DOI: 10.11766/trxb201605170194

水耕人为土时间序列铁氧化物与磁化率演变特征*

黄来明^{1,2,3} 邵明安^{1,3†} 陈留美⁴ 韩光中⁵ 张甘霖^{2,3†}

(1 生态系统网络观测与模拟院重点实验室,中国科学院地理科学与资源研究所,北京 100101)

(2土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所),南京 210008)

(3中国科学院大学资源与环境学院,北京 100049)

(4 遵义师范学院资源与环境学院,贵州遵义 563002)

(5内江师范学院地理与资源科学学院,四川内江 641112)

摘要 以我国亚热带地区不同母质起源的水耕人为土时间序列为研究对象,分析不同形态铁 氧化物和磁化率随成土时间的动态演变特征及其影响因素。结果表明,石灰性母质起源的水耕人为 土0~120 cm 土体中全铁(Fe,)、游离铁(Fe,)和游离度(Fe,)随时间序列演变均逐渐增加, 0~50 a内Fe,、Fe,和Fe,/Fe,增加速率分别为3.2 t hm⁻² a⁻¹、1.2 t hm⁻² a⁻¹和0.04% a⁻¹, 50~1 000 a内 Fe₁、Fe₄和Fe₄/Fe₁增加速率分别为0.1 t hm⁻² a⁻¹、0.15 t hm⁻² a⁻¹和0.01% a⁻¹; 而酸性母质起源的水耕人 为土0~120 cm 土体中Fe,、Fe,和Fe,/Fe,随时间序列演变均逐渐下降,0~60 a内Fe,、Fe,和Fe,/Fe,下 降速率分别为0.2 t hm⁻² a⁻¹、0.5 t hm⁻² a⁻¹和0.03% a⁻¹, 60~300 a内Fe,、Fe,和Fe,/Fe,下降速率分别为 0.9 t hm⁻² a⁻¹、1.2 t hm⁻² a⁻¹和0.06% a⁻¹。土壤pH、Eh、以及外源铁输入与土体内铁淋失的相对强度是 控制不同母质水耕人为土中铁氧化物转化速率与途径的主要因素。石灰性母质起源的水耕人为土中不 同磁学指标随时间演变分为三个阶段:0~50 a内表现为质量磁化率(MS)、饱和等温剩磁(SIRM) 和软剩磁(IRM_)的急剧降低; 50~300 a内表现为MS、SIRM和IRM_的持续、缓慢降低以及硬剩磁 (IRM,)的相对稳定发展; 300~1 000 a内表现为MS、SIRM和IRM,的持续、缓慢降低以及IRM,的快 速下降。酸性母质起源的水耕人为土0~20 cm 和20~120 cm土壤中磁学指标演变呈现截然不同的两个 阶段: 0~60 a 0~20 cm 内MS, SIRM和IRM_的急剧降低, IRM,具有明显增加; 而20~120 cm内MS、 SIRM和IRM.缓慢下降, IRMh明显降低。60~300 a 0~20 cm内不同磁学指标变化幅度均很小, 而 20~120 em内IRMh相对比较稳定, MS、SIRM和IRM,在种稻150 a后快速下降。淹水还原条件下亚铁磁 性矿物的破坏是不同母质水耕人为土演变过程中磁性衰减的主要机制。

关键词 水耕人为土;时间序列;铁氧化物;磁化率;成土母质

中图分类号 153.6 文献标识码 A

铁是地壳中丰度位于第四的元素(6.7 wt%)^[1], 是生物所必需的微量矿质养分之一^[2-4]。由于铁在 自然界中分布广、化学活性强,其生物地球化学循 环显著影响陆地生态系统中矿物风化^[5]、养分循 环^[6]和污染物行为^[7]等诸多过程。近年来研究表 明,土壤或沉积物中铁的氧化还原作用与有机质的 封存、分解和释放密切相关^[8-9],从而影响全球碳 循环和气候变化^[10]。

土壤中铁具有不同赋存形态,如原生硅酸盐 矿物、次生黏土矿物、不同结晶度的铁氧化物或氢

* 通讯作者 Corresponding anthor, E-mail: shaoma@igsnrr.ac.cn; glzhang@issas.ac.cn

作者简介:黄来明(1984—),男,浙江安吉人,博士,主要从事土壤发生与地球化学研究。E-mail: huanglm@igsnrr.ac.cn 收稿日期:2016-05-17;收到修改稿日期:2016-07-27;优先数字出版日期(www.cnki.net):2016-10-31

^{*} 国家自然科学基金国际合作与交流项目(41571130051)和土壤与农业可持续发展国家重点实验室开放基金项目 (Y20160003)资助 Supported by the Projects of International Cooperation and Exchanges, National Natural Science Foundation of China (No. 41571130051) and Project from State Key Laboratory of Soil and Sustainable Agriculture (No. Y20160003)

氧化物以及铁与有机质结合形成的络合物等^[11]。 不同形态铁之间的转化以及铁在土壤中的迁移和再 分布是影响土壤物理、化学与矿物学特征的重要成 土过程^[12]。过去的研究表明,随着成土年龄的增 加,排水良好的自然土壤中游离铁与全铁含量的比 值逐渐升高,而无定形铁与游离铁含量的比值逐 渐下降^[13-15]。同时,铁氧化物的结晶度以及针铁 矿中铁被铝的替代量随土壤发育程度的增强而增 加^[16-18]。不同成土环境下土壤中铁的赋存形态具 有明显差异,在冷湿条件下有利于针铁矿的形成, 而在干热条件下有利于赤铁矿的形成^[19-21]。与土 壤中含量较高的针铁矿和赤铁矿相比,磁铁矿与磁 赤铁矿含量非常低,很难通过矿物分析直接鉴定, 但可以通过测定磁化率来间接反演。许多学者研究 表明,自然土壤演变过程中表层土壤磁化率显著增 强^[22-27],并认为这是由于植物焚烧^[22-23]、氧化 还原反应^[22, 28]或微生物作用^[29]使得成土过程中 形成和富集亚铁磁性矿物而引起的。尽管前人对成 土过程中铁氧化物与磁化率的演变特征进行了大量 研究,然而这些研究主要集中在排水良好的自然土 壤上, 而受到人为活动强烈影响、氧化还原作用交 替进行的水耕人为土长期演变过程中铁氧化物与磁 化率的动态特征目前尚不清楚。

与自然成土过程相比,水耕人为土周期性淹 水与排干导致土壤水分状况与氧化还原电位发生变 化,进而影响其元素迁移和再分布^[30-31]。研究表 明,铁的还原淋失与氧化淀积使得水耕人为土中全 铁和游离铁含量在土壤剖面中发生分异,并且随 着种稻年限的增加剖面分异逐渐增强^[32-34]。章明 奎^[35]对红壤性水耕人为土中晶态氧化铁及其来源 进行了研究,认为针铁矿具有母质残余和再结晶作 用两种来源, 而赤铁矿仅来源于成土母质; 随着种 稻年限的增加,针铁矿含量基本保持不变但铁被铝 替代的量有所下降, 而赤铁矿含量不断降低直至完 全消失。与起源土壤相比,水耕人为土的磁化率显 著降低,这是由于周期性淹水与排干阻碍和破坏了 亚铁磁性矿物的形成^[25, 36-37]。上述研究主要是针 对水耕人为土发展的某一阶段以土体为尺度进行的 静态对比研究, 而关于水耕人为土长期演变过程中 铁氧化物转化的途径、速率及磁化率的动态演变特 征报道较少。土壤时间序列为研究成土过程中土壤 属性演变的速率、方向及影响其变化的环境阈值提 供了有利手段^[38-39]。基于此,本研究选取我国亚 热带地区二组不同母质发育的水耕人为土时间序 列,通过化学提取和磁学测定,分析铁氧化物与磁 化率随成土时间的动态变化特征,探讨水耕人为土 长期演变过程中铁氧化物转化的途径、速率及其影 响因素,以期为水耕人为土发生演化的定量模型提 供数据支持。

1 材料与方法

1.1 研究区概况

本研究选取我国亚热带地区不同母质发育的水 耕人为土从十年到千年尺度的时间序列(表1), 分别为发育于浙江省慈溪市石灰性海相沉积物的 水耕人为土时间序列(CX01,0a;CX02,50a; CX03,300a;CX04,700a;CX05,1000a)和 发育于江西省进贤市酸性第四纪红黏土的水耕人为 土时间序列(RC10,0a;RC11,60a;RC12, 150a;RC13,300a)。研究区属亚热带季风气 候,年均气温分别为16.3和17.3℃,年均降水量 分别为1325和1549mm。不同母质发育的水耕人 为土时间序列建立和判定的依据见文献[40],采 样点信息及土壤类型见表1。

1.2 样品采集与分析

结合史料分析与实地考察,选取不同母质发育 的水耕人为土时间序列典型土壤剖面,按照土壤发 生层采样法采集土样并描述土壤形态^[41],土壤颜 色根据《中国标准土壤色卡》^[42]确定,所有土样 均在水稻收割排水后采取。土壤样品采集后在室内 自然风干,挑出枯枝落叶、根系和大于2 mm的非 土壤物质,四等分法取土,先后过10、60、100和 200目的尼龙筛,装好备用。

土壤pH、容重、颗粒组成、有机碳以及碳酸 钙含量等基本理化性质测定方法参照《土壤实验 室分析项目及方法规范》^[43]。游离铁、无定形 铁与络合态铁氧化物分别用连二亚硫酸钠-柠檬 酸钠-重碳酸钠、pH = 3的酸性草酸铵与pH = 10 的焦磷酸钠溶液浸提。待测液中Fe浓度用原子吸 收法(AA900F Flame Atomic Absorption Spectrum Spectrophotometer)测定。根据测定的不同层次铁 浓度与容重数据可以计算出土体内铁储量,计算公 式如下:

	Table 1	General information	of the soil sam	pling sites and type of	the soils	
剖面编号 Profile No.	种稻年龄 Cultivation age (a)	土壤类型 ¹⁾ Soil type	土地利用 Land use	地点/地形部位 Location/ Landscape position	经纬度/坡度 Latitude and longitude/Slope	地下水位 /海拔 Groundwater table/ Altitude (m)
CX01	0	潮湿冲积新成 土Aqu-alluvic Primosol	未垦滩涂	新浦镇 水云浦十塘	N 30° 19.20' E 121° 22.8'	1.4 ²⁾
CX02	50	简育水耕人为 土Hapi-Stagnic Anthrosols	单季稻	桥头镇 潭河沿村	N 30° 11.07' E 121° 21.31'	1.0
CX03	300	简育水耕人为 土Hapi-Stagnic Anthrosols	单季稻	三北镇施公山村	N 30° 06.43' E 121° 30.25'	1.1
CX04	700	铁渗水耕人为土 Fe-leachi-Stagnic	单季稻	周巷镇 大古塘村	N 30° 10.42' E 121° 09.14'	1.0
CX05	1 000	铁聚水耕人为 土Fe-accumuli- Stagnic Anthrosols	单季稻	周巷镇 南周巷村	N 30° 09.76' E 121° 06.98'	0.9
RC10	0	新化湿润富铁 土Argi-Udic Ferrosols	未垦荒地	坡顶	坡度 < 6°	44 ³)
RC11	60	铁聚水耕人为 土Fe-accumuli- Stagnic Anthrosols	双季稻	坡顶	坡度 < 6°	40
RC12	150	铁聚水耕人为 土Fe-accumuli- Stagnic Anthrosols	双季稻	坡中	坡度 < 6°	36
RC13	300	铁聚水耕人为 土Fe-accumuli- Stagnic Anthrosols	双季稻	坡底	坡度 < 6°	32

表1 土壤采样点信息及土壤类型

1) 土壤类型参照中国土壤系统分类^[41] Soil type is defined by referring to the Chinese Soil Taxonomy^[41]; 2) 地下水位 Groundwater table; 3) 海拔高度Altitude

$$\mathrm{Fe}_{\mathrm{mass}} = \sum_{i}^{n} C_{i} D_{i} E_{i} / 10$$

式中, Fe mass为土体铁储量(t hm⁻²), C_i 为i土层中 铁含量 (g kg⁻¹), D_i 为*i*土层的容重 (g cm⁻³), E_i 为i土层的厚度(cm),10为单位换算系数。

土壤磁化率(MS)用英国Bartington公司生 产的MS-2B型磁化率仪分别在低频(0.47 kHz, MSlf)和高频(4.7 kHz, MShf)磁场中测定, 每个样品连续测定2次取其平均值;滞后剩磁

(ARM)用英国Molspin公司生产的交变退磁仪 (交变磁场峰值100 mT,直流磁场0.04 mT)产 生非滞后剩磁, 以Minispin 旋转磁力仪测定; 等温剩磁(IRM)用英国Molspin公司生产的脉 冲磁化仪按照先后顺序获得样品在1 000 mT、 -20 mT、-100 mT、-300 mT磁场下的等温剩磁, 利用Minispin旋转磁力仪测定。IRM 1 000 mT 称为 饱和等温剩磁(SIRM), IRM 20 mT 称为软剩磁 (IRMs)。根据以上测定的磁性指标计算了硬剩

表2	不同形态铁及磁性指标的指示意义
12.4	们的龙冰冰冰山的小的小龙

 Table 2
 Different forms of Fe and implication of their magnetic parameters

参数	英文缩写	提取剂/单位	指示意义
Parameter	Abbreviation	Extractant/Unit	Implication
全铁	\mathbf{Fe}_{t}	硝酸-盐酸-氢氟酸	含铁硅酸盐矿物和土壤发生过程中形成的次生铁氧
Total Fe			化物总量
游离铁	Fe_{d}	连二亚硫酸钠柠檬酸钠-重碳	土壤发生过程中形成的次生铁氧化物,包括结晶态
Free Fe oxides		酸钠	铁氧化物和无定形态铁氧化物
硅酸盐铁	$\mathrm{Fe}_{\mathrm{t}}\mathrm{-Fe}_{\mathrm{d}}$	全铁与游离铁含量之差	含铁硅酸盐矿物
Silicate-bound Fe			
无定形铁	Fe_{o}	pH=3的草酸铵	无定形态铁氧化物,主要是水铁矿和非晶质铁氧
Amorphous Fe oxides			化物
络合态铁	Fe_{p}	pH=10的焦磷酸钠溶液	与有机质结合的铁以及少量的无定形态铁氧化物
Organic-bound Fe			
质量磁化率	MS	$10^{-8} \text{ m}^3 \text{ kg}^{-1}$	指示各种磁性矿物总量
Mass magnetic susceptibility			
饱和等温剩磁	SIRM	$10^{-4} \text{ A m}^2 \text{ kg}^{-1}$	SIRM不受顺磁性(如纤铁矿和水铁矿)和抗磁性
Saturation isothermal remanent			物质(如石英、黏土矿物等)的影响。SIRM大小
magnetization			主要由亚铁磁性矿物(如磁铁矿、磁赤铁矿)和不 完整反铁磁性矿(如赤铁矿、针铁矿)物所贡献
软剩磁	IRM _s	$10^{-4} \text{ A m}^2 \text{ kg}^{-1}$	可用来指示亚铁磁性矿物(如磁铁矿、磁赤铁矿)
Soft isothermal remanent			的含量
magnetization			
硬剩磁	$\mathrm{IRM}_{\mathrm{h}}$	$10^{-6} \text{ A m}^2 \text{ kg}^{-1}$	通常反映样品中不完整反铁磁性矿物(如赤铁矿、
Hard isothermal remanent			针铁矿)的含量
magnetization			
频率磁化率	FDS	%	主要反映土壤发生过程中所产生的超顺磁性颗粒
Frequency dependent magnetic			(SP, 0.012~0.022 μm)的相对含量
susceptibility			
非滞后剩磁	ARM	$10^{-6} \mathrm{A} \mathrm{m}^2 \mathrm{kg}^{-1}$	对样品中的亚铁磁性矿物浓度和颗粒大小都很敏
Anhysteretic remnant			感,尤其对细小的稳定单畴(SSD, 0.012~0.022
magnetization			μm)磁性矿物特别敏感
退磁参数	S_{-100mT}	%	反映了亚铁磁性矿物与不完整反铁磁性矿物在整个
Demagnetization parameter			磁性集合中的相对重要性
退磁参数	S_{-300mT}	%	反映了亚铁磁性矿物与不完整反铁磁性矿物在整个
Demagnetization parameter			磁性集合中的相对重要性

磁(IRM_h)和退磁参数(S_{-100mT},%),公式 如下:

硬剩磁(IRM_h): IRM_h=(SIRM+IRM_{-300mT})×0.5 退磁参数(S_{-100mT},%): S_{-100mT}(%)=[(SIRM-IRM_{-100mT})/(2×SIRM)]×100

不同形态铁氧化物及其提取剂类型,磁化率参数及其指示意义见表2。

2 结 果

不同母质发育的水耕人为土时间序列铁氧化 物演变特征

水耕人为土的不同母质起源土壤(CX01, RC10)中全铁和不同形态铁含量都均一分布, 随着时间序列演变, Fe₁、Fe_d、Fe_o和Fe_p在剖面 中的分异逐渐增强,但演变的趋势有所不同(图 1)。石灰性母质发育的水耕人为土120 cm土体 内Fe₁和Fe_d含量加权平均值随时间序列呈增加趋 势(CX01: Fe₁ 48.39 g kg⁻¹, Fe_d 11.81 g kg⁻¹; CX02: Fe₁ 53.84 g kg⁻¹, Fe_d 14.25 g kg⁻¹; CX03: Fe₁ 53.50 g kg⁻¹, Fe_d 15.56 g kg⁻¹; CX04: Fe₁ 55.90 g kg⁻¹, Fe_d 20.71 g kg⁻¹; CX05: Fe₁ 62.46 g kg⁻¹, Fe_d 23.51 g kg⁻¹), 而酸性母质发育的水耕 人为土120 cm土体内Fe₁和Fe_d含量加权平均值随时 间序列呈下降趋势(RC10: Fe₁ 63.51 g kg⁻¹, Fe_d 53.71 g kg⁻¹; RC11: Fe₁ 57.69 g kg⁻¹, Fe_d 47.64 g kg⁻¹; RC12: Fe₁ 50.97 g kg⁻¹, Fe_d 41.77 g kg⁻¹; RC13: Fe₁ 52.31 g kg⁻¹, Fe_d 34.65 g kg⁻¹)。不同 母质发育的水耕人为土中Fe_o、Fe_p和 硅酸盐矿物 结合态铁(Fe₁-Fe_d)含量均远低于Fe_d含量,表明 所测土壤中含铁矿物主要为晶态游离铁氧化物。 与Fe₁和Fe_d演变趋势不同,石灰性母质发育的水 耕人为土120 cm土体内Fe_o含量加权平均值明显 下降(CX01,7.27 g kg⁻¹;CX02,2.24 g kg⁻¹; CX03,2.64 g kg⁻¹;CX04,1.84 g kg⁻¹;CX05, 3.46 g kg⁻¹),而酸性母质发育的水耕人为土 120 cm土体内Fe_o含量加权平均值随时间序列呈先 上升后下降的趋势(RC10,2.87 g kg⁻¹;RC11, 7.64 g kg⁻¹;RC12,5.24 g kg⁻¹;RC13,4.05 g kg⁻¹),石灰性和酸性母质发育的水耕人为土Fe_p 含量随时间序列均没有明显的演变趋势。

2.2 不同母质发育的水耕人为土时间序列磁化率 演变特征

不同母质发育的水耕人为土的MS、SIRM和 IRM_s均随时间序列演变不断下降(图2):石灰性 母质发育的水耕人为土时间序列(CX01、CX02、 CX03、CX04、CX05)120 cm土体内MS的加权 平均值分别为52.73、15.75、15.55、8.95和8.91 (单位:10⁻⁸ m³ kg⁻¹),SIRM的加权平均值分 别为71.01、18.89、20.04、5.66和5.07(单位: 10⁻⁴ Am² kg⁻¹),IRM_s的加权平均值分别为27.77、 5.07、4.62、1.20和1.02(单位: 10⁻⁴ Am² kg⁻¹); 酸性母质发育的水耕人为土时间序列(RC10、 RC11、RC12、RC13)120 cm土体内MS的加权平 均值分别为315.45、119.62、39.76和6.19(单位: 10⁻⁸ m³ kg⁻¹),SIRM的加权平均值分别为53.33、 34.47、21.52和9.51(单位: 10⁻⁴ Am² kg⁻¹), IRM_s的加权平均值分别为39.95、21.01、11.66和 1.07(单位: 10⁻⁴ Am² kg⁻¹)。不同母质发育的水 耕人为土磁性指标剖面分布不同(图2):石灰性 母质发育的水耕人为土中MS、SIRM和IRM_s的剖面

Fig. 2 Dynamic changes in magnetic properties during the evolution of Stagnic Anthrosols from calcareous and acid parent materials separately

分布相对比较均一,而酸性母质发育的水耕人为土的起源土壤中MS、SIRM和IRM_a在表层和亚表层中富集,种稻后却表现为下层土壤中较高,随着时间序列的演变剖面分异逐渐减小。石灰性母质发育的水耕人为土起源土壤的IRM_h剖面分布均一,在种稻初期(< 300 a)IRM_b缓慢下降,此后(700 a和1000 a)IRM_b快速下降;酸性母质发育的水耕人为土剖面上部和下部IRM_b随时间序列演变呈现相反的趋势,表层和亚表层土壤的IRM_b均高于起源土壤,而50 cm以下土壤的IRM_b均低于起源土壤。石灰性母质发育的水耕人为土120 cm土体内IRM_b的加权平均值分别为 358、314、314、132和119(单位: 10^{-6} Am² kg⁻¹),酸性母质发育的水耕人为土120 cm土体内IRM_b的加权平均值分别为239、207、160和180(单位: 10^{-6} Am² kg⁻¹)。

3 讨 论

3.1 不同母质发育的水耕人为土演变过程中铁转 化的速率、途径及其影响因素

与起源土壤相比,二类不同母质发育的水耕人 为土中铁氧化物的剖面分异都明显增强(图1), 表现为Fe_t和Fe_d在水耕人为土的表层中相对亏缺而

在淀积层中相对富集,此外不同母质发育的水耕人 为土表土层中Fe,有所增加,这与前人所得到的结 果一致^[30, 32-34]。然而,时间序列方法研究结果表 明不同母质发育的水耕人为土演变过程中0~120 cm 土体内铁氧化物转化的速率与途径截然不同(图 3)。石灰性母质发育的水耕人为土0~120 cm 土 体中Fe₁与Fe₁含量以及游离度(Fe₁/Fe₁)随时间 序列演变均逐渐增加,表现为种稻初期增速最 快(0~50 a内Fe,、Fe,和Fe,/Fe,增加速率分别为 3.2 t hm⁻² a⁻¹、1.2 t hm⁻² a⁻¹和0.04% a⁻¹),此后缓 慢增加(50~1000 a内Fe₁、Fe_d和Fe_d/Fe_r增加速率 分别为0.1 t hm⁻² a⁻¹、0.15 t hm⁻² a⁻¹和0.01% a⁻¹); 而酸性母质发育的水耕人为土0~120 cm 土体中Fe, 与Fe_d含量以及游离度(Fe_d/Fe_t)随时间序列演变 均逐渐下降,表现为种稻初期下降缓慢(0~60 a 内Fe₁、Fe_d和Fe_d/Fe₁下降速率分别为0.2 t hm⁻² a⁻¹、 0.5 t hm⁻² a⁻¹和0.03% a⁻¹),此后下降速率较高 (60~300 a内Fe₁、Fe_d和Fe_d/Fe₁下降速率分别为 0.9 thm⁻² a⁻¹、1.2 thm⁻² a⁻¹和0.06% a⁻¹)。石灰性 母质发育的水耕人为土0~120 cm 土体中Fe。以及活 化度(Fe_d/Fe_d)呈现下降趋势,而酸性母质发育的 水耕人为土0~120 cm 土体中Fe。以及活化度(Fe。/ Fe_d)呈现上升趋势(图3)。不同母质发育的水耕

人为土时间序列0~120 cm 土体中Fe_p占全铁含量 的百分比均不到5%,表明水耕人为土中铁主要以 无机铁氧化物形式为主。上述结果表明,位于平原 地区石灰性母质发育的水耕人为土在千年尺度内铁 循环是以土体内还原淋溶与氧化淀积为主的内循环 过程;而位于丘陵地区酸性母质发育的水耕人为土 在几十年至百年尺度内大量铁已随黏粒从土体中淋 失,并可能参与区域或流域尺度下铁的生物地球化 学循环过程。

土壤pH、氧化还原状况,以及外源铁输入与 土体内铁淋失的相对强度是控制上述不同母质水耕 人为土铁氧化物转化速率与途径的主要因素。过 去的研究表明, 渍水土壤中铁还原的临界Eh 在pH 为 6~7 时约100 mV, pH为 5 时约300 mV, 而pH 为 8 时约-100 mV^[44-45]。石灰性母质发育的水耕 人为土的pH范围为6.3~8.6,起源土壤在淹水还原 后呈弱碱性环境,阻碍了铁的活化、移动与淋溶损 失^[44-47], 使得土壤中铁淋失速率低于降尘或灌溉 等铁的补给速率,因而种稻初期Fe,和Fe,含量明显 增加(图3)。随着时间序列的演变,石灰性母质 发育的水耕人为土中CaCO3不断淋失,土壤pH由弱 碱性趋于中性至弱酸性^[48],阻碍铁活化、移动与 淋溶损失的环境条件相对减弱,因而老水耕人为土 中Fe₁和Fe_d含量增速减缓(图3)。相反,酸性母质 发育的水耕人为土的pH范围为 4.7~6.2, 在淹水 还原条件下酸性环境有利于促进土壤中铁的活化、 还原溶解与淋溶损失^[44-47],并且酸性母质发育的 水耕人为土位于丘陵阶地,淋溶强度高于平原地 区^[49],从而导致其演变过程中Fe_t和Fe_d含量呈现

下降而Fe_o呈现增加的趋势。过去的研究表明,游 离度(Fe_d/Fe_t)和活化度(Fe_o/Fe_d)可以用来指示 自然土壤的相对发育程度^[50-51]。然而,不同母质 发育的水耕人为土演变过程中游离度(Fe_d/Fe_t)和 活化度(Fe_o/Fe_d)却呈现截然相反的规律。因此, 在利用游离度(Fe_d/Fe_t)或活化度(Fe_o/Fe_d)来指 示具有氧化还原特征土壤的发育程度时应注意成土 微地形环境和土壤水分状况对不同形态铁氧化物转 化、迁移与再分布的影响。

3.2 不同母质发育的水耕人为土演变过程中磁性 矿物转化的速率、途径及其影响因素

不同母质发育的水耕人为土时间序列磁学指标 演变的速率与阶段不同(图4)。石灰性母质发育 的水耕人为土不同磁学性质(MS、SIRM、IRM、、 IRM。)在土壤剖面上的分布相对比较均一(图 2),随着时间序列的演变,其磁性发展与磁性矿 物转化可以大致分为三个阶段(图4):第一阶段 从起源土壤至种稻50 a,表现为MS、SIRM和IRM。 的急剧降低,与起源土壤相比, MS、SIRM和IRM。 分别降低了78%、73%和80%。第一阶段土壤中磁 性矿物以IRM。指示的亚铁磁性矿物(如磁赤铁矿) 为主,少量反铁磁性矿物(如针铁矿)和顺铁磁性 矿物(如纤铁矿)并存。第二阶段从种稻50 a至种 稻300 a, 表现为MS、SIRM和IRM。的持续、缓慢 降低以及IRM_h的相对稳定发展,其中MS、SIRM和 IRM。下降的速率均不足第一阶段下降速率的1%。 第二阶段土壤磁性矿物以反铁磁性矿物(如针铁 矿)和顺铁磁性矿物(如纤铁矿)为主。第三阶 段从种稻300 a至1000 a, 表现为SIRM 和IRM。的持

Fig. 4 Dynamic changes in magnetic properties along the chronosequences of the two Stagnic Anthrosols developing from calcareous (A) and acid (B) parent materials

续、缓慢降低以及IRM。的快速下降,从而导致种 稻1000 a后水耕人为土中磁性矿物含量达到最低 (图4),此时土壤中磁性矿物以风化产生的弱结 晶顺铁磁性矿物(如水铁矿和纤铁矿)为主,少量 反铁磁性矿物(如针铁矿)并存。酸性母质发育的 水耕人为土0~20 cm 和20~120 cm土壤中磁学性 质(MS、SIRM、IRM。、IRM。)和磁性矿物转化呈 现截然不同的两个阶段(图4):第一阶段从起源 土壤至种稻60 a, 0~20 cm 表现为MS、SIRM 和 IRM。的急剧降低,与起源土壤相比, MS、SIRM和 IRM。分别降低了98%、86%和94%, IRM。具有明显 增加。而20~120 cm 表现为MS、SIRM和IRM。的缓 慢下降, IRM, 明显降低。第一阶段0~20 cm土壤 中磁性矿物以亚铁磁性矿物(如磁赤铁矿)为主逐 渐转变为反铁磁性矿物 (主要是针铁矿)为主, 20~120 cm 土壤中磁性矿物以亚铁磁性矿物(如 磁赤铁矿)和反铁磁性矿物(主要是赤铁矿)并 存; 第二阶段从种稻60 a至300 a, 0~20 cm 表现 为不同磁学性质(MS、SIRM、IRM_s、IRM_h)变化 幅度均很小,而20~120 cm 表现为IRM_相对比较 稳定, MS、SIRM 和IRM。在种稻150 a后快速下降 (图4)。此时整个土体中磁性矿物均以反铁磁性矿 物为主,结合土壤颜色和磁学性质分析,0~20 cm 以针铁矿占优势, 而20~120 cm以赤铁矿占优势。

不同母质发育的水耕人为土中MS、SIRM 均与IRM_s的演变规律一致(图4),并且MS、 SIRM均与IRM_s呈现极显著相关(表3, r>0.95, p<0.001),表明不同母质发育的水耕人为土中磁</p>

表3 石灰性和酸性母质发育的水耕人为土磁性指标之间

的相关关系

Table 3	Correlations	between	soil	magnetic	parameters	
---------	--------------	---------	------	----------	------------	--

磁性指标	IRM _s			
Magnetic	石灰性母质	酸性母质		
pamameters	Calcareous parent material	Acid parent material		
MS	0.994***	0.968***		
SIRM	0.990^{***}	0.996***		
*** ~ ~	0.001			

*** p < 0.001

性矿物的转化主要是IRM。所指示的亚铁磁性矿物 (如磁赤铁矿)变化引起的。过去的研究表明,排 水良好的自然土壤成土过程中形成亚铁磁性矿物是 导致表层土壤磁化率增强的重要原因^[22-24, 52-54]。 然而,不同母质发育的水耕人为土演变过程中表层 土壤磁化率均出现衰减,尤其是在种稻初期,不同 磁性指标(MS、SIRM、IRM。)均出现急剧降低, 此后持续缓慢下降(图4)。许多研究表明,水耕 人为土的磁性显著低于其起源土壤,并且认为这是 由于水耕人为土淹水还原导致土壤中磁性矿物,尤 其是IRM。所指示的亚铁磁性矿物还原溶解和/或机 械淋失造成的^[25, 36-37]。石灰性母质发育的水耕人 为土的表层长期受到人为淹水作用,而下层土壤受 到地下水周期性升降的影响,从而导致整个土体中 亚铁磁性矿物被还原溶解,表现为不同磁学性质 (MS、SIRM、IRM_s、IRM_h)在剖面中的分布相对 比较均一(图2);而酸性母质发育的水耕人为土 除坡底土壤外均不受地下水的影响,但其淋溶强度

明显高于平原地区石灰性母质发育的水耕人为土, 因而其亚铁磁性矿物除了受到还原溶解外还受到 机械淋失的影响,表现为磁学性质(MS、SIRM、 IRM。、IRM。)在剖面上部(0~20 cm)和下部 (20~120 cm) 演变规律不同(图2)。酸性母质发 育的水耕人为土强淋溶条件导致种稻初期0~20 cm 土壤向下层补充了一定量未及破坏的磁性矿物,而 随着0~20 cm土壤中铁和黏粒的大量淋失,这种 来自上层土壤的补给不断减少,因此20~120 cm 土壤中不同磁性指标(MS、SIRM、IRM。)在种稻 初期缓慢下降,300 a后出现快速下降(图4)。石 灰性母质发育的水耕人为土种稻300 a内 IRM。相对 稳定, 而700 a和1000 a水耕人为土的IRM,快速下 降。这是由于300 a前土壤中存在大量CaCO₃^[48], 碱性条件下有利于土壤中弱结晶的顺铁磁性矿物 (如水铁矿和纤铁矿)转化形成IRM,所指示的反 铁磁性矿物(如针铁矿)^[20],而300 a后土体中 CaCO₃几乎完全淋失,pH下降加速了IRM_b所指示 的反铁磁性矿物(如针铁矿)的溶解和破坏。酸 性母质发育的水耕人为土演变过程中IRMh在剖面 上部(0~20 cm)具有增加趋势,而在剖面下部 (20~120 cm)呈现下降趋势。研究表明随着土壤发 育程度增加,针铁矿中铝同晶替代量逐渐增加^[20]。 第四纪红黏土是高度风化的土壤,因此种稻初期淹 水条件导致第四纪红黏土母质中铝同晶替换量高的 针铁矿还原溶解,并与溶液中高浓度铁结合从而在 氧化条件下再结晶生成铝同晶替换量低的针铁矿可 能是表层土壤IRM。增加的主要原因。

可见,人为周期性淹水与排干引起的水耕人 为土干湿交替在几十年尺度内可以显著改变土壤磁 性演变的速率与方向,因此,在应用磁学性质来反 演土壤或沉积物形成的古气候和古环境时,应特别 注意人为活动(如周期性淹水与排干)对成土环 境和磁学性质带来的影响。由于水耕人为土表层 和亚表层的MS均显著低于其起源土壤(图2),并 且磁性测量经济、快捷,且对样品没有破坏性, 因此,我们建议将表层和亚表层MS < 25(单位: 10⁻⁸ m³ kg⁻¹)作为水耕表层的诊断特性之一。

4 结 论

不同母质发育的水耕人为土演变过程中铁氧 化物转化的速率与途径不同:石灰性母质发育的水 耕人为土0~120 cm 土体中全铁(Fe₁)、游离铁 (Fe_d)和游离度(Fe_d/Fe₁)随时间序列演变均逐 渐增加,无定形铁(Fe_a)和活化度(Fe_o/Fe_d)呈 现下降趋势;而酸性母质发育的水耕人为土0~120 cm 土体中Fe₁、Fe_d和Fe_d/Fe₁随时间序列演变均逐 渐下降,Fe_o和Fe_o/Fe_d呈现下降趋势。人为周期性 淹水与排干引起的水耕人为土干湿交替在几十年尺 度内可以显著改变土壤磁性演变的速率和方向,因 此在应用磁学性质来反演土壤或沉积物形成的古气 候和古环境时,应特别注意人为活动(如周期性淹 水与排干)对成土环境和磁学性质带来的影响。

参 考 文 献

- [1] Wedepohl K H. The composition of the continental crust. Geochimica et Cosmochimica Acta, 1995, 59 (7): 1217-1232
- [2] Takeda S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature, 1998, 393 (6687): 774-777
- [3] Moore J K, Doney S C, Glover D M, et al. Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 2001, 49 (1/3): 463-507
- [4] Cairo G, Bernuzzi F, Recalcati S. A precious metal: Iron, an essential nutrient for all cells. Genes and Nutrition, 2006, 1 (1): 25-39
- [5] Scott A D, Amonette J. Role of iron in mica weathering// Stucki J W, Goodman B A, Schwertmann U. Iron in soils and clay minerals. Berlin: Springer Netherlands, 1988: 537-623
- [6] Jilbert T, Slomp C P, Gustafsson B G, et al. Beyond the Fe-P-redox connection: Preferential regeneration of phosphorus from organic matter as a key control on Baltic Sea nutrient cycles. Biogeosciences, 2011, 8: 1699-1702
- [7] Borch T, Kretzschmar R, Kappler A, et al. Biogeochemical redox processes and their impact on contaminant dynamics. Environmental Science & Technology, 2009, 44 (1): 15-23
- [8] Lalonde K, Mucci A, Ouellet A, et al. Preservation of organic matter in sediments promoted by iron. Nature, 2012, 483 (7388): 198-200
- [9] Filimonova S, Kaufhold S, Wagner F E, et al. The role of allophane nano-structure and Fe oxide speciation for hosting soil organic matter in an allophanic Andosol. Geochimica et Cosmochimica Acta, 2016, 180: 284—

- [10] Jickells T D, An Z S, Andersen K K, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 2005, 308 (5718): 67-71
- [11] Enver M, Walter R F. The geochemical cycle of iron// Stucki J W, Goodman B A, Schwertmann U. Iron in soils and clay minerals. Berlin: Springer Netherlands, 1988: 1-18
- [12] van Breemen N, Buurman P. Soil formation. Dordrecht: Kluwer Academic Publishers, 2002: 1-20
- [13] McFadden L D, Hendricks D M. Changes in the content and composition of pedogenic iron oxyhydroxides in a chronosequence of soils in southern California. Quaternary Research, 1985, 23 (2): 189-204
- [14] Diaz M C, Torrent J. Mineralogy of iron oxides in two soil chronosequences of central Spain. Catena, 1989, 16 (3): 291-299
- [15] Aniku J R F, Singer M J. Pedogenic iron oxide trends in a marine terrace chronosequence. Soil Science Society of America Journal, 1990, 54 (1): 147-152
- Bigham J M, Golden D C, Bowen L H, et al. Iron oxide mineralogy of well-drained ultisols and oxisols:
 I. Characterization of iron oxides in soil clays by Mössbauer spectroscopy, X—ray diffractometry, and selected chemical techniques. Soil Science Society of America Journal, 1978, 42 (5): 816-825
- Baker L L, Strawn D G, Vaughan K L, et al. XAS study of Fe mineralogy in a chronosequence of soil clays formed in basaltic cinders. Clays and Clay Minerals, 2010, 58 (6): 772-782
- [18] Torrent J, Schwertmann U, Schulze D G. Iron oxide mineralogy of some soils of two river terrace sequences in Spain. Geoderma, 1980, 23 (3): 191-208
- [19] Schwertmann U, Murad E, Schulze D G. Is there Holocene reddening (hematite formation) in soils of axeric temperate areas? Geoderma, 1982, 27 (3): 209-223
- [20] Cornell R M, Schwertmann U. The iron oxides: Structure, properties, reactions, occurrences and uses. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2003: 1-40
- [21] Vodyanitskii Y N. Iron hydroxides in soils: A review of publications. Eurasian Soil Science, 2010, 43 (11): 1244-1254
- [22] Le Borgne E. Susceptibilité magnétique anormale du sol superficiel. Annales de G é ophysique, 1955, 11: 399-419
- [23] Mullins C E. Magnetic susceptibility of the soil and its

significance in soil science—A review. Journal of Soil Science, 1977, 28 (2): 223—246

- [24] Singer M J, Verosub K L, Fine P, et al. A conceptual model for the enhancement of magnetic susceptibility in soils. Quaternary International, 1996, 34/36: 243-248
- [25] 卢升高.中国土壤磁性与环境.北京:高等教育出版 社,2003
 Lu S G. Chinese soil magnetism and environment (In Chinese). Beijing: Higher Education Press, 2003
- [26] Liu Q S, Hu P X, Torrent J, et al. Environmental magnetic study of a Xeralf chronosequence in northwestern Spain: Indications for pedogenesis.
 Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 293 (1): 144-156
- [27] Torrent J, Liu Q S, Barrón V. Magnetic susceptibility changes in relation to pedogenesis in a Xeralf chronosequence in northwestern Spain. European Journal of Soil Science, 2010, 61 (2): 161-173
- [28] Oldfield F, Barnosky C, Leopold E B, et al. Mineral magnetic studies of lake sediments. Hydrobiologia, 1983, 103 (1): 37-44
- [29] Fassbinder J W E, Stanjekt H, Vali H. Occurrence of magnetic bacteria in soil. Nature, 1990, 343 (6254): 161-163
- [30] Gong Z T. Pedogenesis of paddy soil and its significance in soil classification. Soil Science, 1983, 135 (1): 5-10
- [31] Kyuma K. Paddy soil science. Kyoto: Kyoto University Press, 2004: 10-20
- [32] Yu T R. Physical chemistry of paddy soils. Berlin: Springer-Verlag, 1985: 50-88
- [33] 赵红挺.成都平原水稻土中铁的分异特点.土壤学报, 1992,29(2):191—198
 Zhao H T. Differentiation of iron oxides in paddy soils of Chendu Plain (In Chinese). Acta Pedologica Sinica, 1992,29(2):191—198
- [34] 徐建忠.四川紫色水稻土氧化铁的分异.山地研究, 1993,11(4):246—250
 Xu J Z. Differentiation of iron oxides of purple paddy soils in Sichuan Province (In Chinese). Mountain Research, 1993,11(4):246—250
- [35] 章明奎. 红壤性水稻土晶态氧化铁及其起源. 浙江农业 大学学报, 1997, 23 (5): 589—594
 Zhang M K. Occurrence and origin of crystalline iron oxides in paddy soils derived from Red Earth (In Chinese). Journal of Zhejiang Agricultural University, 1997, 23 (5): 589—594
- [36] 余劲炎,赵渭生,詹硕仁.太湖流域水稻土的磁化率剖

³⁰²

面. 土壤学报, 1981, 18(4): 376-382

Yu J Y, Zhao W S, Zhan S R. The magnetic susceptibility profile of paddy soils in Tai Hu basin (In Chinese). Acta Pedologica Sinica, 1981, 18 (4): 376-382

- [37] 卢升高. 红壤与红壤性水稻土中磁性矿物特性的比较研究. 科技通报, 1999, 15(6): 409—413
 Lu S G. A comparative study on magnetic minerals of red soil and paddy soil (In Chinese). Bulletin of Sciences and Technology, 1999, 15(6): 409—413
- [38] Huggett R J. Soil chronosequences, soil development, and soil evolution: A critical review. Catena, 1998, 32 (3): 155-172
- [39] Huang L M, Thompson A, Zhang G L, et al. The use of chronosequences in studies of paddy soil evolution: A review. Geoderma, 2015, 237: 199-210
- [40] Huang L M, Zhang G L, Thompson A, et al. Pedogenic transformation of phosphorus during paddy soil development on calcareous and acid parent materials. Soil Science Society of America Journal, 2013, 77 (6): 2078-2088
- [41] Schoeneberger P J, Wysocki D A, Benham E C, et al.
 Field book for describing and sampling soils. 2nd ed.
 Lincoln: National Soil Survey Center, 2002
- [42] 中国科学院南京土壤研究所,中国科学院西安光学精 密机械研究所.中国标准土壤色卡.南京:南京出版 社,1989

Institute of Soil Science, Chinese Academy of Sciences, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences. Chinese standard soil colour charts (In Chinese). Nanjing: Nanjing Press, 1989

[43] 中国科学院南京土壤研究所土壤系统分类课题.土壤实 验室分析项目及方法规范.上海:上海科学技术出版 社,1991

> Institute of Soil Science, Chinese Academy of Sciences. Soil Laboratory Analysis and Method Standards (In Chinese). Shanghai: Shanghai Scientific and

Technical Publishers, 1991

- [44] Ponnamperuma F N, Tianco E M, Loy T. Redox equilibria in flooded soils: I. The iron hydroxide systems. Soil Science, 1967, 103 (6): 374-382
- [45] Gotoh S, Patrick W H. Transformation of iron in a waterlogged soil as influenced by redox potential and pH. Soil Science Society of America Journal, 1974, 38 (1): 66-71
- [46] Brinkman R. Ferrolysis, a hydromorphic soil forming process. Geoderma, 1970, 3 (3): 199-206
- [47] Ponnamperuma F N. The chemistry of submerged soils. New York and London: Academic Press, 1972
- [48] Chen L M, Zhang G L, Effland W R. Soil characteristic response times and pedogenic thresholds during the 1000-year evolution of a paddy soil chronosequences. Soil Science Society of America Journal, 2011, 75 (5): 1807-1820
- [49] Zhang G L, Gong Z T. Pedogenic evolution of paddy soils in different soil landscapes. Geoderma, 2003, 115 (1): 15-29
- [50] Leigh D S. Soil chronosequence of brasstown creek, Blue Ridge mountains, USA. Catena, 1996, 26 (1): 99-114
- [51] Simón M, Sánchez S, Garcia I. Soil-landscape evolution on a Mediterranean high mountain. Catena, 2000, 39 (3): 211-231
- [52] Fine P, Singer M J, La Ven R, et al. Role of pedogenesis in distribution of magnetic susceptibility in two California chronosequences. Geoderma, 1989, 44 (4): 287-306
- [53] Liu Q S, Deng C L, Yu Y, et al. Temperature dependence of magnetic susceptibility in an argon environment: Implications for pedogenesis of Chinese loess/palaeosols. Geophysical Journal International, 2005, 161 (1): 102-112
- [54] Lu S G, Xue Q F, Zhu L, et al. Mineral magnetic properties of a weathering sequence of soils derived from basalt in Eastern China. Catena, 2008, 73 (1): 23-33

Evolution Characteristics of Iron Oxides and Magnetic Susceptibility in Stagnic Anthrosols along Chronosequences

HUANG Laiming^{1, 2, 3} SHAO Ming'an^{1, 3†} CHEN Liumei⁴ HAN Guangzhong⁵ ZHANG Ganlin^{2, 3†}

(1 Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources

 $Research\,,\ Chinese\ Academy\ of\ Sciences\,,\ Beijing\ 100101\,,\ China\)$

 $(\ 2\ State\ Key\ Laboratory\ of\ Soil\ and\ Sustainable\ Agriculture\ ,\ Institute\ of\ Soil\ Science\ ,$

Chinese Academy of Sciences, Nanjing 210008, China)

(3 College of Resources and Envinonment, University of Chinese Academy of Sciences, Beijing 100049, China)

(4 College of Resources and Environment, Zunyi Normal College, Zunyi, Guizhou 563002, China)

(5 School of Geography and Resource Science, Neijiang Normal University, Neijiang, Sichuan 641112, China)

Abstract [Objective] The study is oriented to explore characteristics of the evolution of iron oxides and magnetic susceptibility in Stagnic Anthrosols, different in parent material, in subtropical China along chronosequence and their influencing factors. [Method] Soil samples were collected for extraction of total Fe (Fe₁), free Fe oxides (Fe₄), amorphous Fe oxides (Fe₅) and organic-bound Fe (Fe₇) by the lithium metaborate fusion method, the dithionite-citrate-bicarbonate (DCB) method, acid ammonium oxalate (AAO) at pH=3 in the dark and Na-pyrophosphate at pH=10, separately. Magnetic susceptibility (MS) of the soils was measured at both low (0.47 kHz) and high frequencies (4.7 kHz) using a Bartington MS-2B meter with dual frequency sensor. [Result] Results show that along the chronosequence, weighted mean total Fe (Fe_t) , free Fe oxides (Fe_d) and Fe_d/Fe_t in the $0 \sim 120$ cm soil layer increased in the calcareous Stagnic Anthrosols, at a rate of 3.2 t hm⁻² a⁻¹, 1.2 t hm⁻² a⁻¹ and 0.04% a⁻¹, respectively, during the first 50 years and at a rate of 0.1 t hm⁻² a⁻¹, 0.15 t hm⁻² a⁻¹ and 0.01% a⁻¹, respectively, during the following 950 years (50 ~ 1 000 years), but decreased in the acid Stagnic Anthrosols at a rate of 0.2 t hm⁻² a⁻¹, 0.5 t hm⁻² a⁻¹ and 0.03% a⁻¹, respectively, during the first 60 years and at a rate of 0.9 t hm⁻² a⁻¹, 1.2 t hm⁻² a⁻¹ and 0.06% a⁻¹ during the following 240 years ($60 \sim 300$ years), while weighted mean amorphous Fe oxides (Fe_{0}) and Fe_{0}/Fe_{d} in the 0 ~ 120 cm soil layer tended to decrease in the calcareous Stagnic Anthrosols, but did reversely in the acid Stagnic Anthrosols. Soil pH, Eh, and the balance between input of external Fe with irrigation and loss of internal Fe with leaching are major factors controlling the rates and pathways of Fe oxides transformation during the evolution of Stagnic Anthrosols. Along the chronosequence, the Stagnic Anthrosols derived from calcareous parent material underwent chronosequence demonstrated three phases of magnetic changes, i.e. the initial phase lasting a few decades dominated by rapid decreases in MS (magnetic susceptibility), SIRM (saturation isothermal remanent magnetization) and IRM_s (soft isothermal remanent magnetization); the second phase lasting a bit more than two centuries ($50 \sim 300$ years) demonstrating constant IRM_b (hard isothermal remanent magnetization) and slow decline in MS, SIRM, and IRM_s; and the third phase (300 ~ 1 000 years), witnessing minimal changes in MS, SIRM and IRM, but drastic decline in IRM_b, while the Stagnic Anthrosols derived from acid parent material did two phases, which in the $0 \sim 20$ cm soil layer were completely different from those in the $20 \sim 120$ cm soil layer: In the first phase ($0 \sim 60$ years), MS, SIRM and IRM, declined but IRM_h increased rapidly in the 0 ~ 20 cm soil layer, while all the magnetic properties declined in the $20 \sim 120$ cm soil layer; However, in the second phase ($60 \sim 300$ years), all the magnetic properties did not vary much in the $0 \sim 20$ cm soil layer, while MS, SIRM, and IRM_s declined rapidly in the $20 \sim 120$ cm soil layer after 150 years of paddy cultivation. [Conclusion] The overall magnetic depletion in the Stagnic Anthrosols, though different in parent material was attributed to the reductive dissolution of ferromagnetic minerals under artificial submergence.

Key words Stagnic Anthrosols; Chronosequence; Iron oxides; Magnetic susceptibility; Parent material

(责任编辑:卢 萍)