DOI: 10.11766/trxb201712230496

黄土沟壑区不同地形部位土壤大孔隙特征研究*

鞠忻倪1 贾玉华1,27 甘 森1 金 珊1 肖 波3

(1沈阳农业大学水利学院,沈阳 110866)

(2中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室,北京 100101)(3中国农业大学资源与环境学院,北京 100193)

摘 要 切沟沟底、沟缘和坝地侵蚀发生和发展的过程不同,通过采集三种地形条件的原状土 柱,利用CT扫描手段揭示土壤大孔隙随地形和深度变化的规律。结果表明:(1)三种地形条件对土 壤大孔隙参数具有显著影响;与已有结果相比,地形条件对土壤大孔隙参数的影响弱于植被的作用; (2)不同土层(厚50 mm)大孔隙参数差异显著,沟缘土壤大孔隙度均值和变异系数在102 mm深度 具有上下分异明显的特点;(3)大孔隙数分别与黏粒含量和饱和导水率呈显著和极显著负相关关系, 沟底土壤大孔隙的连通性较沟缘和坝地更好。沟底和沟缘土壤的大孔隙通道主要受植物根系作用影 响,坝地土壤大孔隙受长期淤积和水分渗透作用影响,上述因素造成三种地形条件土壤大孔隙特征产 生差异。

关键词 黄土高原;切沟;CT扫描;土壤结构;土壤孔隙中图分类号 S152.5 文献标识码 A

土壤大孔隙是固相土壤颗粒与团聚体之间容纳 水分和气体的空间,它既是土壤中物质和能量交换 的通道,又是植物根系、土壤动物和微生物活动的 场所。土壤大孔隙的数目、大小和空间结构对土壤 的透气性、持水保水性能以及植物根系在土壤空间 的伸展有着重要影响。利用CT扫描技术研究土壤 大孔隙特征,孔隙分辨率可达mm和µm尺度,便 于对土壤结构进行定量评价;同时在不破坏土壤内 部结构的情况下,通过对连续断面图像进行重组, 能够实现土体内部结构的三维重建。凭借其对原状 土体结构研究具有无损性、精确性、全面性和快速 性等优点,CT扫描技术已成为土壤大孔隙研究的 主要方法之一^[1-4]。

黄土高原是沟蚀引发环境威胁与地貌演变的 代表性区域。沟蚀在吞噬土地和大量产沙的同时, 塑造了黄土高原地形破碎和沟谷密布的地表形态。 作为黄土高原常见的一种沟谷形态,切沟是坡面径 流输移泥沙从而引起物质迁移的主要通道,又是侵 蚀物质的来源之一。坝地是以淤地坝作为沟道治理 措施从而拦截泥沙、淤积而成的可利用土地。切沟 沟底、沟缘和坝地在流域地形地貌和坡沟系统水文 过程中扮演不同的角色,不同地形条件发生的水文 过程很大程度上决定于降水的入渗和产流以及土壤 水分状况,其中土壤大孔隙对于相关结果、过程和 机理解释的能力尤为突出^[5-6]。土壤大孔隙体积相 对于总孔隙体积而言通常比例较小,其饱和与否及 程度对径流属性起主要的作用。此外,土壤大孔隙 内发生的优先流和重力水下渗还影响降水的分割比 例。土壤大孔隙的数量、形态和连通性等特征受外 界物理过程影响,存在细颗粒堵塞大孔隙,渗透水

* 通讯作者Corresponding author. E-mail: jiayuhua@163.com
 作者简介: 鞠忻倪(1996—), 女, 辽宁大连人, 专业为水土保持与荒漠化防治。E-mail: juxinni96@163.com
 收稿日期: 2017-12-23; 收到修改稿日期: 2018-04-03; 优先数字出版日期(www.cnki.net): 2018-05-30

^{*} 国家自然科学基金项目(41571221, 41571130081) 资助 Supported by the National Natural Foundation of China (Nos. 41571221, 41571130081)

流、压实效应和胀缩过程引起孔隙变形等现象。对 黄土高原切沟沟底、沟缘和坝地土壤大孔隙特征利 用CT扫描开展相关研究,是探索流域径流、泥沙 和土壤水分过程与机理,描述不同地形条件和土壤 侵蚀演变之间关系的重要途径之一。此外,大孔隙 是黄土结构的本质特性之一^[7],因对水分具有储 存和调节功能,其形态特征对黄土高原植被恢复下 的土壤水库重建具有重要意义^[4],大孔隙特征还 关系到土壤渗透性和湿陷性等工程地质性质^[8]。

目前,黄土高原不同植被演替阶段^[4]、不同 植被类型^[2,9]和土地利用类型^[10]下土壤孔隙特征 的定量分析已相对深入,但大孔隙参数随深度的变 化揭示得不够细致。在东北黑土区^[11-12]、南方红 壤区^[13-14]以及内蒙古浑善达克沙地^[15],基于CT 扫描技术的土壤孔隙特征研究亦同步展开,然而地 形条件对土壤大孔隙特征的影响尚未见报道。本文 选定神木县六道沟流域,在典型切沟和坝地采集原 状土柱,利用CT扫描技术分析土壤大孔隙特征, 拟描述并比较沟底、沟缘和坝地土壤的大孔隙特 征,揭示土壤大孔隙参数随深度的变化规律,结果 可丰富砂质土壤孔隙结构研究,为黄土区坡沟系统 土壤水分过程、土壤水库调蓄降水及流域土壤干层 缓解等提供重要信息。

1 材料与方法

1.1 研究区概况

研究区位于陕西省神木县窟野河流域 支流六道沟(110°21′~110°23′E, 38°46′~38°51′N)西侧,地处毛乌素沙地 和黄土高原的过渡地带,属于典型片沙覆盖的黄土 丘陵沟壑地貌。地面起伏较平缓,但切割破碎, 沟谷密度6.45 km·km⁻²,海拔1081~1274m,相 对高差68~107m。气候特征为:中温带半干旱草 原季风气候;年均蒸发量785.4mm,干燥度1.8, 年均降水量437.4mm,其中6—9月降水占全年降 水量的77.4%;年平均大风日13.5d,最多可达44 d,主要发生在春季;年平均气温8.4℃,大于等于 10℃积温3200℃,无霜期135d。土壤类型主要有 绵沙土、新黄土、红土以及在沙地上发育起来的风 沙土和坝地淤土。土壤结构为轻壤一中壤,结构疏 松,抗蚀性差,水土流失严重。流域自然植被破坏 殆尽,现存的森林资源全部以人工林为主。

1.2 原状土柱采集

本试验主要设计3个处理:切沟沟底、沟缘和 坝地,3次重复。洗择坡面上一典型切沟作为样地 1, 原状土柱的采集地点确定为沿切沟沟底上游、 中游和下游及沟缘坡上、坡中和坡下的6个样点。 该样地海拔1 198~1 230 m, 沟底主要植被为长芒 草和冰草,沟缘主要植被为长芒草、铁杆蒿和胡 枝子。再洗取切沟附近的一块典型坝地作为样地 2,沿对角线选取3个样点,样点附近生长有少量 芦苇。原状土柱的采集时间为2016年8月,具体方 法为:先除去样点表层的枯枝落叶,然后将内直径 110 mm、长度250 mm的PVC硬质管材垂直压入表 层土壤(该端提前打磨好刃口),管口上方放置胶 垫,用胶质锤将PVC管缓缓敲入土壤,直至管口与 地面接近齐平。然后通过挖掘将原状土柱小心取 出,下端削平后将两端密封并标记上下方向,采集 完成后将原状土柱运至医院CT室,运输过程中采 用棉垫缓冲和尽量避免颠簸等方式减小土体的扰动 与破坏。

1.3 土柱扫描与分析

原状土柱CT扫描所用仪器为Philips 16通道螺 旋CT机,该仪器主要用于医学领域的人体扫描, 因此在进行土壤扫描时重新设定扫描参数。经调整 设置峰值电压为140 kV,电流为316 mA,扫描时 间为15.5 s;扫描厚度为2 mm,每隔2 mm扫描一 个横断面,9个土柱各获取124个横断面图像。

利用Image J软件对CT扫描图像进行分析。居 中选取分析图像的尺寸为62.5 mm×62.5 mm,先 将切割后的图像转换为8-bit图像,然后结合实际土 壤孔隙情况设置其分割阈值,小于阈值部分判断为 土壤孔隙,图像分割后得到黑白二值图像。为避免 土柱表层和底部受扰动而影响实验结果,从两端10 mm开始进行数据分析,提取当量直径大于1 mm的 大孔隙。分析得到的特征参数有土壤大孔隙的数 目、面积、大孔隙度、成圆率和当量直径。利用 Invert反选,使白色部分变为土壤孔隙,黑色部分 为土壤,将单个土柱的连续切片图像拟合成3D影 像,利用bonej插件计算孔隙三维量化结果,得到 孔隙连通度、连通密度、孔隙内表面积、分支点密 度和连接点密度。

考虑土壤质地和饱和导水率与大孔隙特性具有

一定联系,本试验在原状土柱扫描结束后,将每个 土柱去除两端可能干扰部分,从中间切割并定义为 表层(1~13 cm)和亚表层(13~25 cm)两层, 用环刀再取样,利用定水头法测定土样的饱和导 水率。同时收集土柱上下层土样,利用Mastersizer 2000激光粒度仪测定土壤黏粒(<0.002 mm)、 粉粒(0.002~0.02 mm)和砂砾(0.02~2 mm) 的组成,每个土柱各做两次,取其平均值得到土壤 机械组成。

1.4 数据统计与分析

为比较不同深度范围之间的土壤大孔隙参数, 对土壤深度进行分层,具体为10~50 mm记作为 L1,52~100 mm记作L2,102~150 mm记作L3, 152~200 mm记作L4, 202~250 mm记作L5。

利用SPSS 18.0对数据进行单因素方差分析和 Duncan's多重比较(P<0.05),对土壤大孔隙参数 以及土壤质地和饱和导水率进行Pearson相关分析。

2 结 果

2.1 不同地形条件土壤的大孔隙特征

切沟沟底、沟缘和坝地三种地形条件下土壤大 孔隙参数的基本统计值如表1所示。经K-S检验、 方差分析和多重比较(表2),结果显示,地形对 土壤大孔隙度、大孔隙数、当量直径、成圆率和单 个大孔隙平均面积均具有显著影响。

表1 土壤大孔隙参数的统计值

Table 1 Statistics of soil macropore parameters							
大孔隙参数 Macropore parameters	最小值 Min	最大值 Max	均值 Mean	标准误 Standard deviation	偏度 Skewness	峰度 Kurtosis	K-S检验 K-S test
大孔隙度Macroporosity/%	0.89	15.26	5.39	0.13	0.47	0.02	N (0.09)
大孔隙数Count	11.00	110.00	46.35	0.89	0.78	1.24	NN (0.05)
当量直径Equivalent diameter/mm	1.49	7.47	2.49	0.04	2.54	10.00	NN (0.00)
成圆率Roundness	0.66	0.95	0.84	0.00	-0.20	1.10	N (0.25)
单个大孔隙平均面积Mean size per macropore/mm ²	1.60	9.15	3.77	0.06	1.15	1.84	NN (0.01)

注: (1)样本数为358; (2)N为正态分布,NN为非正态分布,括号内数值若大于0.05,表示数据资料符合正态分布 Note: (1) The number of samples is 358; (2) N stands for normal distribution and NN for non-normal distribution. If the value in the brackets is > 0.05, it means that the corresponding data conforms to normal distribution

表2 不同地形条件土壤大孔隙参数的多重比较

	Table 2	Multiple comparisons of soil macropore parameters relative to terrain						
地形 Terrian	样本数 N	大孔隙度 Macroporosity	大孔隙数 Count	当量直径 Equivalent diameter	成圆率 Roundness	单个大孔隙平均面积 Mean size per macropore		
沟底 Gully bottom	120	4.97 b	46.33 b	3.16 a	0.83 b	3.56 b		
沟缘 Gully costa colpi	118	5.21 b	38.49 c	2.16 b	0.85 a	3.77 ab		
坝地 Damland	120	5.98 a	54.09 a	2.12 b	0.84 a	3.99 a		

注: 小写字母不同表示差异显著(P<0.05) Note: Different lowercase letters indicate significant difference at level of 0.05

三种地形条件下土壤大孔隙度均值的从小到大 排序为:沟底、沟缘、坝地,其中坝地土壤大孔隙 度的均值(5.98%)高于研究区均值(5.39%), 且显著大于沟底和沟缘,后二者土壤大孔隙度的均 值分别为4.97%和5.21%。坝地土壤大孔隙数显著 高于沟底和沟缘,沟底土壤大孔隙数与研究区均值 接近,且显著高于沟缘。坝地和沟缘土壤大孔隙 当量直径均低于研究区均值(2.49 mm),均与沟 底土壤大孔隙当量直径(3.16 mm)具有显著性差 异。对于成圆率和单个孔隙平均面积而言,尽管三 种地形条件下的均值在数值上比较接近,但其差异 仍在P<0.05水平上显著。三种地形土壤大孔隙特征 差异显著的原因为:沟底主要受侵蚀作用而下切, 埋藏较深且结构紧实的土壤不断出露;沟缘受植物 生长(铁杆蒿和胡枝子)和明显的干湿交替影响, 土壤易于产生相对复杂的大孔隙通道;坝地土壤主 要为淤积土,坡面土壤细颗粒经分选、输移和沉积 后,结构致密,大孔隙分布较为均匀。

赵世伟等^[4]对黄土高原子午岭不同植被演替 阶段土壤孔隙特征的研究表明,土壤大孔隙度的变 化范围为5.82%~28.93%,大孔隙数为21~43,成 圆率则为0.70~0.86。Li等^[2]对六道沟流域柠条林 地和苜蓿草地土壤大孔隙的研究结果表明,大孔隙 度低于20.22%,大孔隙数低于100,孔隙成圆率变 化范围为0.5~1。与赵世伟等^[4]相比较,本研究中 大孔隙度数值相对偏低,大孔隙数的数值区间却明 显较宽,孔隙成圆率范围也相对较广。与Li等^[2]的 研究结果相比较,本研究中大孔隙度、大孔隙数和 孔隙成圆率的最大值偏低,3个孔隙参数的最小值 则相对偏高。这是因为赵世伟等^[4]研究的是包括 弃耕地、草本、灌丛、早期森林和乔木五个群落下 的土壤大孔隙, Li等^[2]关注的是生长22 a和40 a的 柠条林地与一块苜蓿草地影响下的大孔隙。与地形 影响相比,包含灌木在内的植被生长作用下土壤大 孔隙度相对较高。本研究大孔隙度和成圆率的数值 范围相对较窄,在一定程度上表明地形条件对土壤 大孔隙参数的影响弱于植被影响的作用。

孔隙分级的依据一般为当量直径,例如周虎 等^[14]将当量直径大于0.5 mm的所有孔隙定义为大 孔隙,冯杰和郝振纯^[16]进一步将大孔隙分为小于 0.5 mm、0.5~1 mm、1~3 mm、3~5 mm和大于5 mm 5个组别。目前土壤大孔隙分级未见统一标准, 本研究根据当量直径将大孔隙以1 mm为间隔进行 组别划分。由不同组别土壤大孔隙频率分布图(图 1)可知,当量直径范围在1~3 mm之间的大孔隙较 多,在数量上可占80%以上。Hu等^[1]在内蒙古太仆 寺旗草原的相关研究中,当量直径1~3 mm大孔隙 可占所有组别的15%~50%,且土壤大孔隙的平均 当量直径范围为1.24~3.77 mm。太仆寺旗草原地处 浑善达克沙地南缘,神木县位于毛乌素沙地南缘, 本研究平均当量直径在Hu等^[1]的数值范围之内, 两地土壤中当量直径1~3 mm的大孔隙所占比例均 高,与两地土壤质地相似、沙粒含量均较高有关。

2.2 不同深度范围土壤的大孔隙特征

不考虑地形条件, 土层深度对土壤大孔隙度、

Fig. 1 Frequancy distribution of macropores relative to equivalent pore diameter

大孔隙数、当量直径、成圆率和单个大孔隙平均面 积等具有显著影响,5个深度分层之间土壤孔隙参 数的多重比较结果见表3。

在10~50 mm即L1深度范围, 土壤大孔隙 度均值为5.89%; 随土层深度增加, 土壤大孔隙 度呈现先显著减小(L2)、然后连续增加(L3 和L4)和最后减小(L5)的变化趋势。本研究 中五个深度范围土壤大孔隙度的均值变化范围为 4.52%~5.89%。赵世伟等^[4]对17~57 mm深度范 围按6 mm间隔划分土层, 8个深度范围土壤大孔隙 度的均值变化范围为13.35%~23.14%, 亦发现土 层深度对土壤大孔隙度有显著性影响。周虎等^[12] 研究发现, 黑土区3个深度范围(0~5 cm, 10~15 cm和20~25 cm)土壤大孔隙度的数值变化范围为 19.26%~29.96%, 尽管试验处理和土壤类型与本 试验不同, 亦可见大孔隙度随深度的起伏变化。

土壤剖面大孔隙数多重比较结果显示,L2土 层大孔隙数显著低于其它土层;土层变化对当量直 径也有显著影响,L2与L3土层的大孔隙当量直径 在数值上相互接近且显著低于其它土层;L2与L3 土壤大孔隙成圆率显著高于其它土层,即在L2和 L3土层,大孔隙的几何形态最接近于圆;单个大 孔隙平均面积也随土层不同而差异显著,L2和L3 土层与L1和L5土层大体相近,L4与其它土层的单 个大孔隙平均面积差异显著。总体而言,在L2土 层,土壤大孔隙特征与其它土层相比表现出一定差 异性,大孔隙度、大孔隙数、当量直径及单个大孔 隙平均面积均显著低于其它土层,土壤大孔隙成圆

表3 不同深度范围之间土壤大孔隙参数的多重比较

 Table 3
 Multiple comparisons of soil macropore parameters relative to soil layer

土层 Soil layer	深度范围 Depth range/mm	样本数 Sample size	大孔隙度 Macroporosity	大孔隙数 Count	当量直径 Equivalent diameter	成圆率 Roundness	单个大孔隙平均面积 Mean size per macropore
L1	$10\sim 50$	63	5.89 a	46.41 a	2.54 ab	0.83 b	4.22 a
L2	$52 \sim 100$	75	4.52 c	40.94 b	2.22 b	0.85 a	3.35 c
L3	$102 \sim 150$	75	5.11 bc	47.12 a	2.25 b	0.85 a	3.32 c
L4	$152\sim 200$	75	5.87 a	50.80 a	2.67 a	0.83 b	3.84 b
L5	$202\sim 250$	70	5.63 ab	46.47 a	2.77 a	0.83 b	4.23 a

注:不同小写字母表示差异显著(P<0.05) Note: Different lowercase letters indicated significant difference at level of 0.05

率显著高于其它土层。原因可能为L2土层相对于 L1土层具有一定的压实效应。

考虑到划分深度范围和忽略地形条件差异不利 于揭示土壤大孔隙度随不同深度变化的细节,图2 进一步显示了三种地形各个深度(2 mm间隔)土 壤大孔隙度的均值和标准差。在2~100 mm深度, 沟缘土壤大孔隙度数值范围始终偏低,多数深度表 现为沟缘 < 坝地 < 沟底,且沟缘大孔隙度的变异 程度始终最小。但在102 mm以下深度,多数深度 土壤大孔隙度表现为沟底 < 坝地 < 沟缘,沟缘大 孔隙度的变异程度始终整体最大。在102 mm~250 mm以下深度,沟底土壤大孔隙度整体偏小,介于 0.02%~16.28%;而沟缘土壤大孔隙度整体偏大, 介于9.57%~29.66%。

土壤大孔隙度随深度变化的曲线反映了地形条 件差异的影响。沟缘上层(102 mm以上)侧面即 近沟道一侧土层薄,双面蒸发作用下,土壤极易缺 水,导致土体收缩和紧实;沟缘下层(102 mm以 下)土层逐渐变厚,水分条件有所改善,植物根系 可穿插其中,土壤结构相对疏松。因此,沟缘上层 大孔隙度均值和变异程度均低于沟底和坝地,下层 大孔隙度均值和变异程度均高于沟底和坝地。沟底 上下层大孔隙度波动幅度小,上层变异程度高于下 层,与下层土壤相对紧实和沟底小气候作用有关。 坝地上下层间变异程度相对一致,则为长期淤积导 致土壤质地和结构均匀所致。

基于二维平面土壤大孔隙特征的描述不能反 映其连通性。由于欧拉特征值对土壤大孔隙的变化 较为敏感,通过测量欧拉特征值可得到孔隙连通度 和连通密度,借此可描述土壤大孔隙的三维连通结 构。从表4看出,沟底土壤大孔隙的连通度和连通 密度显著高于沟缘和坝地,说明沟底土壤大孔隙的

连通性较沟缘和坝地更好。孔隙内表面积、分支点 密度和连接点密度是表征土壤孔隙连通复杂程度的 参数,其值越大则孔隙连通越复杂。分支点密度和 连接点密度的大小关系均表现为沟底 > 沟缘 > 坝 地,孔隙内表面积表现为沟底>坝地>沟缘,结果 反映出坝地土壤大孔隙分布较为均匀分散,不连通 的大孔隙数量较多,连通性较差。从形成大孔隙通 道的成因上分析,由土壤生物活动引起的大孔隙通 道一般具有连通性好,平均直径相对较大和呈管状 的特点;由根系引起的大孔隙通道一般具有连通性 好、圆形, 随深度增加大孔隙直径呈下降趋势的特 点;由水分入渗的携带作用、土壤团聚体的间隙及 土壤干层造成的细缝等原因形成的大孔隙通道一 般很小,分散分布,连通性较差。比较而言,沟底 和沟缘土壤的大孔隙通道主要受植物根系作用影 响,坝地土壤的大孔隙通道形成原因则较为复杂: 由于长年的淤积作用和水分入渗的携带作用, 土壤 颗粒黏性大,较为密实,因此不利于大孔隙通道的 形成。

2.3 大孔隙参数与土壤质地和饱和导水率的相关 性

根据美国农部制土壤质地划分标准,沟底、沟 缘和坝地原状土柱的土壤类型主要为壤砂土和砂壤 土,土壤机械组成和饱和导水率结果如图3所示。 在沟底和沟缘,亚表层(13~25 cm)土壤饱和导 水率约为表层(1~13 cm)的二分之一;坝地土 壤饱和导水率在数值上则远小于沟底和沟缘。对土 壤大孔隙参数(大孔隙度、大孔隙数、成圆率、当 量直径和单个大孔隙平均面积)以及土壤质地(黏 粒含量、粉粒含量和沙粒含量)和饱和导水率进行 Pearson相关分析,不同参数间的相关关系结果见 表5。

50 100 150 200

5 10 15 20 25 10 15 20 25 5 10 15 20 25 0 0 5 0 大孔隙度 Macroporosity/%

表4 不同地形条件土壤大孔隙的三维量化特征

Table 4 Three-dimensional characteristics of soil macropores relative to terrain								
地形 连通 Terrain Connec	法通由	连通密度	孔隙内表面积	分支点密度	连接点密度			
	上地反	Connectivity density/	Bone surface/	Branches density/	Junctions density/			
	Connectivity	mm^{-3}	mm ²	mm ⁻³	mm^{-3}			
沟底Gully bottom	17 210	0.017 3	4 660.00	0.013 2	0.001 7			
沟缘Gully costa colpi	3 809	0.003 9	566.90	0.006 6	0.001 2			
坝地Damland	3 344	0.003 4	1 410.00	0.003 0	0.000 4			

大孔隙度与大孔隙数和单个大孔隙平均面积呈 极显著正相关关系(P<0.01),说明研究区土壤大 孔隙发达,这与测得土壤质地以砂质壤土和壤质砂 土为主的结果是一致的。大孔隙数与黏粒含量呈显 著负相关(P<0.05),与饱和导水率呈极显著负相 关。刘目兴等^[17]通过水分穿透试验对三峡库区森 林土壤大孔隙特征研究发现,各样地土壤饱和导水 率与孔径 > 1.0 mm的大孔隙密度呈高度的线性关 系。陈效民等^[18]研究发现,太湖地区水稻土土壤大 孔隙度与饱和导水率具有显著的正相关关系。与上 述结果不同,本研究中大孔隙数与饱和导水率呈极 显著负相关关系。类似负相关结果可见Ahmad^[19] 对挪威Skuterud流域原状土进行CT分析,研究发 现在各种土壤大孔隙参数中,土壤饱和导水率主要

表5 土壤大孔隙参数与土壤质地和饱和导水率之间的相关性

Table 5	5 Pearson correlations of macropore parameters with soil texture and saturated hydraulic conductivity							
	十月	+7	水县		单个大孔隙	粉粒	砂粒	
	八九	八11。 階数	三里 古公	成圆率	平均面积	含量	含量	黏粒含量
	Macroporosity	Count	Equivalent diameter	Roundness	Mean size per	Silt	Sand	Clay content
	Macroporosity	Count	Equivalent diameter		macropore	content	content	
大孔隙数Count	0.76^{*}							
当量直径								
Equivalent	-0.11	0.14						
diameter								
成圆率Roundness	-0.61	-0.70	-0.70					
单个大孔隙平均								
面积	0.80**	0.42	-0.23	-0.41				
Mean size per	0.89	0.42	-0.23	-0.41				
macropore								
粉粒含量Silt	-0.16	0.02	0.79*	-0.57	0.07			
content	0.10	0.02	0.79	0.57	0.07			
沙粒含量Sand	0.21	0.06	-0.75*	0.51	-0.28	-0.99**		
content	0.21	0.00	0.75	0.51	0.20	0.77		
黏粒含量Clay	-0.50	-0.84*	-0.33	0.60	0.29	-0.01	-0.08	
content	0.50	0.84	0.35	0.00	0.29	0.01	0.08	
饱和导水率								
Saturated	-0.53	-0.94**	-0.06	0.52	-0.11	0.02	-0.09	0.76^{*}
hydraulic	0.55	0.74	0.00	0.52	0.11	0.02	0.09	0.70
conductivity								

注: *表示在 0.05 水平上显著, **表示在0.01 水平上显著 Note: * and ** indicate significant difference at the level of 0.05 and 0.01,

respectively

是由临界孔径决定,大孔隙度与其它参数主要影响 非饱和导水率。饱和导水率反映土壤的入渗和导水 能力,是高度变异的土壤水力学参数^[20],本文的 研究结果说明大孔隙特征解释饱和导水率变异的能 力有限。此外,在试验操作方面,Anderson等^[21] 建议原状土柱饱和后再扫描一次,否则容易引入误 差;而本研究扫描后切割土柱并利用环刀再次取 样,没有进行饱和后再扫描比较的试验。对于大孔 隙数与饱和导水率呈极显著负相关关系,期望后续 研究结果能够进一步解释。

土壤大孔隙当量直径与粉粒含量显著正相关, 与沙粒含量显著负相关。此外,本研究成圆率与当 量直径为负相关关系(P>0.05),各样地土壤大孔 隙的成圆率均随当量直径的增大而减小,在一定程 度上可反映大孔隙直径越大,其形态特征越复杂。

3 结 论

在陕北黄土沟壑区,切沟沟底、沟缘和坝地 三种地形条件对土壤大孔隙参数均具有显著影响, 其中坝地大孔隙度、大孔隙数和单个大孔隙平均面 积均显著高于沟底和沟缘,当量直径1~3 mm的大 孔隙所占比例达80%以上,这与壤砂土和砂壤土中 砂砾含量较高有关。土壤大孔隙参数随深度的变化 也具有一定规律,不同土层土壤大孔隙参数差异显 著,52~100 mm土层大孔隙度、大孔隙数、当量 直径及单个大孔隙平均面积均显著低于其他土层, 土壤大孔隙成圆率显著高于其他土层。同时,大孔 隙数对于黏粒含量和饱和导水率的影响十分显著, 且大孔隙数目越多, 黏粒含量越低, 饱和导水率也 越小;沟底土壤大孔隙的连通性较沟缘和坝地更 好。从大孔隙的成因来看:沟底和沟缘土壤的大孔 隙通道主要受植物根系作用影响,坝地土壤的大孔 隙通道则是由于长期淤积和水分渗透的作用。

致 谢 感谢李同川和赵春雷博士在土柱采 集时提供的帮助。

参考文献

[1] Hu X, Li Z C, Li X Y, et al. Influence of shrub encroachment on CT-measured soil macropore characteristics in the inner mongolia grassland of Northern China. Soil & Tillage Research, 2015, 150: 1-9

- Li T C, Shao M A, Jia Y H. Application of X-ray tomography to quantify macropore characteristics of loess soil under two perennial plants. European Journal of Soil Science, 2016, 67 (3): 266-275
- [3] 王恩姮,赵雨森,夏祥友,等. 冻融交替后不同尺度 黑土结构变化特征. 生态学报, 2014, 34 (21): 6287—6296
 Wang E H, Zhao Y S, Xia X Y, et al. Effects of freeze-thaw cycles on black soil structure at different size scales (In Chinese). Acta Ecologica Sinica, 2014, 34 (21): 6287—6296
- [4] 赵世伟,赵勇钢,吴金水.黄土高原植被演替下土壤 孔隙的定量分析.中国科学:地球科学,2010(2): 223-231
 Zhao S W, Zhao Y G, Wu J S. Quantitative analysis of soil pores under natural vegetation successions on

of soil pores under natural vegetation successions on the Loess Plateau (In Chinese). Scientia Sinica Terrae, 2010 (2): 223-231

- [5] Weiler M. Macropores and preferential flow—A love hate relationship. Hydrological Processes, 2017, 31 (1): 15—19
- [6] Menichino G T, Ward A S, Hester E T. Macropores as preferential flow paths in meander bends. Hydrological Processes, 2014, 28 (3): 482-495
- [7] 张建丰,林性粹,王文焰.黄土的大孔隙特征和大孔 隙流研究.水土保持学报,2003,17(4):168—171
 Zhang J F, Lin X C, Wang W Y. Characteristics of macropore and macro-pore flow in loess soil (In Chinese). Journal of Soil and Water Conservation, 2003,17(4):168—171
- [8] 雷祥义.中国黄土的孔隙类型与湿陷性.中国科学:B 辑, 1987, 17 (12): 1309—1318
 Lei X Y. The loess collapsibility and pore types in China (In Chinese). Science in China: Series B, 1987 (12): 1309—1318
- [9] 赵冬,许明祥,刘国彬,等.用显微CT研究不同植被恢复模式的土壤团聚体微结构特征.农业工程学报, 2016,32(9):123-129

Zhao D, Xu M X, Liu G B, et al. Characterization of soil aggregate microstructure under different revegetation types using micro-computed tomography (In Chinese). Transactions of the Chinese Society of Agricultural Engineering, 2016, 32 (9): 123-129

 [10] 高朝侠,徐学选,字苗子,等.黄土塬区土地利用方 式对土壤大孔隙特征的影响.应用生态学报,2014, 25(6):1578—1584
 Gao Z X, Xu X X, Yu M Z, et al. Impact of land use types on soil macropores in the loess region (In Chinese) . Journal of Applied Ecology, 2014, 25 (6): 1578-1584

 [11] 王恩姮,卢倩倩,陈祥伟.模拟冻融循环对黑土剖面大 孔隙特征的影响.土壤学报,2014,51(3):490 496

Wang E H, Lu Q Q, Chen X W. Characterization of macro-pores in mollisol profile subjected to simulated freezing-thawing alternation (In Chinese). Journal of Soil Science, 2014, 51(3): 490–496

[12] 周虎,李保国,吕贻忠,等.不同耕作措施下土壤
 孔隙的多重分形特征.土壤学报,2010,47(6):
 1094—1100

Zhou H, Li B G, Lü Y Z, et al. Multifractal characteristics of soil pore structure under different tillage systems (In Chinese). Acta Pedologica Sinica, 2010, 47 (6): 1094-1100

[13] 李文昭,周虎,陈效民,等.基于同步辐射显微CT研究不同施肥措施下水稻土团聚体微结构特征.土壤学报,2014,51(1):67-74

Li W Z, Zhou H, Chen X M, et al. Characterization of aggregate microstructures of paddy soils under different patterns of fertilization with synchrotron radiation micro-CT (In Chinese). Acta Pedologica Sinica, 2014, 51(1): 67-74

- [14] 周虎,彭新华,张中彬,等.基于同步辐射微CT研究 不同利用年限水稻土团聚体微结构特征.农业工程学 报,2011,27(12):343—347
 Zhou H, Peng X H, Zhang Z B, et al. Characterization of aggregate microstructure of paddy soils cultivated for different years with synchrotron based micro-CT (In Chinese). Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(12): 343—347
- [15] 李宗超,胡霞.小叶锦鸡儿灌丛化对退化沙质草地 土壤孔隙特征的影响.土壤学报,2015,52(1): 242—248
 LiZC, Hu X. Effects of shrub (*Caraganamicrophylla*)

Lam) encroachment on soil porosity of degraded sandy

grassland (In Chinese). Acta Pedologica Sinica, 2015, 52 (1): 242-248

- [16] 冯杰,郝振纯. CT扫描确定土壤大孔隙分布.水科学进展, 2002, 13(5): 611—617
 Feng J, Hao Z C. Distribution of soil macropores characterized by CT (In Chinese). Advances in Water Science, 2002, 13(5): 611—617
- [17] 刘目兴, 吴丹, 吴四平, 等. 三峡库区森林土壤大孔 隙特征及对饱和导水率的影响. 生态学报, 2016, 36 (11): 3189—3196
 Liu M X, Wu D, Wu S P, et al. Characteristic of soil macropores under various types of forest coverage and their influence on saturated hydraulic conductivity in the Three Gorges Reservoir Area (In Chinese). Acta Ecologica Sinica, 2016, 36 (11): 3189—3196
- [18] 陈效民,黄德安,吴华山.太湖地区主要水稻土的大 孔隙特征及其影响因素研究.土壤学报,2006,43 (3):181—183
 Chen X M, Huang D A, Wu H S. Characteristics of macropores and their affecting factors of major paddy soils in Taihu lake region (In Chinese). Acta Pedologica Sinica, 2006, 43 (3): 181—183
- [19] Ahmad M A. Quantifying relationships between x-ray imaged macropore structure and hydraulic conductivity. Uppsala: Swedish University of Agricultural Sciences, 2016
- [20] 郑纪勇,邵明安,张兴昌.黄土区坡面表层土壤容重 和饱和导水率空间变异特征.水土保持学报,2004, 18(3):53-56
 Zheng J Y, Shao M A, Zhang X C. Spatial variation of surface soil's bulk density and saturated hydraulic conductivity on slope in Loess region (In Chinese). Journal of Soil and Water Conservation, 2004, 18 (3): 53-56
- [21] Anderson S, Wang H, Peyton R, et al. Estimation of porosity and hydraulic conductivity from X-ray CTmeasured solute breakthrough. Geological Society, London, Special Publications, 2003, 215 (1): 135-149

Characteristics of Soil Macropores in the Gully Area of Loess Plateau as Affected by Terrain

JU Xinni¹ JIA Yuhua^{1, 2†} GAN Miao¹ JIN Shan¹ XIAO Bo³

(1 College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China)

(2 Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

(3 College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China)

Abstract [Objective] Soil macropores play an important role in hydrologic processes, such as rainfall infiltration, runoff occurrence, soil water movement and sediment deposition. As soil erosion varies with terrain (bottom and costa colpi of gully and the damland) in generation and development process, the soil forms under soil erosion vary too in soil texture and soil porosity. However, so far little has been done on effect of terrain on characteristics of soil macropores. [Method] In this study, undisturbed soil columns were collected at the three different landforms for analysis of macroporosity and rules of its variation with terrain and soil depth using the computerized tomographic scanning method. [Result] (1) Terrain did have a significant effect on macropore parameters. Damland was much higher than gully bottom in soil macroporosity, number and roundness of macropores and mean area per macropore. However, the effect of terrain on macropores was lower than that of vegetation as documented in previous studies. (2) Macropores also varied significantly in parameter with soil layer (50 mm each). Mean macroporosity and variation coefficients of the macropores in the soil at costa colpi varied sharply around the depth of 102mm. Macroporosity in the soil at the bottom of gullies fluctuated slightly, but did more significantly in the upper layer than in the lower layer. However, in the soil of damland, macropores varied in a similar trend in the upper and lower layers. (3) Soil macroporosity was significantly or extra-significantly and positively related to the number of soil macropore number and mean size per macropore, while the number of macropores was significantly and negatively related to clay content and saturated hydraulic conductivity. Equivalent diameter of the macropores was positively related to silt content and negatively to sand content. And (4) the macropores in the bottom of gullies were much higher in pore connectivity than those in the costa colpi and damland. From the point of view of reasons of the formation of macopores, those in the bottom and costa colpi of gully were formed under the impact of plant root systems, while those in damland were under the impact of long-term sedimentation and water infiltration. [Conclusion] CT scanning showed that the differences in characteristic between soil macropores in the bottom, costa colpi and damland of gullies may be attributed to soil erosion and deposition processes.

Key words Loess Plateau; Gully; CT scanning; Soil structure; Soil pore

(责任编辑: 檀满枝)