$\mathrm{DOI}: 10.11766/\mathrm{trxb}201604180064$

主要人为排放源中氮氧化物¹⁵N自然丰度的测定^{*}

王 曦 遆超普 罗永霞 孙晓丽

(土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所),南京 210008)

摘 要 氮氧化物(NO_x=NO+NO₂)因其对环境和人类健康的威胁,成为大气中需要严格控制的一种痕量组分。首次运用化学转化法,通过将主要人为排放源废气中的氮氧化物(NO_x)转化为氧化 亚氮(N₂O),测定气体中NO_x的¹⁵N自然丰度,即氮稳定同位素比值(δ¹⁵N-NO_x)。利用酸性氧化剂 将NO_x氧化为硝酸(NO₃),并通过三氯化钒(VCl₃)和叠氮钠(NaN₃)的共同作用将其转化为N₂O,利用带有自动预浓缩装置的稳定同位素比值质谱计(PT-IRMS)测定δ¹⁵N-NO_x。该方法的测量精度可 达0.09‰,所需样品量仅为7µg(以氮计),对火力发电站、机动交通工具等人为排放源均适用,测量 精度和准确度可满足NO_x相关研究的需求。

关键词 氮氧化物;氧化亚氮;¹⁵N自然丰度;化学转化法
 中图分类号 X132;0615.4⁺⁵
 文献标识码 A

氮氧化物(NO_x=NO+NO₂)是大气中需要严格 控制的一种痕量组分,它影响空气质量与大气环 境,进而威胁并损害人类健康。NO_x与烃基(CH) 的相互作用是对流层中臭氧(O₃)的重要来 源^[1]。NO_x还会在O₃及悬浮颗粒物的催化下,与 挥发性有机物(VOCs)发生反应并生成硝酸气溶 胶^[2-3]。过量的硝酸气溶胶会产生酸沉降并导致水 质恶化、土壤酸化、淡水水体富营养化及生物多样 性改变等一系列生态恶化现象。因此,NO_x排放的 控制一直是全球研究的热点。

NO_x的排放来源分为自然及人为排放,但各来 源的贡献率仍存在较大的争议^[4]。自然来源主要 包括闪电、土壤呼吸及森林火灾。人为排放主要包 括化石燃料燃烧(主要来源于火力发电机组)和交 通工具尾气排放(机动车、船及飞机等)。自工业 化革命以来,人类活动排放的NO_x日益增加,其规 模已超过自然来源。根据Jaeglé等^[5]和Reis等^[6] 近年的研究成果,人为源排放的NO_x已达到全球 排放总量的90%以上。为了降低NO_x的排放,各地 已采取了许多减排或净化措施并取得了一定的效 果^[7-9]。但这些政策和方法远未达到控制NO_x危害 的目的,所以仍需采取进一步的措施以降低NO_x排 放对生态系统及人类健康的影响。

就目前取得的研究成果而言,对于NO_x排放来 源贡献率、迁移及演变规律等问题仍存在较多争 议^[10-12]。为了探索有关NO_x排放源的贡献并精确 评估相关减排措施的有效性,需要开发鉴别NO_x 来源的检测方法。前期研究表明^[13-16],NO_x及其 氧化产物的¹⁵N自然丰度,即氮稳定性同位素比值 (δ^{15} N-NO_x)可作为不同NO_x排放来源的显著标 志物。因此,它可用于确定不同地区氮沉降中各来 源NO_x的贡献率,并进一步用于判定不同减排措施 的有效性。

相关学者在近几年已开始运用化学和生物的技 术手段对不同来源NO_x的δ¹⁵N-NO_x进行分析^[17-19]。 但是已采用的方法均存在一些缺陷或不足,如细菌 反硝化法对实验条件要求高且分析耗时过长,离 子树脂交换法仅适用于体积较大或浓度较高的样

^{*} 土壤与农业可持续发展国家重点实验室分析技术方法研究项目(Y412010010)资助 Supported by the Analysis Method Research Program of State Key Laboratory of Soil and Sustainable Agriculture (No. Y412010010)

作者简介:王 曦(1981一),男,江苏南京人,硕士,工程师,主要从事环境中轻稳定性同位素研究。E-mail: xiwang@ issas.ac.cn

收稿日期: 2016-04-18; 收到修改稿日期: 2016-06-22; 优先数字出版日期(www.enki.net): 2016-07-22

品。随着技术水平的提高,针对水体环境中氮元 素循环的研究,化学转化法已得到较为广泛的应 用^[20-22],但此类方法无法用于测定复杂介质样品 中的 δ¹⁵N。在研究大气中的NO_x时往往需采用含有 强氧化性组分的强酸溶液作为吸收介质,吸收介质 中的强氧化性组分和低pH环境均会阻碍化学转化 反应的顺利进行。

因此,针对复杂来源样品,在前人的基础上, 本研究通过对化学转化法反应流程进行改进,消除 了吸收液中相关组分对化学反应的影响,并首次采 用改进后的化学转化法测定气体中δ¹⁵N-NO_x。相 关反应流程如下:利用酸性氧化剂将气体样品中 NO_x氧化为硝酸(NO₃)并捕集于吸收液中,经过 换相将氧化性组分去除,再将NO₃转化为氧化亚氮 (N₂O)并测定其¹⁵N自然丰度(δ¹⁵N-N₂O),最 后利用转换公式计算出δ¹⁵N-NO_x。在方法试验中 还利用国际原子能机构(IAEA)提供的多个参考 物质和不同来源样品对方法的有效性、准确度和测 量精度进行了验证,并对方法检出限和结果误差来 源进行了分析。

1 材料与方法

1.1 方法原理

气体样品中的NO_x通过吸收液时,被溶液中的 双氧水(H_2O_2)氧化,生成NO₃,并溶解于吸收液 中。吸收液中的NO₃被三价钒离子(V^{3+})还原为亚 硝酸根(NO_2^-),并与叠氮酸根(N_3^-)反应,生成 N₂O。

$$\begin{split} \mathrm{NO}_2 &+ \mathrm{NO} + 3\mathrm{H}_2\mathrm{O}_2 \xrightarrow{\mathrm{H}^+} 2\mathrm{NO}_3^- + 3\mathrm{H}_2\mathrm{O} \\ \mathrm{NO}_3^- &+ 2\mathrm{V}^{3+} + 2\mathrm{H}^+ \longrightarrow \mathrm{NO}_2^- + 2\mathrm{V}^{4+} + \mathrm{H}_2\mathrm{O} \\ \mathrm{NO}_2^- &+ 2\mathrm{H}^+ \leftrightarrow \mathrm{H}_2\mathrm{NO}_2^+ \\ \mathrm{H}_2\mathrm{NO}_2^+ &+ \mathrm{Cl}^- \longrightarrow \mathrm{NO} - \mathrm{Cl} + \mathrm{H}_2\mathrm{O} \\ \mathrm{Cl} &- \mathrm{NO} + \mathrm{N}_3^- \xrightarrow{\mathrm{fast}} \mathrm{N}_3 - \mathrm{NO} + \mathrm{Cl}^- \xrightarrow{\mathrm{fast}} \mathrm{N}_2 + \mathrm{N}_2\mathrm{O} \end{split}$$

N₂O为非对称分子,其分子结构为N-N-O, N₂O的δ¹⁵N为两个氮原子δ¹⁵N的平均值,即:

 NO_{2} 的¹⁵N自然丰度(δ ¹⁵N-NO₂)与气体样品

δ¹⁵N-NO_x无显著差异。因此,存在以下关系:

$$\delta^{15} N(N_2 O) = \frac{\delta^{15} N({}^{15} N - N - O) + \delta^{15} N(N - {}^{15} N - O)}{2}$$
(1)

参加反应的NO₂和N₃分别提供一个氮原子生成 N₂O。由Fibiger等^[18]的研究可知,还原得到的

$$\delta^{15}N(N_2O) = \frac{\delta^{15}N(N_3^-) + \delta^{15}N(NO_2^-)}{2} = \frac{\delta^{15}N(N_3^-) + \delta^{15}N(NO_x)}{2}$$
(2)

在 N_3 的¹⁵N自然丰度(δ ¹⁵N- N_3)恒定时,反应产 生的 δ ¹⁵N- N_2 O与气体样品 δ ¹⁵N- NO_x 成线性关系, 其曲线的理论斜率为0.5。质谱测定得到的 δ ¹⁵N- N_2 O通过换算公式可计算出气体样品中 δ ¹⁵N- NO_x 。

1.2 气体样品的捕集与氧化

大气中的NO_x绝大部分来自于人类化石燃料燃 烧排放,其中又以汽车尾气和火电厂排放为主。 本方法采用改进后的US EPA Method 7(固定排 放源中氮氧化物排放量的测定,determination of nitrogen oxide emissions from stationary sources)捕 集气体样品中的NO_x。采用气体缓冲瓶收集气体中 的NO_x,缓冲瓶中加入50 ml吸收液。吸收液由0.6 ml 30% H₂O₂溶于1 L 0.05 mol L⁻¹的硫酸(H₂SO₄) 溶液配制而成。该吸收液可将气体样品中的NO_x氧 化为NO₃,并吸附溶解于吸收液中。利用氮氧化物 分析仪(42i, ThermoFisher Scientific,美国)在 线监测气流流经吸收液前后NO_x的浓度变化。使用 智能综合大气采样器(ZC-Q0102,恒达,浙江) 放置于公路隧道内采集汽车尾气样品。采样器的 采样条件如下:气体流速1 L min⁻¹,采样时长24 h,采样高度距地面1.5 m。火电厂废气的采集方法 为:于烟道外部采用导管与在线监测仪的端口处相 连接,同样用以上的吸收液采集火电机组排放的废 气。吸收过气体样品的吸收液用1 mol L⁻¹氢氧化钠 (NaOH)溶液将pH调节至9.0并测定溶液中NO₃ io 浓度,以便下步分析^[23-24]。

1.3 NO₃转化为N₂O

根据样品中NO₃浓度,用去离子水(DiW)将 调节过pH的吸收液稀释,使溶液中NO₃浓度降至 100 µmol L⁻¹。吸取 5 ml 稀释后的吸收液,移入 50 ml 顶空瓶中,于80℃水浴中蒸至近干以去除吸 收液中H₂O₂,再加入 5 ml DiW。

用带有特氟隆涂层的瓶盖将顶空瓶密封。用气 密注射器向瓶中注入0.8 mlNaN3-CH3COOH混合溶 液。此溶液由2 mol L⁻¹ NaN₃溶液和20% CH₃COOH 溶液按体积比V:V=1:1混合配制而成。混合均 匀后,再向顶空瓶中加入5 ml 0.05mol L⁻¹ VCl₃盐 酸溶液。此溶液由2.4 g VCl₃溶于300 ml 1mol L⁻¹盐 酸(HCl)溶液配制而成。将样品置于37℃的水浴 中^[25],以120 r min⁻¹的转速震荡18 h。震荡完毕 的样品加入1.0 ml 10mol L⁻¹NaOH溶液终止反应并 等待质谱测定。将终止反应后的溶液注入流动分析 仪(SAN++, Skala, 荷兰)进行分析。硝态氮和 亚硝态氮均未检出。所以溶液中的反应底物均转化 为N₂O,产率近100%。反应完成后,顶空瓶中气体 体积约为38 ml, 其中含有N₂O约500 nmol。而同 体积的空气约含有0.53 nmolN₂O, 仅占反应生成 气体的0.1%。因此,空气中的N₂O对本方法的影 响可忽略。

1.4 质谱测定

用气密进样针吸取样品顶空气体,注入温室 气体全自动预浓缩装置(Trace gas, Elementary, 英国)。Trace gas采用液氮冷阱捕集并纯化样品 中的N₂O。N₂O在液氮冷阱中被冻结捕集,而无 法冻结的杂质,如氮气(N₂)和氧气(O₂)等随 载气排出。Tracegas带有填充高氯酸镁和碱石灰 的化学吸收阱,可去除样品中的水分和二氧化碳 (CO_2) 。纯化过的气体再经过plot Q色谱柱, N₂O 与残余的微量CO2完全分离,出峰时间相差60s以 上, 使N₂O的检测不受CO₂的干扰。经过纯化的 N₂O被送入稳定性同位素比值质谱计(Isoprime 100, Elementary, 英国)进行检测。样品的总离 子流色谱图如图1所示。Trace gas气体捕集条件: 捕集时间600 s,浓缩时间120 s,捕集气体流速 24 ml min⁻¹。Isoprime 100质谱计测定条件:加速 电压: 3 760 V; trap电流: 600 µA; 电子能量:

Fig. 1 Chromatograph of N₂O

100 eV;提取效率:75 %AV。

1.5 δ值的计算

由含有一个¹⁵N原子的N₂O分子(质荷比m/z 45)与不含¹⁵N原子N₂O分子(质荷比*m*/z 44)的峰 面积相比得出N₂O的*R*_{45/44}值,其公式为:

$$R_{45/44} = \frac{A_{45}}{A_{44}} \tag{3}$$

式中, *A*₄₅为质荷比*m*/*z* 45离子的峰面积; *A*₄₄为质 荷比*m*/*z* 44离子的峰面积。

N₂O的δ¹⁵N-N₂O由以下公式计算得出:

$$\delta^{15} \mathrm{N} = \left(\frac{R_{\mathrm{sample}}}{R_{\mathrm{standard}}} - 1\right) \times 1000\%c \qquad (4)$$

式中, R_{sample} 为样品 $R_{45/44}$ 比值; R_{standard} 为标准样品的 $R_{45/44}$ 比值。

1.6 空白校正

由于试剂中含有微量杂质,所以需要对质谱测 定出的结果做空白校正。使用质量平衡方程对结果 进行校正。其公式为:

$$\delta^{15} \mathbf{N}_{\text{blank corr}} = \frac{\delta^{15} \mathbf{N}_{\text{sample}} \times A_{\text{sample}} - \delta^{15} \mathbf{N}_{\text{blank}} \times A_{\text{blank}}}{A_{\text{sample}} - A_{\text{blank}}}$$

(5)

式中, $\delta^{15}N_{\text{blank corr}}$ 为样品经空白校正后的 $\delta^{15}N$ 比值; 值; $\delta^{15}N_{\text{sample}}$ 为质谱测定出的样品 $\delta^{15}N$ 比值; $\delta^{15}N_{\text{blank}}$ 为空白 $\delta^{15}N$ 比值; A_{sample} 为样品峰面积; A_{blank} 为空白峰面积。

2 结果与讨论

2.1 气体采集条件对吸收率的影响

吸收液配比的影响:本研究采用的吸收液为 含有 H_2O_2 的 H_2SO_4 溶液,其氧化能力与 H_2O_2 的浓 度正相关。采用氮气中氮氧化物标准气体为 NO_x 的稳定气源,并利用高纯 N_2 将其稀释至一定浓度 (1.0 mg m⁻³, 24 mg m⁻³,以N计,下同)。利用 ThermoFisher Scientific的42i 氮氧化物分析仪在线 监测气流流经吸收液前后 NO_x 的浓度变化,并以 此计算吸收率。 H_2O_2 浓度与 NO_x 吸收率关系如图 2所示。

图2 H2O2浓度与NOx吸收率关系 Fig. 2 Relationship between concentration of H2O2 and

由图2可知,当吸收液中H₂O₂的浓度大于 4 mmol L⁻¹时,NO_x吸收率已超过90%。而H₂O₂的浓 度大于5 mmol L⁻¹时,低浓度样品(1.0 mg m⁻³)经 过吸收液后气体中NO_x的浓度已低于仪器的检出限 (0.00025 mg m⁻³),而高浓度样品(24 mg m⁻³) 经吸收后其NO_x浓度也降至0.025 mg m⁻³以下,二者 的吸收率均超过99%。但过高的H₂O₂浓度也会阻碍 后续化学转化的顺利进行。因此本研究选择吸收液 中H₂O₂的浓度为6 mmol L⁻¹。

气体中NO_x浓度的影响:NO_x的吸收率还与气体中NO_x的浓度有关。NO_x的浓度与吸收率的关系如图3所示。

由图3可知,当NO_x的浓度低于30mg m⁻³时, 其吸收率均超过99%。当NO_x的浓度超过30 mg m⁻³ 时,因吸收液的氧化能力接近饱和,气体中较高浓 度的NO_x无法被完全氧化固定于溶液中,吸收率出 现下降的趋势。在本研究中,机动车尾气中NO_x的 浓度约为0.7 mg m⁻³,而火电厂废气中NO_x的浓度为

图3 NO_x浓度与吸收率关系

24 mg m⁻³,均低于30 mg m⁻³。因此,在此吸收条 件下,不同实验对象的NO_x吸收率均可超过99%。 这与前期研究结果吻合^[18-19]。在此条件下,可认 为由溶液吸收气体引入的同位素分馏效应亦被降至 最低,对本方法实验结果造成的影响可以忽略。

2.2 转化反应条件对分析结果的影响

溶液添加顺序的影响:在酸性体系中,VCl₃ 将NO₃还原为NO₂。同时,溶液中的N₃将生成的 NO₂转化为N₂O。但在酸性环境中,VCl₃的还原能 力很强,不仅能将NO₃还原至NO₂,还可以将生成 的NO₂继续还原至NO、N₂O及N₂。但由于溶液中同 时存在N₃,且在较低pH和较高卤素离子浓度的反 应环境中,N₃将NO₂转化为N₂O的反应速率远高于 VCl₃还原NO₂的速率^[26-27]。因此NO₂仅作为整个 转化反应的中间产物。溶液中的NO₃被VCl₃还原为 NO₂后,NO₂优先与N₃反应生成N₂O,而不与VCl₃继 续反应并被还原为较低价态的产物。所以试剂的加 入顺序必须为先加入N₃,再加入VCl₃,以确保转化 反应按设计方向进行。如先加入VCl₃,则会导致还 原副反应发生,N₂O的产率明显降低,δ¹⁵N-N₂O 也随之受到影响。

反应时间的影响:反应时间不仅影响 N_2O 的 产率,对 $\delta^{15}N-N_2O$ 的影响更为显著。当转化反应 不完全时会发生同位素分馏现象,导致 $\delta^{15}N-N_2O$ 产生偏差。 N_2O 的产率与反应时间的关系为类S型 曲线函数^[26]。前期研究表明,VCl₃将NO₃还原为 NO₂,反应完全的时间为140min^[28], N_3 参与转化 反应完全反应所需的时间为15min^[29]。较高的H⁺ 离子浓度可提高VCl₃的反应速率,因此反应体系的 pH需要维持在较低水平(约0.3)^[26]。但在较低 pH的环境中, N_3 更趋向于以HN₃的形式存在。这

Fig. 4 Relationship between yield of N_2O and duration of the reaction

导致溶液中N₃有效浓度降低,反应完全所需时间也 随之延长。本研究选择了不同反应时间进行转化试 验,N₂O的产率随反应时长的变化如图4所示。结 果显示,本研究中合适的反应时长为18 h。当转化 反应持续18 h时,NO₃的转化率接近100%,且同位 素分馏现象得到抑制。

2.3 换算曲线的建立

根据反应原理所述,样品中的NO_x经化学转化

后生成 N_2O 。反应产生的 N_2O 分子中的两个氮原子 分别来自于待测底物 $NO_3^-(NO_x$ 氧化产生)和试剂 NaN_3 ,其比例为1:1。而 $\delta^{15}N-N_2O$ 为分子中两个 氮原子 $\delta^{15}N$ 的平均值。当 N_3^- 的 $\delta^{15}N$ 恒定时, N_2O 的 $\delta^{15}N-N_2O$ 与样品中 $\delta^{15}N-NO_3^-$ 成线性关系。因此 可通过测定多个已知 $\delta^{15}N-NO_3^-$ 硝酸盐溶液转化产 生 N_2O 的 $\delta^{15}N-N_2O$,并将 $\delta^{15}N-NO_3^-$ 和 $\delta^{15}N-N_2O$ ——对应,建立换算曲线。通过质谱测定得到 N_2O 的 $\delta^{15}N-N_2O$,代入换算曲线,即可计算得出样品 的 $\delta^{15}N-NO_x$ 。

因无法获取不同丰度的NO_x标准气体,故用不同丰度的硝酸盐标准样品溶液作为替代,将其视为不同丰度的NO_x标准气体经吸收氧化后形成的待测液,其溶液组分及浓度与吸收液完全相同。我们将国际原子能机构(IAEA)提供的标准物质USGS-34和USGS-32分别配置为NO₃浓度100 μmol L⁻¹的溶液A和B,并将A、B两种溶液按不同体积比例混合,从而形成不同丰度的硝酸盐溶液样品。其混合比例及溶液中NO₃的丰度理论计算值如表1所示。

将溶液编号1-7的硝酸盐溶液进行转化后测

Table 1 Theoretical values of nitrogen isotope ratios of NO₃⁻ in standard solutions δ¹⁵N_{Air}理论计算值 溶液编号 体积比(V_A:V_B) Theoretical value No. Volume ratio $(V_A : V_B)$ δ $^{15}N_{Air}$ (%0) 1 6:0-1.82 28.5 5:14:2 58.8 3 89.1 4 3:3 5 2:4119.4 1:5 149.7 6 180.0 7 0:6

定 $\delta^{15}N-N_2O$,并将二者的 $\delta^{15}N$ —一对应,得到 $NO_3^-(NO_x) - N_2O$ 换算曲线,其结果如图5所示。 将样品吸收液转化产生 N_2O 的 $\delta^{15}N-N_2O$ 代入换算 曲线中,利用换算曲线公式即可计算出待测液中的 $\delta^{15}N-NO_3^-$,即所吸收气体样品的 $\delta^{15}N-NO_x$ 。

由图5可知, δ^{15} N-N₂O与溶液中 δ^{15} N-NO₃存在极显著的线性相关性 (*p* < 0.01, *R*² > 0.9999)。

 N_2O 气体中的两个氮原子分别来自于 N_3 和 NO_x ,其 $\delta^{15}N$ 换算曲线的理论斜率应为0.5。而实际换算曲线的斜率约为0.44,低于0.5。造成这种现象的原因可能与试剂中含有的微量杂质有关。

2.4 试剂空白的影响

溶液浓度与信号峰面积的关系:样品产生N₂O 的量应与待测液中NO₃的量成正比。将硝酸盐标准 样品配置成不同浓度的待测液,并测定其产生的

 $N_2O_{\circ}N_2O$ 的峰面积与溶液中 NO_3 浓度的关系如图6 所示。由此图可知, N_2O 的量与 NO_3 浓度呈正相关 关系(p < 0.01, $R^2 > 0.999$)。且由图中可知,空 白样品中含有约3.8 nmol NO_3 (5 ml溶液中),即 空白样品的 NO_3 浓度为0.76 μ mol L⁻¹。利用流动分 析仪对试剂和实验用水进行检测,发现杂质主要来 源于 NaN_{30}

溶液浓度的影响:将不同丰度的硝酸盐标准 样品分别配置为20、60、100µmol L⁻¹的待测液, 并测定其生成的N₂O的 δ^{15} N-N₂O。将不同浓度NO₃ (NO_x) - N₂O换算曲线绘制成图,结果如图7所 示。由图7可知,不同浓度NO₃(NO_x)的 δ^{15} N-NO₃与 δ^{15} N-N₂O均呈极显著相关(p < 0.01),且 其相关性表现为线性正相关($R^2 > 0.999$)。且由 图可知,不同浓度NO₃(NO_x)换算曲线的斜率随 浓度的升高而提升并且趋近于理论值0.5。这应是 由于实验空白的影响所致。进样体积固定时,样品 浓度越高,则产生N₂O的量越多,杂质生成的N₂O 的比例则越低,N₂O的 δ^{15} N-N₂O受杂质的影响也 越小。所以,浓度越高的标准样品形成的换算曲线 的斜率也越趋近于0.5的理论值。

空白校正:利用质量平衡方程对不同浓度硝酸 盐标准样品转化的N₂O的测量结果进行校正,并重 新绘制换算曲线。其结果如图8所示。由图8可知,

利用空白校正后的结果绘制的换算曲线,其斜率与 0.5的理论值基本相符,且不同浓度曲线间的差异 也基本消失。

2.5 精密度与准确度

将USGS-35、IAEA-NO-3和实验室中已知 δ¹⁵N-NO₃的两个工作标准样品硝酸钾(ST-1、 ST-2)配置成NO₃浓度为20、60、100 μmol L⁻¹溶 液,并按此方法进行处理,得到的结果如表2所示。

由表2可知,不同δ¹⁵N-NO₃的测量结果重复性 较好,δ¹⁵N的测量精度约为0.3‰(20 μmol L⁻¹)、 0.15‰(60 μmol L⁻¹)、0.09‰(100 μmol L⁻¹), 测量平均值与标准物质证书参考值也比较接近, 测定值与参考值的差异均小于0.5σ,可满足分析 的需求。

图8 经过空白校正的换算曲线

Fig. 8 Conversion curve after blank correction

表2	标准物质氮同位素测定结果
12.4	你准物灰剑的世系测足知术

Tabl	e 2	Nitrogen	isotope ratio	s measured	of	the ref	ference mate	rials
------	-----	----------	---------------	------------	----	---------	--------------	-------

标准样品	参考值	不同溶液浓度的测定值 Measurement values of different concentration of solution (‰)					
编与 StandardNo.	Reference value (%)	20 μmol L ⁻¹	60 µmol L ⁻¹	100 μmol L ⁻¹			
USGS-35	2.7 ± 0.2	2.78 ± 0.27 (<i>n</i> =8)	2.76 ± 0.11 (<i>n</i> =8)	2.71 ± 0.07 (<i>n</i> =8)			
IAEA-NO-3	4.7 ± 0.2	4.75 ± 0.20 (<i>n</i> =8)	4.74 ± 0.10 (<i>n</i> =8)	4.69 ± 0.08 (<i>n</i> =8)			
ST-1	3.7	3.65 ± 0.33 (<i>n</i> =8)	3.69 ± 0.17 (<i>n</i> =8)	3.77 ± 0.12 (<i>n</i> =8)			
ST-2	14.6	14.55 ± 0.31 (<i>n</i> =8)	14.67 ± 0.14 (<i>n</i> =8)	14.62 ± 0.08 (<i>n</i> =8)			

注:表中数据为"平均值±标准差", n为重复次数。下同 Note: The data in the table was "mean ± standard deviation", and n stands for number of replicates. The same below

2.6 最低检测限

不同浓度的样品经空白校正后,其稳定同位 素检测结果应保持一致。但由试验结果可知,平行 样品间的标准偏差随溶液浓度的降低而逐渐升高。 表2也证明了此种情况的存在。选择实验空白样品 浓度的10倍作为该方法测定所需的最低样品浓度 (LOD),即7.6 μmol L⁻¹。5 ml该浓度的样品中含 有38 nmol NO₃。 将USGS-35、IAEA-NO-3和实验室标准 ST-1、ST-2均配制为7.6 μ mol L⁻¹NO₃溶液,通过 本方法测定其 δ^{15} N-NO₃。其测量精度和准确度如 表3所示,均可满足测试的要求。

与前人报道的方法相比,改进后的化学转化 法不仅拓展了检测范围,且新方法的检测精度和检 测限均有所超越。前人采用的分析方法的精密度为 0.25‰ (100 µmol L⁻¹),检测限为22.7µmol L^{-1[26]}。

Fable 3	Nitrogen	isotope	ratios	measured	of th	e reference	materials	in t	he minimum	sampling	weight
---------	----------	---------	--------	----------	-------	-------------	-----------	------	------------	----------	--------

标准样	₩ 日 旦	$\delta^{15} N_{Air}$			
编号	任中里 Sample amount (nmol)	参考值	测定值		
Standard No.	Sample amount (mnor)	Reference value ($\%$)	Measurement value ($\%$)		
USGS-35	38	2.7 ± 0.2	2.53 ± 0.47 (<i>n</i> =6)		
IAEA-NO-3	38	4.7 ± 0.2	4.85 ± 0.55 (<i>n</i> =6)		
ST-1	38	3.7	3.87 ± 0.51 (<i>n</i> =6)		
ST-2	38	14.6	14.49 ± 0.49 (<i>n</i> =6)		

而改进后的化学转化法方法精密度为0.09‰ (100μmol L⁻¹),检测限为7.6 μmol L⁻¹,可为相 关研究提供更为精确可靠的数据。

2.7 实际样品检测结果

应用此方法分析了江苏地区不同来源的气 体样品,包括机动车尾气和火力发电站废气,结 果如表4所示。机动车尾气中NO_x的 δ^{15} N_{Air}均值 为-3.6%,变化范围为-17.4%。+4.0%;火力 发电站废气中NO_x的 δ^{15} N_{Air}均值为+21.9%。,变 化范围为+11.9%。+29.5%。不同来源样品的检 测结果与前人采用细菌反硝化法的研究结果相 接近^[10-13, 17-19]。

表4 不同来源气样NO_x氮同位素测定结果

	Table 4	Nitrogen isotope stable ratios of nitrogen oxide of different sources				
样品来源	NO _x 浓度均值	NO _x 浓度标准偏差	δ ¹⁵ N _{Air} -NO _x 均值	δ ¹⁵ N _{Air} -NO _x 标准偏差	重复数	
Sources of	Average of NO_x	Standard deviation of NO_x	Average of	Standard deviation of	Replicates	
samples	concentration	concentration	$\delta^{15}N_{Air}$ -NO _x	$\delta^{15}N_{Air}$ –NO _x	(<i>n</i>)	
	\overline{x} -NO _x	$SD-NO_x$	$\overline{x} - \delta^{15} N_{Air} - NO_x$	SD- δ^{15} N _{Air} -NO _x		
	$(mg Nm^{-3})$	$(mg Nm^{-3})$	(%)	(%0)		
机动车尾气	0.73	0.27	-3.6	7.1	7	
Vehicle exhaust						
火电站废气	24	3	21.9	5.3	12	
Exhaust of power						
plants						

3 结 论

本研究首次运用化学转化法将气体样品中NO_x 转化为N₂O,并利用已知δ¹⁵N的标准样品建立换算 曲线,再结合带有自动预浓缩装置的稳定同位素比 值质谱计测定人为排放源中NO_x的δ¹⁵N-NO_x。方 法试验的结果表明该方法的测量精度可达0.09‰, 且所需样品量仅为7 μg(以氮计),对火力发电站 和机动交通工具等人为排放源均可适用,测量精度 和准确度均可满足NO_x相关研究的需求。

参 考 文 献

- Lawrence M G, Crutzen P J. Influence of NO_x emissions from ships on tropospheric photochemistry and climate. Nature, 1999, 402 (6758): 167-170
- [2] Atkinson R. Atmospheric chemistry of VOCs and NO_x. Atmospheric Environment, 2000, 34 (12/14): 2063-2101
- [3] Atkinson R, Arey J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review. Atmospheric Environment, 2003, 37 (3): 197-219
- [4] Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles: Past, present, and future. Biogeochemistry, 2004, 70 (2): 153-226

- [5] Jaeglé L, Steinberger L, Martin R V, et al. Global partitioning of NO_x sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions. Faraday Discussions, 2005, 130: 407-423
- [6] Reis S, Pinder R W, Zhang M, et al. Reactive nitrogen in atmospheric emission inventories. Atomspheric Chemistry & Physics & Discussions, 2009, 9 (19): 7657-7677
- [7] Bradley M J, Jones B M. Reducing global NO_x emissions: Developing advanced energy and transportation technologies. AMBIO: A Journal of the Human Environment, 2002, 31 (2): 141-149
- [8] Melillo J M, Cowling E B. Reactive nitrogen and public policies for environmental protection. AMBIO: A Journal of the Human Environment, 2002, 31 (2): 150-158
- [9] Srivastava R K, Hall R E, Khan S, et al. Nitrogen oxides emission control options for coal-fired electric utility boilers. Journal of the Air & Waste Management Association, 2005, 55 (9): 1367-1388
- [10] Ammann M, Siegwolf R, Pichlmayer F, et al. Estimating the uptake of traffic-derived NO₂ from ¹⁵N abundance in Norway spruce needles. Oecologia, 1999, 118 (2): 124-131
- [11] Felix J D, Elliott E M. Isotopic composition of passively

collected nitrogen dioxide emissions: Vehicle, soil and livestock source signatures. Atmospheric Environment, 2014, 92: 359-366

- [12] Redling K, Elliott E, Bain D, et al. Highway contributions to reactive nitrogen deposition: Tracing the fate of vehicular NO_x using stable isotopes and plant biomonitors. Biogeochemistry, 2013, 116 (1/3): 261-274
- [13] Elliott E M, Kendall C, Boyer E W, et al. Dual nitrate isotopes in dry deposition: Utility for partitioning NO_x source contributions to landscape nitrogen deposition. Journal of Geophysical Research Biogeosciences, 2009, 114 (G4): 425-453
- [14] Elliott E M, Kendall C, Wankel S D, et al. Nitrogen isotopes as indicators of NO_x source contributions to atmospheric nitrate deposition across the midwestern and northeastern United States. Environmental Science & Technology, 2007, 41 (22): 7661-7667
- Li D, Wang X. Nitrogen isotopic signature of soilreleased nitric oxide (NO) after fertilizer application. Atmospheric Environment, 2008, 42 (19): 4747-4754
- [16] Moore H. The isotopic composition of ammonia, nitrogen dioxide and nitrate in the atmosphere. Atmospheric Environment, 1977, 11 (12): 1239-1243
- [17] Felix J D, Elliott E M, Shaw S L. Nitrogen isotopic composition of coal-fired power plant NO_x: Influence of emission controls and implications for global emission inventories. Environmental Science & Technology, 2012, 46 (6): 3528-3535
- Fibiger D L, Hastings M G, Lew A F, et al. Collection of NO and NO₂ for isotopic analysis of NO_x emissions.
 Analytical Chemistry, 2014, 86 (24): 12115—12121
- [19] Walters W W, Goodwin S R, Michalski G. Nitrogen stable isotope composition (δ¹⁵N) of vehicle-emitted NO_x. Environmental Science & Technology, 2015, 49 (4): 2278-2285
- [20] 曹亚澄,孙国庆,韩勇,等.大气浓度下N₂O、CH₄和 CO₂中氮、碳和氧稳定同位素比值的质谱测定.土壤学 报,2008,45(2):249—258
 Cao Y C, Sun G Q, Han Y, et al. Determination of Nitrogen, carbon and oxygen stable ratios in N₂O, CH₄ and CO₂ at natural abundance levels by mass spectrometer (In Chinese). Acta Pedologica Sinica,

2008, 45 (2): 249-258

- [21] 曹亚澄,钟明,龚华,等.N₂O产生法测定土壤无机态 氮¹⁵N丰度.土壤学报,2013,50(1):116—122
 Cao Y C, Zhong M, Gong H, et al. Determining ¹⁵N abundance in ammonium, nitrate and nitrite in soil by measuring nitrous oxide produced (In Chinese). Acta Pedologica Sinica, 2013, 50(1):116—122
- [22] 王曦,曹亚澄,韩勇,等.化学转化法测定水体中硝酸盐的氮氧同位素比值.土壤学报,2015,52(3): 558—566
 Wang X, Cao Y C, Han Y, et al. Determination of nitrogen and oxygen isotope ratio of nitrate in water with a chemical conversion method (In Chinese). Acta Pedologica Sinica, 2015, 52(3): 558—566
- [23] Kumasaki M. An explosion of a tank car carrying waste hydrogen peroxide. Journal of Loss Prevention in the Process Industries, 2006, 19 (4): 307-311
- [24] 刘中兴,谢传欣,石宁,等.过氧化氢溶液分解特性研究.齐鲁石油化工,2009,37(2):99—102
 Liu Z X, Xie C X, Shi N, et al. Study on decomposition behavior of hydrogen peroxide solution (In Chinese). Qilu Petrochemical Technology, 2009, 37(2):99—102
- [25] Braman R S, Hendrix S A. Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium (Ⅲ) reduction with chemiluminescence detection. Analytical Chemistry, 1989, 61 (24): 2715-2718
- [26] Lachouani P, Frank A H, Wanek W. A suite of sensitive chemical methods to determine the δ¹⁵N of ammonium, nitrate and total dissolved N in soil extracts. Rapid Communications in Mass Spectrometry, 2010, 24 (24) : 3615-3623
- $\begin{bmatrix} 27 \end{bmatrix}$ Schilman B, Teplyakov N. Detailed protocol for nitrate chemical reduction to nitrous oxide for δ ¹⁵N and δ ¹⁸O analysis of nitrate in fresh and marine waters. Geological Survey, 2007, 15: 1–16
- [28] Hood-Nowotny R, Umana N H-N, Inselbacher E, et al. Alternative methods for measuring inorganic, organic, and total dissolved nitrogen in soil. Soil Science Society of America Journal, 2010, 74 (3): 1018-1027
- [29] McIlvin M R, Altabet M A. Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Analytical Chemistry, 2005, 77 (17): 5589-5595

Determination of ¹⁵N Natural Abundance in Nitrogen Oxides from Major Anthropogenic Emission Sources

WANG Xi TI Chaopu LUO Yongxia SUN Xiaoli

(State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China)

[Objective **]** Nitrogen oxides ($NO_x = NO$ and NO_2) are now a critical kind of trace Abstract component that calls for strict control, for they threaten the environment and human health. As NO_x has its unique isotope signature that varies with its source, the technique of stable isotope analysis can be used to investigate its origin and pathways. This study is to introduce a new method, chemical conversion process, for determination of ^{15}N natural abundance (δ ^{15}N) of the nitrogen oxides from major anthropogenic sources. With the aid of this method, it is feasible for us to gradually understand the problem caused by NO_x emissions and hence to design appropriate relevant strategies to manage it. [Method] Based mainly on the technique of isotopic analysis of nitrous oxide (N₂O), the chemical conversion method is first to oxidize NO_x into nitrate (NO_3^-) withhydrogen peroxide (H_2O_2) in an acid condition. The resultant NO_3^- was then converted into N_2O under the joint effect of vanadium (III) chloride (VCl₃) and sodium azide (NaN₃) in a strongacid condition. The newly formed N₂O is trapped in an automatic cryogenic system and then diverted into a gas chromatographic column for analysis. The isolated nitrous oxide is analyzed in a stable isotope mass spectrometer under the continuous flowing mode for determination of $\delta^{15}N$, which is then converted into that of the initial NO_x using an equation. While testing this method, some other tests were carried out to optimize the experimental conditions for this method. After these tests, eventually NO_x in gas samples of different sources can be trapped completely in the absorption solution, with absorption rate reaching as high as 99%. At this time, fractionation of stable isotopeis inhibited due to incomplete absorption. As conversion of NO, into NO3 takes place in the absorption solution, it is possible to use standard nitrate solutions to simulate the absorption solutions that contained NO, standard gas sample. Usgs32 and usgs34 are mixed at different volume ratios to prepare standard reference solutions different in stable isotope ratio. After the NO_3^- in these solutions is converted into N₂O using the above-described method and δ^{15} N's in the two are correlated one by one, a conversion curve between NO_3^- and N_2O in acquired. This curve is equal to the one between $NO_3^$ and N₂O in value. Along with increasing concentration of NO_3^- in the solution, the curve rises in gradient, tending towards 0.5 in theoretical value. This phenomenon appears as a result of blank in experiment. When the conversion curve is collated through blank correction, the phenomenon disappears andthen gradient of the curve approaches 0.5, the theoretic value. [Result] Determination using this method may reach 0.09% in precision. Moreover, the minimal amount of a sample for the test is only 7 µg in terms of nitrogen. Gas samples from different sources, including vehicles and power plants, can be analyzed using this method. It is found that $\delta^{15}N_{Air}$ of the NO_x in vehicle exhaust is -3.6% on average, ranging from -17.4% to +4.0%; and that in exhaust from power plants, +21.9%, on average, ranging from +11.9% to +29.5%, which are in good

1562

agreement with the findings in previous researches. [Conclusion] This method can be used for determining stable isotope ratio of NO_x from a variety of anthropogenic sources, including power plants and vehicles, and is good enough in precision and accuracy to meet the needs of the researches on NO_x .

Key words Nitrogen oxide; Nitrous oxide; ¹⁵N natural abundance; Chemical conversion process

(责任编辑:陈荣府)