Cl, and NaNO₃ treatments, respectively
 图5 土壤N₂O排放通量与土壤温度、土壤体积含水量之间的关系

Fig. 5 Relationships of soil N_2O flux with soil temperature and soil moisture

Fig. 4

3 讨 论

3.1 施氮类型和剂量对土壤可溶性氮含量的影响

碱解氮(available N)是土壤中最活跃的那部 分氮素,主要以NH⁴₄-N、NO⁵₃-N和游离态氨基酸的 形式存在,可以被植物直接吸收利用。自然状态 下,千烟洲湿地松林土壤有效氮以NH⁴₄-N为主,占 总溶解性氮含量的44.9%,其次是DON,NO⁵₃-N含 量最低(16.3%)。土壤氮素组成说明,虽然千烟 洲亚热带人工林土壤无机氮相对丰富,但是在当前 大气氮沉降背景下并没有达到饱和状态,仍然以 NH⁴₄-N为主。土壤NH⁴₄-N含量的季节变化与土壤温 度相对应,峰值出现在7月,反映了NH⁴₄-N含量受 土壤氮矿化过程驱动^[19]。

土壤NO5-N含量随着施氮剂量的增加呈现指数 积累,施加硝态氮肥土壤NO₅-N累积效应更显著, 与氮素富集条件下土壤硝化过程加速有关^[20]。 总体而言,施氮类型和施氮剂量均显著改变了土壤 $NH_4^+-N含量, 但是土壤NH_4^+-N累积趋势低于NO_3^--N。$ 可能的原因是: (1)低水平的NH₄-N输入到地表 后,首先被有机质表面吸附、土壤微生物固持以及 土壤矿物颗粒固定,总体上呈现累积趋势;(2) 植物与土壤微生物竞争土壤氮素,就长时间尺度而 言,植物是竞争的优胜者^[21]。而且,近期的¹⁵N 示踪实验结果表明,千烟洲人工林主要乔木优先利 用NH₄-N,其次是NO₃-N和有机氮^[21]。因此,植 物对土壤NH4-N的选择性吸收也会导致其在土壤中 不能长期积累。(3)高剂量NH4*输入如果超出土 壤NH₄⁺的固持容量,多余的NH₄⁻N会被氨氧化菌群 落利用生成NO₃-N以及中间产物N₂O^[22]。本研究 中无机氮含量和土壤N₂O通量的观测结果能够很好

地支持上述推论。土壤DON是有机氮的重要组成 部分,主要来源于凋落物分解,根系分泌和大气氮 沉降^[23]。千烟洲人工林土壤DON含量相对稳定, 季节变化不显著,施氮短期内并没有显著改变土壤 DON含量,反映了DON输入与输出大致平衡。

3.2 氮素类型和剂量对土壤N₂O排放的影响

自然状态下,千烟洲亚热带人工林土壤N₂O年累 积排放量为0.60±0.09 kg hm⁻² a⁻¹,显著低于鼎湖山 自然保护区季风常绿林(3.20±1.2 kg hm⁻² a⁻¹)^[24] 和鹤山丘陵区马尾松林土壤N₂O的排放量(3.02 ± 0.22 kg hm⁻² a⁻¹)^[25]; 土壤N₂O排放的差异主 要归因于鼎湖山、鹤山地区土壤氮含量和大气 氮沉降均显著高于千烟洲,体现了底物有效性 的支配作用^[24-25]。不同施氮处理导致千烟洲亚 热带人工林土壤N2O通量提高了3.8倍~8.5倍, 显著高于施氮剂量相近的鼎湖山氮沉降控制实验 (施氮剂量50~150 kg hm⁻² a⁻¹, 土壤N₂O通量增幅 38%~58%),说明千烟洲亚热带人工林土壤氮素周 转较快,对外源性氮素输入响应更加敏感^[12,17]。 可能与千烟洲地区频繁的土壤干湿交替、较高的土 壤pH、较高的土壤孔隙度以及更高的土壤N₂O通量 观测频率等因素有关^[16, 26]。土壤N₂O通量随着施 氮水平的增加而增加,这与许多森林生态系统增氮 控制实验结果相同^[27]。

土壤N₂O是土壤硝化和反硝化过程的中间产物,受温度、水分、底物有效性等多个因素的联合控制。本研究发现土壤N₂O通量与土壤温度、水分含量呈正相关,反映了水热环境因子对土壤硝化和反硝化过程的支配作用^[28]。温度主要控制N₂O产生的生物学过程中酶活性,在土壤水分、反应基质充足的条件下,土壤N₂O排放与温度呈显著的正

- -

3 期

相关^[29]。虽然土壤产生N₂O的生物代谢过程主要 由温度控制,但N₂O排放并非完全取决于其产生速 率,其排放过程还会受到其他多个环境因子的影 响。土壤含水量影响土壤的通气状况和氧化还原状 况,以及影响NH4⁺和NO3⁻在土壤中的分布及其对微 生物的有效性,进而影响土壤中硝化和反硝化速率 以及中间产物N₂O的排放^[30]。一般而言,当土壤 含水量低于70%土壤充水孔隙(WFPS)时, N₂O 主要来自硝化作用;高于70% WFPS时,则主要来 自反硝化作用^[31]。本研究各处理样方土壤WFPS 变化范围为40.2%~75.5%,所以硝化和反硝化过 程共同驱动着土壤N₂O的排放。由于施氮未显著改 变土壤温度和含水量,而土壤N,O变化量与无机氮 变化量呈显著正相关(图6),因此本研究认为施 氮主要通过增加土壤硝化和反硝化细菌的底物浓 度,进而增加土壤N₂O排放量。

此外,本研究还发现施加铵态氮肥对土壤N₂O 通量的促进作用显著高于硝态氮肥,前者促进效应 是后者的1.3倍以上(图4),暗示外源性NH₄⁺-N输 入对土壤N₂O产生菌的刺激作用显著高于NO₃-N。 NH₄⁺主要为交换态,易被胶体吸附而不易流失, 部分被固定在黏土矿物的晶格中而成为"固定态 铵",从而难以被植物和微生物利用;NO3是植 物的有效养分和土壤溶液的主要组分,易随水流 $\xi^{[32]}$ 。除移动性较NO₃-N慢外,土壤NH⁴-N能 够通过硝化、反硝化两步反应生成N₂O,较NO₃-N 一步反应生成N,0效率更高。本研究虽然明确等 量的外源性NH4*输入对亚热带人工林土壤N2O的 促进作用高于NO₃,但是未能量化土壤硝化和反 硝化过程对N₂O产生的相对贡献。基于¹⁵N标记的 异位培养实验, Zhang 等^[33]研究发现, 在好氧 条件下反硝化过程对中国亚热带森林土壤N₂O产 生的贡献为53.5%~56.1%, 异养硝化过程贡献为 27.3%~41.8%,而自养硝化过程的贡献很小。 Cheng等^[34]研究也表明,亚热带茶园土壤N₂O排放 与自养和异养硝化及反硝化过程紧密相关,施加氮 肥后土壤N₂O排放增加主要归因于反硝化来源比例 增加。由此可见,外源性NH⁺-N和NO⁻₃-N输入增加 土壤硝化和反硝化微生物群落的底物,进而增加土 壤N₂O的排放,并且反硝化过程贡献似乎更大。

4 结 论

本研究以千烟洲亚热带人工林为研究对象,构 建了2种氮肥、3个施氮水平的增氮控制实验,采用 静态箱—气相色谱法高频监测土壤溶解性氮含量、 N₂O交换通量以及水热环境因子,探讨土壤N₂O通 量对氮素形态和剂量的响应特征及主控因子,得 出以下三点研究结论:(1) 增氮显著促进了土壤 NO₃-N、NH₄-N和TDN含量的积累,且NO₃-N累积 效应最为显著。(2)施氮类型和剂量均显著改变 土壤N₂O排放,施加铵态氮肥的促进作用显著高于 硝态氮肥,暗示外源性NH₄输入对大气圈N₂O浓度 升高和全球变暖的贡献更大。(3)千烟洲亚热带 人工林土壤N₂O通量主要受温度和水分驱动,土壤 硝化和反硝化过程共同支配着土壤N₂O的排放,但 是外源性氮素输入通过增加硝化和反硝化菌的底物 有效性来促进土壤N₂O排放。本研究由于没有测定 土壤硝化和反硝化微生物群落活性,无法评价各个 过程对N₂O通量的相对贡献。下一步研究需结合¹⁵N 同位素示踪技术及分子微生物学方法, 深入分析土 壤氮素转化过程与N₂O排放之间的联系,以及关键 微生物功能群落与土壤氮素转化和排放过程之间的 耦合作用。

参考文献

- Stocker T F, Qin D, Plattner G K, et al. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge:Cambridge University Press, 2013: 1535, DOI: 10.1017/CBO9781107415324
- [2] Davidson E A, Kanter D. Inventories and scenarios of nitrous oxide emissions. Environmental Research Letters, 2014, 9 (10): 1— 12
- Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 2008, 320 (5878): 889–892
- Lu M, Zhou X, Luo Y, et al. Minor stimulation of soil carbon storage by nitrogen addition: A meta-analysis. Agriculture, Ecosystems & Environment, 2011, 140 (1/2) : 234-244

53卷

[5] 方华军,程淑兰,于贵瑞,等.森林土壤氧化亚氮排放对大
 气氮沉降增加的非线性响应研究进展.土壤学报;2015;52
 (2):262-271

Fang H J, Cheng S L, Yu G R, et al. Study on the responses of nitrous oxide emission to increased nitrogen deposition in forest soils: A review (In Chinese). Acta Pedologica Sinica, 2015, 52 (2): 262—271

- [6] Kim Y S, Imori M, Watanabe M, et al. Simulated nitrogen inputs influence methane and nitrous oxide fluxes from a young larch plantation in northern Japan. Atmospheric Environment, 2012, 46 (1): 36-44
- [7] Wu D, Dong W, Oenema O, et al. N₂O consumption by lownitrogen soil and its regulation by water and oxygen. Soil Biology and Biochemistry, 2013, 60 (3): 165–172
- [8] Borken W, Beese F. Control of nitrous oxide emissions in European beech, Norway spruce and Scots pine forests. Biogeochemistry, 2005, 76 (1): 141–159
- Lu M, Yang Y, Luo Y, et al. Responses of ecosystem nitrogen cycle to nitrogen addition: A meta-analysis. New Phytologist, 2011, 189 (4): 1040-1050
- [10] Venterea R T, Groffman P M, Verchot L V, et al. Nitrogen oxide gas emissions from temperate forest soils receiving long-term nitrogen inputs. Global Change Biology, 2003, 9 (3): 346–357
- [11] Zhang J B, Cai Z C, Zhu T B. N₂O production pathways in the subtropical acid forest soils in China. Environmental Research, 2011, 111 (5): 643-649
- [12] Zhang W, Mo J M, Yu G R, et al. Emissions of nitrous oxide from three tropical forests in Southern China in response to simulated nitrogen deposition. Plant and Soil, 2008, 306 (1/2): 221-236
- Lü C, Tian H. Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data. Journal of Geophysical Research: Atmospheres, 2007, 112 (D22S05), DOI: 10.1029/2006JD007990
- [14] Li Z A, Zou B, Xia H P, et al. Effect of fertilizer and water content on N₂O emission from three plantation soils in south China. Journal of Environmental Sciences–China, 2005, 17 (6): 970–976
- [15] 马芬,马红亮,邱泓,等.水分状况与不同形态氮添加对亚 热带森林土壤氮素净转化速率及N₂O排放的影响.应用生态 学报,2015,26(2):379—387
 Ma F, Ma H L, Qiu H, et al. Effects of water levels and the additions of different nitrogen forms on soil net nitrogen transformation rate and N₂O emission in subtropical forest soils (In Chinese). Chinese Journal of Applied Ecology, 2015, 26(2): 379—387
- [16] Wen X F, Wang H M, Wang J L, et al. Ecosystem carbon

exchanges of a subtropical evergreen coniferous plantation subjected to seasonal drought, 2003–2007. Biogeosciences, 2010, 7 (1): 357–369

- [17] Wang Y S, Cheng S L, Fang H J, et al. Simulated nitrogen deposition reduces CH₄ uptake and increases N₂O emission from a subtropical plantation forest soil in southern China. PLoS One, 2014, 9 (e93571), DOI 10.1371/journal.pone.0093571
- [18] Zheng X H, Mei B L, Wang Y H, et al. Quantification of N₂O fluxes from soil-plant systems may be biased by the applied gas chromatograph methodology. Plant and Soil, 2008, 311 (1/2): 211-234
- [19] Fang H J, Cheng S L, Yu G R, et al. Responses of CO₂ efflux from an alpine meadow soil on the Qinghai Tibetan Plateau to multi-form and low-level N addition. Plant and Soil, 351 (1/2): 177–190
- [20] Fang Y T, Gundersen P, Mo J M, et al. Nitrogen leaching in response to increased nitrogen inputs in subtropical monsoon forests in southern China. Forest Ecology and Management, 2009, 257 (1): 332-342
- [21] Xu X, Li Q, Wang J, et al. Inorganic and organic nitrogen acquisition by a fern dicranopteris dichotoma in a subtropical forest in South China. PLoS One, 2015; 9 (5), DOI: 10.1371/journal. pone.0090075
- [22] Isobe K, Koba K, Suwa Y, et al. High abundance of ammoniaoxidizing archaea in acidified subtropical forest soils in southern China after long-term N deposition. FEMS Microbiology Ecology, 2012, 80 (1): 193-203
- [23] Aitkenhead–Peterson J A, McDowell W H, Neff J C. Sources, production and regulation of allochthonous dissolved organic matter// Findlay S, Sinsabaugh R. Aquatic ecosystems, interactivity of dissolved organic matter. Amsterdam: Academic Press; 2002: 26—70
- [24] Tang X L, Liu S G, Zhou G Y, et al. Soil-atmospheric exchange of CO₂, CH₄, and N₂O in three subtropical forest ecosystems in Southern China. Global Change Biology, 2006, 12 (3): 546– 560
- [25] Liu H, Zhao P, Lu P, et al. Greenhouse gas fluxes from soils of different land-use types in a hilly area of South China. Agriculture Ecosystems & Environment, 2008, 124 (1/2) : 125-135
- [26] Xu Y B, Cai Z C. Denitrification characteristics of subtropical soils in China affected by soil parent material and land use. European Journal of Soil Science, 2007, 58 (6): 1293–1303
- Bai E, Li W, Li S, et al. Pulse increase of soil N₂O emission in response to N addition in a temperate forest on Mt Changbai, Northeast China. PLoS One, 2014, 9 (e102765), DOI: 10.1371/journal.pone.0102765

Ŧ

3期

- $[\ 28\]$ Dobbie K E, Smith K A. The effects of temperature, water filled pore space and land use on N_2O emission from an imperfectly drained gleysoil. European Journal of Soil Science, 2001, 52 (6) : 667–673
- [29] Livesley S J, Kiese R, Miehle P, et al. Soil-atmosphere exchange of greenhouse gases in a Eucalyptus marginata woodland, a clover-grass pasture, and Pinus radiata and Eucalyptus globulus plantations. Global Change Biology, 2009, 15 (2): 425-440
- [30] 王连峰,蔡祖聪.前期不同水分状况对土壤氧化亚氮排放的 影响.土壤学报,2009,46(5):802—808
 Wang L F, Cai Z C. Effects of antecedent water regimes on nitrous oxide emission from an arable soil (In Chinese). Acta Pedologica Sinica, 2009,46(5):802—808
- [31] Davidson E A, Matson P A, Vitousek P M, et al. Processes regulating soil emissions of NO and N₂O in a seasonally dry tropical forest. Ecology; 1993, 74 (1): 130–139
- $[\ 32\]$ Peri P L, Ladd B, Pepper D A, et al. Carbon ($\delta^{13}C$) and nitrogen ($\delta^{15}N$) stable isotope composition in plant and soil in Southern Patagonia's native forests. Global Change Biology, 2012, 18 (1) : 311–321
- [33] Zhang J B, Cai Z C, Zhu T B. N₂O production pathways in the subtropical acid forest soils in China. Environmental Research, 2011, 111 (5): 643–649
- [34] Cheng Y, Wang J, Wang S Q, et al. Effects of soil moisture on gross N transformations and N₂O emission in acid subtropical forest soils. Biology and Fertility of Soils, 2014, 50 (7): 1099–1108

Effects of Inputs of Extraneous NH₄⁺ and NO₃⁻ on Soil Nitrous Oxide Emission in Subtropical Plantation, South China

WANG Lei¹ CHENG Shulan² FANG Huajun^{1†} YU Guirui¹ DANG Xusheng¹ LI Xiaoyu¹ SI Gaoyue² GENG Jing¹ HE Shun²

(1 Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

(2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract Human activities, such as combustion of fossil fuel, production and utilization of chemical fertilizers, intensification of livestock husbandry, etc. have caused atmospheric nitrogen depositionon the globe to increaseby 3 times, which significantly alters nitrogen recycling in forest ecosystems. Subtropical plantations in China are located in the center of the region very high in atmospheric nitrogen deposition on the globe, where the soils, relatively enriched with nitrogen, are very sensitive to input of extraneous nitrogen, in production and emission of soil nitrous oxide (N2O). However, in the past, the experiments to simulate N deposition used to have only one type of N fertilizer such as NH₄NO₃ or urea as N source, without taking into account the difference in in-situ effect between oxidized N and reduced N. In this study, a plantation of *pinus elliottii* at the Qianyanzhou Subtropical Experiment Station, Chinese Academy of Sciences, was selected as an object in an experiment on controlled N addition. This experiment was designed to have two forms of N fertilizers $(NH_4Cl \text{ and } NaNO_3)$ and three N application rates $(0, 40 \text{ and } 120 \text{ kg hm}^{-2} \text{ a}^{-1})$ and laid out in plot randomly. Soilatmospheric N₂O exchanging fluxes, were measured eight times per month using the static chamber-gas chromatography method, and simultaneously, soil temperature and moisture at $0 \sim 10$ cm depth, dissolved N concentrations (NO_3^2-N , NH_4^+-N , total dissolved N (TDN), and dissolved organic N (DON)) at $0 \sim 15$ cm depth were determined for analysis of how the N₂O exchanging flux responded to input of extraneous N and its main affecting factors. Results show that N addition did not affect soil temperature and soil moisture in the subtropical plantation, but did increase significantly soil NO₃⁻-N, NH₄-N and TDN contents, except for soil DON content, of which the potential mechanisms included preferential absorption of NH₄⁺-N by plants, fixation of NH₄⁺-N by soil organic matter/ minerals, and assimilation of inorganic by plants and soil

microbes. Also, N addition significantly promoted soil N_2O emission in the subtropical plantation or by 378% ~ 847%; and the effect was higher in plots applied with NH₄Cl than in plots applied with NaNO₃. Moreover, soil N₂O flux was found to be positively and significantly related to soil temperature and soil moisture at 0 ~ 10 cm depth, which indicates that the hydrothermal factors propelled soil N₂O emission in the subtropical plantation. Also, the change in soil N₂O flux (Δ soil N₂O fluxes, the difference between N treatment and control) was significantly and positively related to that in soil NH⁴₄–N and NO⁵₃–N contents (Δ soil inorganic N contents), and the relationships could well be fitted with linear and exponential growth equations, respectively. The findings of the study indicate that the increase in soil N₂O content in N-enriched soils is mainly attributed to changes in substrates for nitrifier and denitrifier communities, and hint that soil N₂O emission in the subtropical plantations, South China, is very sestitive to input of extraneous N, and more to reduced NH⁴₄ and oxidized NO⁵₃. The sensitivity is higher than the mean of the globe. Therefore, it is advisable to address reduced NH⁴₄ and oxidized NO⁵₃ separately, in assessing influence of atmospheric N deposition on carbon and N recycling and C budget in future studies. Unfortunately, the failure of this study to determine activities of soil nitrifier and denitrifier communities made it hard to assess relative contributions of various processes, separately, to soil N₂O flux. For future studies, it is recommended to apply ¹⁵N tracer and molecular microbiology in in-depth analysis of the relationships between soil N transformation processes and soil N₂O flux, and coupling effects of key microbial functional groups and soil N transformation and emission processes.

Key words Atmospheric nitrogen deposition; Soil N₂O flux; Controlling factors; Nitrification; denitrification; Subtropical plantation

(责任编辑: 檀满枝)