DOI: 10.11766/trxb202012300343

王鑫,于东升,马利霞,陆晓松,陈洋,冯凯月.基于万维网大数据的农药场地土壤污染快速预测方法研究[J].土壤学报,2022,59(3):708-721.

WANG Xin, YU Dongsheng, MA Lixia, LU Xiaosong, CHEN Yang, FENG Kaiyue. Research on the Method of Rapid Prediction of Soil Pollution in Pesticide Polluted-Sites Based on Network Big Data[J]. Acta Pedologica Sinica, 2022, 59 (3): 708–721.

基于万维网大数据的农药场地土壤污染快速预测方法 研究^{*}

王 鑫^{1,2},于东升^{1,2†},马利霞^{1,2},陆晓松^{1,2},陈 洋^{1,2},冯凯月^{1,2} (1. ±壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所),南京 210008; 2. 中国科学院大学,北京 100049)

摘 要:及时高效预测和筛查潜在农药污染场地对环境风险管控具有重要意义。基于万维网公开的46个农药场地样本数据,利用五分制层次分析法建立农药场地土壤污染快速预测指标体系,包括产品特性、局部气象条件、土壤属性和场地生产特性4个因素及其相应的产品毒性、产品持久性、年均气温、年均降水、年均风速、光照、土壤质地、pH、有机质含量、生产时间和闲置时间11个特征指标。结果表明,农药场地生产时间、产品毒性及其持久性指标五分制分级后与农药场地土壤污染均存在显著线性相关,三个指标的不同组合对场地土壤污染的线性综合预测精度小于65%,而基于11个指标的机器学习方法(SVM模型和神经网络模型 BP)综合预测精度为82%,但存在污染场地严重漏判问题。以综合评价指数值 P≥0.6 作为农药场地土壤污染的预测阈值,五分制层次分析法综合预测精度达到91%,优于线性预测以及机器学习方法,具有关键数据需求少、预测快速高效特点,体现"宁严勿漏"的预测原则,可用于各类型农药场地的土壤污染筛查。

中图分类号: X53 文献标志码: A

Research on the Method of Rapid Prediction of Soil Pollution in Pesticide Polluted-Sites Based on Network Big Data

WANG Xin^{1, 2}, YU Dongsheng^{1, 2†}, MA Lixia^{1, 2}, LU Xiaosong^{1, 2}, CHEN Yang^{1, 2}, FENG Kaiyue^{1, 2}

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
 University of the Chinese Academy of Sciences, Beijing 100049, China)

Abstract: [Objective] Predicting and screening potential pesticide-contaminated sites timely and efficiently is important for controlling environmental pollution. [Method] Based on 46 pesticide sites samples published on the World Wide Web, the index system and method for rapid prediction of soil pollution in pesticide sites was established by a five-score analytic hierarchy process. [Result] The predictive system was constituted with four factors: product characteristics, local climatic conditions, soil

* 通讯作者 Corresponding author, E-mail: dshyu@issas.ac.cn
 作者简介:王 鑫(1993—),男,安徽安庆人,博士研究生,主要从事土壤环境评价与预测制图研究。E-mail: wangxin1@issas.ac.cn
 收稿日期: 2020-12-30;收到修改稿日期: 2021-08-20;网络首发日期(www.cnki.net): 2021-09-10

^{*} 国家重点研发计划专项(2018YFC1800104, 2021YFC1809104)资助 Supported by the Special Project of the National Key Research and Development Program (Nos. 2018YFC1800104, 2021YFC1809104)

709

properties and site characteristics, including 11 characteristic indicators: product toxicity, persistence, average annual temperature, average annual precipitation, average annual wind speed, light, soil texture, pH, organic matter content, production time and idle time. There is a significant linear correlation between the three indicators: production time level, product toxicity and durability level, and the soil pollution of the pesticide site. The linear comprehensive prediction accuracy of the three indicators is less than 65%. Also, the comprehensive judgment accuracy of the machine (SVM, BP) learning method combining 11 indicators is 82%, but all of them have significant limitations as they missed classified the severity of the contaminated sites. [Conclusion] The comprehensive evaluation index value $P \ge 0.6$ is used as the prediction threshold of soil pollution in pesticide sites. The accuracy of the comprehensive prediction of the five score AHP is 91%, which is better than linear prediction and the machine learning method. It has the characteristics of low demand for key data, rapid and efficient prediction, and reflects the principle of "Implemented to the strictest standards without leaving a contaminated site". It can be used for pre-diagnosis of soil pollution in various types of pesticide sites.

Key words: Pesticide site; Soil pollution; AHP; Five- score system; Big data forecast

农药生产和使用保障了粮食作物稳产和丰产, 但大量生产农药及其原材料的场地可能造成环境污 染^[1]。从中国农药登记网 44 780 条过期农药产品许 可证记录推断,全国农药场地至少 4 000 个^[2]。农药 场地再利用可有效缓解土地供需矛盾,但其潜在的 土壤污染风险不容忽视^[3],迫切需要农药场地的土 壤污染快速预测。

场地调查提确定场地土壤污染的有效手段。通 过实地调查获取土壤污染物浓度,并与其安全阈值 或筛选值对比预测农药场地的土壤污染状况^[4]。目 前仍存在污染调查周期长、代价大^[5-7],采样方案受 主观因素影响^[4],未充分考虑时间因素对农药场地 土壤污染的影响^[8-9]等诸多不足。因此,诸如矿业、 尾矿库等行业类型污染场地已开始探索场地土壤污 染快速预测方法。Horta等^[4]结合遥感和光谱技术, 预测矿山场地土壤中重金属的种类及其浓度,预测 场地土壤污染状况。Chakraborty等^[10]将光谱技术和 地质统计方法相结合,预测场地土壤砷污染;范俊 楠等^[11]基于 BP 神经网络,结合地理信息和土壤理 化指标预测场地土壤重金属污染状况。相比这些行 业类型场地,农药场地土壤污染快速预测研究进展 缓慢,急需开展研究。

农药与其他行业类型场地的土壤污染特征具有 共性特征。部分土壤污染物种类相同,土壤中均可 能存在石油烃、重金属等污染物^[12-13];污染物在土 壤中动态累积过程相似,并且表现出随时间变化的 特点^[14];局部气候和土壤属性等因素均通过影响污 染物动态累积过程,间接影响土壤污染状况^[15]。这 些共性特征为借鉴和开展农药场地的土壤污染快速 预测提供了依据。

农药场地土壤污染与其他行业场地也具有不同 点。农药及其相关原材料既是场地生产的产品也是 场地土壤的特征污染物,如 DDT^[16];不同种类农药 或原材料的毒性、持久性和分解净化方式存在差异, 这使得农药不同场地之间以及与其他行业场地之间 的土壤污染特点具有显著差别^[17]。因此,开展农药 场地土壤污染快速预测,除借鉴其他行业经验外, 还需充分考虑农药场地的特点。

由于各地场地环境调查、报告编撰、质量验收等标准以及信息公开制度的差异,农药场地报告等相关资料数量极少,专业术语和评价标准不统一,特征数据缺失严重^[18],质量参差不齐。资料搜集结果表明, 仅有 11%的资料具备气象条件、土壤属性、特征污染物、污染物浓度和超标点位等详细属性记录,其余的 仅有农药场地名称、地理位置和土壤污染状况记录。 开展农药场地土壤污染快速预测,首先面临解决场地 报告资料中存在的一系列问题。

本研究从农药产品视角出发,基于地理位置等 关键信息补充现有农药场地数据资料;采取五分制 层次分析法,筛选出反映农药场地的生产特征、产 品特性、局部气象条件以及土壤特征的预测指标, 构建并检验农药场地土壤污染快速预测方法,可为 农药土壤污染场地管理和再利用提供决策支持。

1 材料与方法

1.1 万维网大数据检索

以"农药场地""场地"和"场地土壤污染"等 作为关键词,在万维网检索获取 59 个农药场地的调 通过中国天气网补充农药场地所在县区的多年 年均气温、年均降水、年均风速和年均光照总时长 (光照)等均值气候数据^[19];利用1:100万中国土 壤数据库,依据地理位置补充表层土壤质地^[20]、有 机质含量^[20-21]和 pH等场地土壤数据^[20]。

通过观察不同年份场地对应空间位置在 Landsat影像上的地物类型和场地面积的变化情况, 判定场地开始生产和停产年份。如某农药场地A所 在的空间位置在2010年Landsat影像上对应的地物 类型为林地,2011年该位置新建厂房直至2018年 该厂房拆除恢复为林地,由此可预测场地开始生产 的年份为2011年,场地的停产年份为2018年,场 地生产时间为7年,距2020年的场地闲置时间为2 年。若通过目视观察方法无法判定场地开始年份和 停产年份,则根据场地生产企业名称在国家信用信 息公开系统(网址:http://www.gsxt.gov.cn/index. html)检索企业工商信息,以企业成立年份作为场 地开始生产年份,以企业注销或迁出年份作为场地 停产年份。

农药产品的毒性和持久性数据补充主要来自 PPDB 数据库^[22]。若 PPDB 中无对应数据记录,则 依次通过《职业性接触毒物危害程度分级(GBZ230-2010)》国家标准^[23]、化学物质登录号(Chemical Abstracts Service Registry Number 或称 Chemical Abstracts Service Number,简称 CAS 编号)的 CAS REGISTRY 数据库进行检索和补充^[24];若以上均不 能进行检索和补充,则将该农药产品的毒性和持久 性人为设定为剧毒、强持久性。

1.2 农药场地土壤污染快速预测指标体系构建

采用模糊层次分析法(FAHP)筛选预测指标, 建立农药场地土壤污染快速预测指标体系及其层次 结构(表1),各场地以其生产的毒性和持久性最强 的农药产品参与土壤污染预测。由于许多场地原始 资料缺乏农药产品种类和特征污染物浓度数据,土 壤污染状况只能采用场地实际调查的评价记录,定 性描述为污染或未污染,46个场地记录为污染的约

目标层	目标层 因素层		模糊矩阵(CB) ¹⁾	模糊矩阵(BA) ²⁾			
Target layer (A)	Factor layer (B)	Index layer (C)	Fuzzy matrix (CB)	Fuzzy matrix (BA)			
	产品特性(B1)	产品持久性(C1) 产品毒性(C2)	$\begin{bmatrix} B1 & C1 & C2 \\ C1 & 0.5 & 0.4 \\ C2 & 0.6 & 0.5 \end{bmatrix}$				
	局部气象条件	年均气温(C3)	$\begin{bmatrix} B2 & C3 & C4 & C5 & C6 \end{bmatrix}$				
	(B2) 土壤属性(B3)	年均降水(C4)	C3 0.5 0.7 0.7 0.8 C4 0.2 0.5 0.5 0.6	$\begin{bmatrix} A & B1 & B2 & B3 & B4 \end{bmatrix}$			
农药场地土壤污染状况		年均风速(C5)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>B</i> 1 0.5 0.8 0.9 0.7			
Status of soil pollution in		光照(C6)	C6 0.2 0.4 0.4 0.5	B2 0.2 0.5 0.6 0.4 B3 0.1 0.4 0.5 0.3			
pesticide production site		土壤质地(C7)	B3 C7 C8 C9	$\begin{bmatrix} B4 & 0.3 & 0.6 & 0.7 & 0.5 \end{bmatrix}$			
(A)		pH (C8)	C7 0.5 0.4 0.3				
		有机质含量(C9)	$\begin{bmatrix} c8 & 0.6 & 0.5 & 0.4 \\ c9 & 0.7 & 0.6 & 0.5 \end{bmatrix}$				
	场地生产特性	生产时间(C10)	$\begin{bmatrix} B4 & C10 & C11 \end{bmatrix}$				
	(B4)	闲置时间(C11)	$\begin{bmatrix} C10 & 0.5 & 0.7 \\ C11 & 0.3 & 0.5 \end{bmatrix}$				

表 1 农药场地土壤污染快速预测指标体系层次结构及其模糊一致性矩阵 Table 1 Hierarchical structure and fuzzy consistency matrix of forecast index system for soil pollution in sites

注:1)模糊矩阵(CB)表示指标层各元素相对于对应因素层模糊预测矩阵,2)模糊矩阵(BA)表示因素层各元素相对于目标层模糊预测矩阵。Note:1)CB represents the fuzzy prediction matrix of each element in the index layer relative to the corresponding factor layer. The fuzzy matrix, 2)BA represents the fuzzy prediction matrix of each element in the factor layer relative to the target layer, and the fuzzy matrix.

占 50%; 这些评价记录均以实际调查的特征污染物 浓度是否超过筛选值作为依据^[4]。

1.3 土壤污染快速预测指标量化方法

除土壤污染状况外,所有指标按其数值或定性 描述分为五个等级。对于数值型指标,在尝试等间 距、自然间断点、分位数和标准差等多种分级方法 后,采用了各分级指标与污染状况关联性最强的等 间距分级方法。其中,年均气温、年均风速、光照、 有机质含量和闲置时间等指标以全国最大值和最小 值为分级的上下限;降水以干旱和半干旱的 200 mm 分界线作为分级间距^[25];生产时间则选择分级后与 土壤污染相关性最强的6年作为等分间距;土壤pH 按强酸、强碱、碱性、酸性和中性规定分为5级^[26]。

依据产品毒性及其持久性以及年均降水、光照、 生产时间对农药场地土壤污染的正相关作用和风速、 气温、有机质含量、闲置时间对农药场地土壤污染的 负相关作用^[11, 27-28],对各指标按等级进行 5 分制打 分赋值(表 2)。农药场地土壤污染程度随 pH 偏离中 性而加剧^[14],偏离程度越高赋分值越高;土壤质地 越黏重,土壤污染程度越严重,赋分值越高^[17]。

	Table 2Five-	point scoring standard of pesticide site related attribute
	指标 Index	描述 Describe
X1	产品持久性(月)* Persistence (month)	 [0, 1)(1)、[1, 3)(2)、[3, 6)(3)、[6, 10)(4)、[10, +∞)(5)^[20];极易分 解(1)、常温可分解(2)、轻微分解(3)、加热等可分解(4)、长持久性或持久性 污染物(5)
X2	产品毒性* Toxicity	 Ⅰ类(1)、Ⅱ类(3)、Ⅲ类(5)^[20]; 4类危害(2)、3类危害(3)、2类危害(4)、 1类危害(5)^[22]; 无毒(1)、微毒(2)、中毒强刺激性(3)、高毒(4)、 剧毒致死(5)
X3	年均气温 Annual temperature /℃	$[20.17, +\infty)(1)$, $[13.80, 20.16](2)$, $[7.43, 13.79](3)$, $[1.07, 7.42](4)$, $[-5.03, 1.06](5)$
X4	年均降水 Precipitation/ mm	$(0, 200] (1), [201, 400] (2), [401, 600] (3), [601, 800] (4), [801, +\infty] (5)$
X5	年均风速 Mean annual wind speed/(m·s ⁻¹)	$(9.6, +\infty)(1)$, $(7.3, 9.6](2)$, $(5.1, 7.3](3)$, $(2.8, 5.1](4)$, $(0.0, 2.8)(5)$
X6	光照 Light (h·a ⁻¹)	[1000, 1460] (1), [1461, 1920] (2), [1921, 2380] (3), [2381, 2840] (4), [2841, 3300] (5)
X7	土壤质地 Soil texture	砂土(1)、壤土(3)、黏土(5)
X8	有机质含量 Organic matter content /%	$(8, +\infty)(1)$, $(6, 8](2)$, $(4, 6](3)$, $(2, 4](4)$, $[0, 2](5)$
X9	pH	6.5≤pH≤7.5(1)、5.0≤pH<6.5 或 7.5 <ph≤8.5(3)、ph<5.0 ph="" 或="">8.5(5)^[26]</ph≤8.5(3)、ph<5.0>
X10	生产时间 Production time /a	$[0, 6]$ (1) , $[7, 12]$ (2) , $[13, 18]$ (3) , $[19, 24]$ (4) , $[25, +\infty)$ (5)
X11	闲置时间 Idle time /a	$[25, +\infty)(1), [19, 24](2), [13, 18](3), [7, 12](4), (0, 6](5)$
X12	农药的稳定性* Stability of pesticides	强氧化/还原剂(5)、不稳定(4)、加热分解(3)、高热分解(2)、稳定(1)
X13	农药的挥发性* Volatilization of pesticides	极易挥发(5)、易挥发(4)、加热可挥发(3)、常温可挥发(2)、不挥发(1)

表 2 农药场地相关属性五分制评分标准

续表

指标 Index	描述 Describe
农药的腐蚀性*	卫府抽屉(5) 中华府抽屉(1) 尝泪去商抽屉(2) 卫府抽屉(2) 不腐蚀(1)
Corrosivity of pesticides	强肉氓住(3)、中夺肉氓住(4)、芾仙有肉氓住(3)、初肉氓住(2)、小肉氓(1)
农药的溶解性*	常温极易溶于水(5)、常温易溶于水(4)、常温可溶于水(3)、加热可溶于水(2)、
Solubility of pesticides	常温不溶于水(1)
农药的易燃性*	所有温度易燃易爆(5)、所有温度可燃不爆(4)、常温可燃(3)、加热可燃(2)、
Flammability of pesticides	不燃(1)
土壤污染状况 Soil pollution statues	场地土壤被污染(1)、场地土壤无污染(0)
	指标 Index 农药的腐蚀性* Corrosivity of pesticides 农药的溶解性* Solubility of pesticides 农药的易燃性* Flammability of pesticides 土壤污染状况 Soil pollution statues

注:除*外其余属性按照实际数据记录情况,采用等间距分组方法进行分级,保证覆盖所有数据。X12~X16由于缺乏可靠数据 来源和量化标准仅根据其在万维网上的定性描述进行分级,用来探讨农药属性对 SVM 和 BP 预测精度的影响,不参与五分制方法构 建和预测过程。Note: Except for *, the other attributes are classified according to the actual data records by equal interval grouping method to ensure that all data are covered. Due to the lack of reliable data sources and quantitative standards, x12-x16 is only classified according to its qualitative description on the world wide web to explore the impact of pesticide attributes on the prediction accuracy of SVM and BP method, and does not participate in the construction and prediction process of five-point system.

1.4 土壤污染预测指标权重确定方法

针对不同目标层次的评价指标重要性标度构建 模糊矩阵,自下而上确定各评价指标相对于目标的 权重^[29-30]。通过专家咨询,采用九标度(0.1~0.9) 量化方法,两两比对指标体系中B层各指标相对于 A层、C层各指标相对于B层的重要程度。其中, 0.5~0.9 依次表示同等重要、稍微重要、明显重要、 重要很多和极端重要,0.4~0.1 则表示重要性递减。 其中,B层相对于A层的重要性判断矩阵*R*为:

$$R = \begin{bmatrix} r_{11} & \cdots & r\mathbf{1}_j \\ \vdots & \ddots & \vdots \\ r_{i1} & \cdots & r_{ij} \end{bmatrix}$$
(1)

式中, $0 \le r_{ij} \le 1$, $r_{ij}=0.5$, $r_{ij}+r_{ji}=1$, (i, j=1, 2, ..., n)。 r_{ij} 表示 B_i 较 B_j 的重要性, r_{ij} 越大表示 B_i 较 B_j 越重要。

为避免判断矩阵 R 主观人为性, 需对 R 矩阵进行随机一致性检验。记 <math>W 为 R 的特征向量, R 的最大特征根为 λ_{max} 。首先利用式(2)计算一致性指标 CI,查找对应平均随机一致性数值(RI)^[29],再计算随机一致性检验指标 CR=CI/RI;若 CR<0.1,通过一致性检验,利用式(3)计算 B 层各要素 i 相对于 A 层的权重 W_{io}

$$CI = \frac{\lambda_{\max} - 1}{n - 1} \tag{2}$$

$$W_i = \sum_{j=1}^n r_{ij} \div \sum_{i=1}^n \sum_{j=1}^n r_{ij}$$
(3)

式中, *i*, *j*=1, 2, ..., *n*, *n* 为模糊一致性矩阵的阶数。

同理,分别建立 C 层各指标相对于 B 层各相应 要素目标的模糊判断矩阵并进行随机一致性检验, 计算 C 层各指标 m 相对 B 层相应 i 要素目标的权重 W_{Bim}。最后,根据 B 层各要素 i 相对于 A 层的权重 Wi 和 i 要素目标下 C 层各指标 m 相对于 B 层的权重 W_{Bim},计算 C 层各指标 m 相对于 A 层的综合权重 E1~Ej (式 (4))。

$$E_m = W_i \times W_{\text{Bim}} \tag{4}$$

式中, *E_m*为 C 层第 *m* 个指标相对于 A 层的综合权 重, (*m*=1, 2, ..., *n*)。

1.5 农药场地土壤污染快速预测与方法检验

采用最大值标准化方法将各指标五分制评分转 换至[0,1]区间:

$$C_m = \frac{C_m}{MaxC} = \frac{C_m}{5} \tag{5}$$

式中, C_m 为C层第m个指标的五分制标准值, 0 \leq $C_m \leq 5$; C层各指标五分制评级得分的最大值 MaxC 为 5。最终, 根据 C 层各指标权重和五分制评分计 算农药场地土壤污染综合评判指数 P_k :

$$P_k = \sum_{m=1}^{11} E_m \times C_m \tag{6}$$

式中,*P_k*表示第*k*个场地的综合评判指数(*P_{KE}*[0,]); *C_{sm}*为该场地第*m*个指标五分制标准化评分。*P_k*值 越接近于1,表示该场地土壤受污染的可能性越高, 并且受污染程度越严重,以*P*=0.60作为预测土壤污 染的阈值,则*P*值[0,0.60)为无污染区间S;按等 间距将污染区间 D [0.60,1]划分为轻度污染 D1 [0.60,0.73)、中度污染 D2 [0.73,0.86)和重度污 染 D3 [0.86,1] 三种不同污染程度区间。

农药场地土壤污染快速预测方法需满足的精度 要求:(1)实际土壤污染场地的预测精度 L 达到 100%(式(7)),即预测出所有土壤被污染的场地; (2)综合预测精度 H 大于 75%(式(8))。若预测 检验结果不符合标准,则重新筛选指标、调整预测 方法,直至符合为止。

$$L = \frac{t - t_1}{t} \times 100\%$$
 (7)

$$H = \frac{T - t_1 - t_2}{T} \times 100\%$$
 (8)

式中, *t* 为土壤污染场地总个数, *t*₁ 为土壤污染场地 误预测个数; *T* 为场地总个数, *t*₂ 为土壤未污染场地 误预测个数。

1.6 数据关联度与相关性分析

采用灰色关联度分析(Grey Relation Analysis, GRA)筛选农药场地土壤污染关联指标,构建农药 场地土壤污染预测体系^[31]。若量化后的各指标与农 药场地土壤污染间的灰色关联度 *r*1≥0.6,则将其纳 入指标体系^[31]。再分别利用 Pearson 点二系列和斯 皮尔曼相关分析方法,分析年均气温、年均降水、 光照、年均风速、有机质含量、pH、生产时间和闲 置时间 8 个连续变量指标的原始数据及其等级以及 产品毒性、产品持久性、土壤质地等级与农药场地 土壤污染状况的相关性^[32-33]。

1.7 其他不同场地土壤污染预测方法的尝试和比对

大数据背景下的机器学习等数据挖掘方法盛行^[34-35],故尝试利用 SVM 模型和 BP 神经网络模型^[36-37]快速预测农药场地土壤污染状况。分别以 11 个属性(X1~X11)与16个属性(X1~X16)和农 药场地污染状况(Y)(表 2)作为输入和目标变量, 在 Matlab 软件平台上构建并训练 Linear、 Quadratics、Cubic、Fine Gaussian、Medium和 Coarse Gaussian 六种不同核函数的 SVM 模型^[36]和不同隐层 神经元数目的 3 层 BP 神经网络模型^[37],分析农药场 地属性指标数量对模型预测精度的影响。其中,BP 神经网络隐层神经元数目由以下经验公式确定^[37]:

$$a = \sqrt{v + L} + \alpha \tag{9}$$

式中, *a* 为隐层神经元个数, *v* 为输入层节点个数 (*v*=11), *L* 为输出层节点个数 (*L*=1), α 为 1 至 10 之间的常数,则 5~13 和 5~14 分别为 11 个和 16 个输入变量下 BP 隐层神经元数目的数值范围。

2 结 果

2.1 农药场地及其土壤污染预测指标概况

46个农药场地分布在江苏(7个)、河南(6个)、 浙江(6个)、福建(5个)、贵州(5个)、河北(5 个)、山东(4个)、广西(2个)、安徽(1个)、海 南(1个)、吉林(1个)、宁夏(1个)十二省和天 津市(2个)。约有 39%的场地以生产硝基苯和苯胺 等农药中间体为主,六六六和乙氰菊酯等杀虫剂为主 要的农药产品;仅3个场地生产剧毒强持久性产品。 生产除草剂、杀虫剂、杀菌剂、杀螨剂和杀线虫剂的 原药与制剂的场地个数之比为9:22(表3和表4)。

2.2 农药场地属性指标与场地污染的关系特征

产品毒性及其持久性、年均气温、年均降水、 年均风速、光照、土壤质地、土壤 pH、有机质含量、 生产时间和闲置时间的等级数据与场地土壤污染的 灰色关联度(0.65~0.79)均大于 0.6,表明各指标 分级前后均与场地土壤污染关联,土壤污染受这些 因素共同作用的影响;且年均气温、年均降水、年 均风速、光照、土壤质地、土壤 pH、有机质含量、 生产时间和闲置时间的等级数据与土壤污染状况间 关联度较原始数据的关联度增加 0.01~0.05,有利 于预测农药场地土壤污染^[31]。

农药场地土壤污染与生产时间、闲置时间、年 均气温、年均降水、年均光照、风速、pH 和有机质 含量原始数据间无显著线性相关,仅生产时间、产 品毒性及其持久性的五分制分级数据与农药场地土 壤污染呈现显著正相关,五分制分级增强了它们与

表 3 农药场地生产产品概要

Table 3 Summary of products produced in pesticide sites

	反征	场地个数 Number of sites					
作失 Towner of month is los		原药	制剂	合计			
Types of pesticides	Name	Pesticide technical Pesticide preparation		Total			
除草剂 Herbicide	丙草胺	1	0	1			
杀虫剂 Insecticide	乙氰菊酯、六六六、阿维菌素等	8	7	15			
杀菌剂 Bactericide	三环唑、氟乐灵、阿维菌素等	0	7	7			
杀螨剂 Acaricide	硫磺、阿维菌素	0	6	6			
杀线虫剂 Nematicide	神农丹、阿维菌素	0	2	2			
中间体与溶剂 Intermediate and solvent	硝基苯、苯胺、甲醛等	18	0	18			

表 4 农药场地属性统计

指标 Index	最小值 Min.	最大值 Max.	平均值 Mean	中位数 Median	众数 Mode	标准偏差 SD.
年均气温 Average annual temperature/(℃)	8.7	28.2	15.6	15.0	15.1	3.6
年均降水 Average annual precipitation/mm	182.9	1 850.0	1 052.8	1 037.8	548.9*	432.8
年均风速 Average annual wind speed/ ($m \cdot s^{-1}$)	1 036.6	3 011.0	1 974.4	2 000.0	2 000.0	512.1
光照 Light/(h·a ⁻¹)	292.0	1 533.0	874.0	839.5	730.0	292.0
pH	4.3	8.6	6.9	7.0	7.5	1.0
有机质含量 Organic matter content / (g·kg ⁻¹)	6	56	22	19	33	12
生产时间 Production time /a	1.0	61.0	25.2	19.5	7.0b	17.6
闲置时间 Idle time /a	1.0	30.0	6.9	4.5	0.5b	7.4

注: b 表示存在多个众数,显示了最小的值。Note: *means that there are multiple modes, showing the minimum value.

土壤污染之间的关系(表 5)。无论分级与否,年 均气温、年均降水、年均风速、光照、有机质含量 和 pH 与生产时间均不相关(表 6),表明气候指标 采用全国多年平均值、土壤 pH 和有机质含量采用 全国第二次土壤普查数据进行补充有一定合理性。

以农药场地土壤污染状况为因变量 Y,分别以 生产时间等级、产品毒性等级和持久性等级为自变 量 X_1 、 X_2 和 X_3 ,建立它们与农药场地土壤污染间的 线性关系(式(10)~式(15))。分别以 $Y \ge 1$ 为前提条件,反推农药场地土壤污染的生产时间(生 产时间等级阈值乘以6年间隔)、产品毒性及其持 久性的单因素预测阈值,分别为生产时间>48年、 产品毒性等级>5或产品持久性等级≥5级(式 (10)~式(12))。仅以生产时间阈值为唯一预测 指标,>48年场地6个,其中实际土壤污染场地1 个,发生概率为16%;≤48年场地40个,其中未 污染的场地17个,发生概率为43%;场地污染综合 预测精度为 39%。同样,仅以产品持久性为唯一预测指标,持久性为 5级的场地 3个,土壤全被污染;持久性<5级的场地 43个,其中未污染场地 23个,发生概率为 53%;综合预测精度仅为 56%。本研究未涉及产品毒性>5级的农药场地。

 $Y=0.105X_1+0.132$, $R^2=0.11$, P=0.028 (10)

$$Y=0.213X_2-0.210, R^2=0.51, P=0.000$$
 (11)

 $Y=0.256X_3-0.191$, $R^2=0.44$, P=0.000 (12)

$$Y=0.058X_1+0.200X_2-0.369$$
, $R^2=0.47$, $P=0.000$ (13)

$$Y=0.085X_1+0.248X_3-0.464$$
, $R^2=0.58$, $P=0.000$ (14)

$$Y=0.068X_1+0.094X_2+0.185X_3-0.549$$
, $R^2=0.60$,
 $P=0.000$ (15)

Table 5	Correlatio	n analysis	results be	tween the continuous index of soil pollution prediction of pesticide site and soil pollution									
场地属性	B1				B2				B3			B4	
Site properties	515	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	
SPS	1.00	_	_	-0.03	0.01	0.18	-0.03	_	0.27	-0.22	0.13	-0.07	
C1	0.74**	1.00	_	_	_	_	_	_	_	_	_	_	
C2	0.70^{**}	0.64**	1.00	_	_	_	_	_	_	_	_	_	
C3	0.05	0.12	-0.17	1.00	0.70^{**}	0.02	-0.34*	_	0.10	0.02	0.03	0.14	
C4	-0.10	-0.05	0.23	-0.76**	1.00	0.02	-0.53**	_	0.03	-0.03	0.11	0.12	
C5	0.19	0.07	0.08	0.07	0.04	1.00	0.09	_	0.35*	-0.41**	0.05	0.02	
C6	0.08	0.13	-0.13	0.56**	-0.55^{**}	0.07	1.00	_	0.24	-0.15	0.19	-0.32*	
C7	0.05	-0.13	-0.01	-0.29	0.22	0.05	-0.11	1.00	_	_	_	_	
C8	-0.11	-0.02	-0.05	-0.23	0.28	0.03	-0.19	0.01	1.00	-0.68**	0.06	-0.02	
С9	0.10	0.07	0.04	0.28	-0.16	0.06	0.09	0.11	0.12	1.00	-0.05	0.02	
C10	0.33*	0.11	0.24	-0.01	-0.03	0.23	0.06	0.11	-0.12	-0.15	1.00	-0.26	
C11	-0.02	0.11	0.19	-0.29	0.17	-0.19	-0.15	0.16	0.03	-0.06	-0.09	1.00	

表 5 农药场地土壤污染预测指标与农药场地土壤污染相关性

注: SPS 表示土壤污染状况, B1~B4 依次表示产品特性、局部气候条件、土壤属性和场地生产特性, C1~C11 依次表示持久 性、毒性、年均气温、年均降水、年均风速、光照、土壤质地、pH、有机质含量、生产时间和闲置时间, 上三角为 Pearson 点二分 析; 下三角为 Pearson 斯皮尔曼分析; **显著性 P<0.01; * 显著性 P<0.05。Note: SPS indicated soil pollution states, B1~B4 indicated product characteristics, local climate conditions, soil properties and site production characteristics, C1~C11 indicated persistence, toxicity, average annual temperature, average annual precipitation, average annual wind speed, light, soil texture, pH, organic matter content, production time and idle time. The upper triangle is Pearson point two analysis; Pearson Spearman analysis was used in the lower triangle, ** Significant P < 0.01, * Significant P < 0.05.

表 6 不同产品指标等级预测农药场地土壤污染的生产时间阈值

Table 6 Different product index levels to forecast the production time threshold for soil pollution of pesticide sites

	1			2		3		4		5	
项目 Item	毒性	持久性									
	Toxicity	Persistence									
生产时间阈值 ^① /a	120	84	96	66	78	24	54	20	36	12	
综合预测精度 ²² /%	100	93	80	83	56	50	0	63	26	100	
场地样本数 ³³	7	15	10	6	9	6	1	16	19	3	

①Production time threshold, ②Comprehensive prediction accuracy, ③Number of site samples

由于产品毒性与其持久性显著正相关(表 6), 依据它们和生产时间与土壤污染的二元关系(式 (13)~式(14)),以生产时间预测污染的阈值因 产品毒性或其持久性不同发生变化,结合不同产品 特性预测场地污染的精度差别明显,平均仅为 65% (表 6)。利用生产时间、产品毒性及其持久性的三 元关系(式(15)),23个污染场地中正确预测 7 个,其余 23 个无污染场地均能正确预测,综合预测 精度也仅为 65%。显然,以极少数指标简单预测场 地土壤污染状况显得极不适宜,多数污染场地未得 到正确预测。

2.3 农药场地土壤污染快速预测指标权重

农药场地土壤污染预测指标体系 B 层(CR= 0.0457<0.1000)各指标相对于A层满足一致性要求^[28] (表1)。因 B1和 B4只有2个指标,默认满足一致性 要求。B2(CR=0.0072)和 B4(CR=0.0784)的相容 度均小于0.1000,则C层各指标相对于B层也均满足 一致性要求^[28]。各层次及其指标权重计算结果如表7。

产品特性 B1 为因素层第一主导因素, 与权重 排名第二的场地状况 B4 的累加权重达到 0.583 3. 表明农药场地土壤污染是一个历史性过程,主要受 产品特性和场地自身情况影响。局部气象条件 B2 和土壤属性 B3 则是通过改变局部水、热、养分等 外在条件,使农药场地土壤污染程度产生差异^[38-39]。 此外,局部气象条件 B2 还影响农药生产及工艺选 择,从而影响农药场地土壤污染状况^[38-40]。

产品毒性 C2 综合权重最高, 而光照 C6 综合权 重最低,二者相差近4倍。产品毒性是农药污染场 地威胁环境安全的根本原因:通过光催化等反应净 化环境中的部分农药,降低其环境威胁,农药毒性 的权重应远高于光照^[27]。农药持久性 C1 与农药毒 性 C2 权重仅相差 0.03 左右, 持久性强的农药在土 壤中不易被微生物等分解,持续在土壤中积累加剧 十壤污染[16, 38-39]。

Table	Table / Comprehensive weights of indicators for soil pollution prediction system of pesticide site										
目标层 A	因素层 B 权	重	指标层 C 权	重	综合权重						
Target layer A	Factor layer B w	reight	Index layer C we	eight	Comprehensive weight						
	立日柱州 D1	0.2250	持久性 C1	0.450 0	0.146 3						
) 而付注 D1	0.3230	毒性 C2	0.550 0	0.178 8						
			年均气温 C3	0.308 3	0.069 4						
カポセル 1 海に 池地灯	局部气象条件 B2	0.2250	年均降水 C4	0.241 7	0.054 4						
			年均风速 C5	0.241 7	0.054 4						
Status of soil pollution in			光照 C6	0.208 3	0.046 9						
pesticide production site			质地 C7	0.283 3	0.054 3						
(A)	土壤属性 B3	0.1917	pH C8	0.333 4	0.063 9						
			有机质含量 C9	0.383 3	0.073 5						
	场地生产特性 B4	0.0500	生产时间 C10	0.600 0	0.155 0						
		0.2583	闲置时间 C11	0.400 0	0.103 3						

表 7 农药场地土壤污染预测指标体系综合权重 .

.. .. .

.. .

2.4 基于完整数据报告的快速预测与检验

记录规范、数据完整的5个农药场地(A~D) 均检测出污染物;除A场地外,其余场地均被污染 (表 8)。A 场地 P 值最小, 预测为未污染; B~E 均 预测为污染场地(表8)。实际污染状况检验表明, 污染场地预测精度 L 为 100%,综合预测精度 H 为 100%, 预测效果精准。

2.5 基于补充数据报告的快速预测与检验

41 个补充数据报告快速预测结果表明(表9). 该方法预测出所有土壤被污染的场地,实际预测精 度 L=100%; 4 个土壤未被污染的场地被过严预测 为污染场地,综合预测精度 H=91%; 15 个和 8 个 场地分别被预测为轻、中度污染场地。污染程度越 严重,可能造成的危害越大,应优先进行实地调查 和评估。

农药场地生产的产品毒性和持久性强、生产时 间长、闲置时间短是造成未污染场地被过严预测为 污染场地的重要原因。被过严预测为有污染的 4 个 场地中,8号、20号和37号场地生产剧毒产品;8 号场地生产的产品持久性强;4号、20号和37号场 地的平均生产时间长达 40 年, 而 20 号场地闲置时 间仅为2年。

2.6 基于全部数据报告的 SVM 与 BP 神经网络模 型污染预测精度

以 32 个样本(70%)作为训练集,重复训练 SVM 和 BP 神经网络模型 1 000 次,并用训练好的 SVM 和 BP 神经网络模型预测 46 个农药场地的土 壤污染状况(表10)。结果表明,在相同的污染预 测指标体系(11个指标)下, SVM 和 BP 神经网 络分析方法均出现了漏判农药污染场地的现象,不 满足精度要求。建立的五分制层次分析法诊断出全综合预测精度高于 SVM 和 BP 神经网络方法的平 部土壤被污染的农药场地(t₁=0),且土壤污染场地

均预测精度(表10)。

		Table 8Pol	llution status o	of pestici	ide sites with the	complete investigation report			
伯旦			闰墨叶问		土壤污染状况 Soil pollution status				
洲 与 No.) _{пп} Product	乎) 呵呵	Idle time	Р	预测结果 Prediction result	实际状况 t Actual situation			
А	甲胺磷	1年	10年以上	0.55	S	检测出污染物,但均未超出二类用地筛选值(S)			
В	有机磷农药等 27 种农药	20 年	1年	0.83	D2	检测出有机污染物、重金属等多种污染物,存在污染(D)			
С	五硫化二磷	15 年	5年	0.77	D2	多环芳烃等超标,存在污染(D)			
D	林丹	42 年	14年	0.88	D3	典型 POPs 污染场地,包括林丹、六六六等污染、存在 污染(D)			
Е	阿维菌素颗粒	10 年	小于1年	0.61	D1	污染物包括有机磷农药、VOCs等,存在严重污染(D)			

表 8 调查报告完备的农药场地污染状况

注:S表示未污染、D表示污染、D1~D3分别对应轻度、中度和重度污染。Note:S means no pollution,D means pollution, D1~D3 correspond to mild, moderate and severe pollution respectively.

	Table 9 Supplemental report data of pesticide site soil pollution prediction results										
		污染状	况	污染状况		况			污染状况		
编号	D	Pollution s	statues	编号	מ	Pollution s	statues	编号	מ	Pollution s	statues
No.	Р	预测	实际	No.	P	预测	实际	No.	P	预测	实际
		Prediction	Reality			Prediction	Reality			Prediction	Reality
1	0.55	S	S	15	0.48	S	S	29	0.67	D1	D
2	0.71	D1	D	16	0.56	S	S	30	0.65	D1	D
3	0.57	S	S	17	0.82	D2	D	31	0.76	D2	D
4	0.63	D1	S	18	0.65	D1	D	32	0.57	S	S
5	0.57	S	S	19	0.52	S	S	33	0.53	S	S
6	0.78	D2	D	20	0.69	D1	S	34	0.53	S	S
7	0.72	D1	D	21	0.69	D1	D	35	0.52	S	S
8	0.79	D2	S	22	0.76	D2	D	36	0.69	D1	D
9	0.71	D1	D	23	0.69	D1	D	37	0.76	D2	S
10	0.66	D1	D	24	0.53	S	S	38	0.82	D2	D
11	0.65	D1	D	25	0.51	S	S	39	0.68	D1	D
12	0.5	S	S	26	0.51	S	S	40	0.53	S	S
13	0.64	D1	D	27	0.4	S	S	41	0.81	D2	D
14	0.47	S	S	28	0.56	S	S				

表 9 补充报告数据的农药场地土壤污染预测结果

Table 10	Accuracy of	ccuracy comparison of different soil pollution prediction methods in sites							
卡注		11 个预	〔测指标			16个预测指标			
万法 Method		11 predic	tion index		16 prediction index				
	H/%	L/%	t_1	t_2	H/%	L/%	t_1	t_2	
SVM 模型 Support Vector Machine	78~85	50~91	2~11	1~4	46~85	52~87	2~11	4~15	
BP 神经网络 BP neural network	71~96	41~91	2~13	0~10	75~93	61~96	1~11	0~4	
五分制层次法	01	100	0	4					
Five-score analytic hierarchy process	91	100	0	4	_	—	_		

表 10 不同场地土壤污染预测方法的精度对比

注: H 为土壤污染场地综合预测精度, L 为实际土壤污染场地的预测精度, t_1 为土壤污染场地误判个数, t_2 为土壤未污染场地误 判个数。Note: H is the comprehensive prediction accuracy of soil contaminated sites, l is the prediction accuracy of actual soil contaminated sites, t_1 is the number of misjudgments of soil contaminated sites, t_2 is the number of misjudgments of soil unpolluted sites.

在 11 个指标体系中加入农药稳定性、挥发性、 腐蚀性、溶解性和易燃性, BP 神经网络对实际土壤 污染场地的平均预测精度提升 12%,综合预测精度 提升 1%,但仍误判 1~11 个的农药场地。对 SVM 模型而言,由于数据冗余度的增加直接造成了土壤 污染场地的平均综合预测精度降低了 16%,更不符 合要求^[37]。

综上所述,采用 11 个指标的基于五分制层次分 析的农药场地土壤污染快速预测方法,是现有数据 规模下快速预测农药场地土壤污染的最佳方法。

3 讨 论

3.1 基于五分制层次分析的农药场地土壤污染快 速预测方法特点

基于五分制层次分析的农药场地土壤污染快速 预测方法,可为污染场地详查提供优先调查对象^[37], 具有关键数据需求少、预测快速高效的特点。农药 场地土壤污染预测,目前常用做法是开展场地土壤 实际调查、采样、分析与污染评估^[4],但周期长、 费用高^[6-7],严重影响农药土壤污染场地及时预测和 有效管理,阻碍污染场地及时修复,污染场地再利 用具有极大潜在风险^[9]。五分制层次分析预测方法, 忽略复杂土壤污染过程和具体污染物浓度,从污染 源及其对受体作用特征角度^[41],利用与场地土壤污 染高度关联且易于获取的特征指标,对农药场地土 壤污染进行快速预测,弥补已有调查评估方法存在 的不足。

除考虑农药场地及产品特性等场地自身因素

外,该预测方法还考虑气温、降水、土壤有机质、 质地、pH等众多环境因素,突显了农药场地土壤污 染是多种因素共同作用的特征^[40-42]。气候条件影响 农药生产及工艺选择^[37.43]以及特征污染物的横向^[3] 和纵向迁移^[38],影响土壤污染范围^[42-44]。土壤条件影 响农药在土壤中迁移转换^[14]、形态^[41]以及活性^[42],改 变土壤污染风险^[39]。气候和土壤因素共同影响土壤 微生物作用,影响农药在土壤中的归趋,进而影响 农药场地土壤污染程度^[39]。

该方法设置了实际污染场地预测精度 100% 和污染与无污染场地综合预测精度 75%的双精度 目标要求,宁将未污染场地过严预测为污染场地, 也不可漏判任何实际存在的污染场地,体现"宁 严勿漏"原则。遵循该原则,选择各场地中毒性 及其持久性最强的农药产品作为预测场地污染的 特征产品,或按剧毒产品补充无农药产品记录场 地的毒性数据^[35,39,43],确保预测出所有农药污染 场地。这种"宁严勿漏"的预测原则,利于最大化管 控农药场地土壤污染风险。

3.2 基于五分制层次分析的农药场地土壤污染快 速预测方法适用性

对于采用相同土壤污染预测指标体系的 SVM 和 BP 神经网络模型而言, SVM 能够有效地解决小 样本数据预测问题, 但受缺失的补充数据影响较大, 平均土壤污染综合预测精度为 82%; BP 神经网络具 有良好的自学和自适应能力,其预测综合精度最大 值可达 96%, 但对样本的选取和样本量具有严格要 求,小样本数据训练出的 BP 神经网络的结构稳定 性和泛化能力差^[45-48], 平均综合预测精度为 84%。 SVM 模型和 BP 神经网络平均综合预测精度均低于 五分制层次快速预测法(表 10)。SVM 和 BP 神经 网络模型根据分类超平面和误差最小化等原理,其 场地污染预测过程由相关函数和算法控制^[46-47],均 存在土壤污染场地漏判问题,污染场地预测精度远 低于五分制层次快速预测法,由此带来环境风险将 十分严重^[3]。

基于完整数据报告和补充数据报告的农药场地 土壤污染快速预测检验表明,五分制层次分析预测 方法,可用于各类型农药场地的土壤污染预测,是 目前农药行业场地数据严重残缺条件下最为理想的 方法。该方法要求关键数据少,只需拥有农药场地 的地理位置和产品类型等关键信息,可利用万维网 大数据平台对场地各预测指标进行数据补充。但在 数据补充过程中,除考虑数据来源官方性、权威性 外,还应充分考虑预测指标自身特点和补充数据的 准确性和时空尺度,如全国尺度的气候^[49]和土壤数 据^[20]。随着地理大数据和信息化技术的发展,农药 场地的样本数量大幅增加,数据质量显著提升,具 有良好数据处理和自学能力的 BP 神经网络机器学 习方法,也应是未来农药场地土壤污染快速预测方 法的发展方向^[50-51]。

4 结 论

通过筛选出公开的 46 个农药场地数据资料, 获取场地地理位置和产品名称等关键属性,并借助 万维网大数据检索补充缺失数据;综合考虑农药场 地环境因素和自身因素,采用五分制层次分析法建 立了农药场地土壤污染快速预测指标体系和方法。 结果表明:(1)基于五分制层次分析的农药场地土 壤污染预测体系可由产品特性、局部气象条件、土 壤属性和场地生产特性四大因素及其相应的产品毒 性、持久性、年均气温、年均降水、年均风速、光 照、土壤质地、pH、有机质含量、生产时间和闲置 时间 11 个特征指标,其中农药场地生产时间、产品 毒性及其持久性与农药场地土壤污染存在显著关联 性。(2)综合预测指数 $P \ge 0.6$ 可作为农药场地土壤 污染的预测阈值,对污染场地预测精度可达100%, 平均综合预测精度达到 91%。(3) 以生产时间、产 品毒性及其持久性不同指标组合的线性预测农药场 地土壤污染综合精度均小于 65%,综合 11 个指标的

机器学习方法综合预测精度平均为 82%,但均存在 污染场地严重漏判问题;五分制层次分析法是目前 农药行业场地数据严重残缺条件下最为理想的方法。

参考文献(References)

- Lewis K A, Tzilivakis J, Warner D J, et al. An international database for pesticide risk assessments and management[J].
 Human and Ecological Risk Assessment, 2016, 22 (4): 1050–1064.
- [2] Pesticide Inspection Institute of the Ministry of agriculture and rural areas of the people's Republic of China. China Pesticide Information Network [DB/OL]. http://www. chinapestici-de.org.cn/hysj/index.jhtml. 2020-05-01. [中华 人民共和国农业农村部农药检定所. 中国农药信息网 [DB/OL]. http://www.chinapesticide.org.cn/hysj/index.jhtml. 2020-05-01.]
- Zhao L, Teng Y, Luo Y M. Status of organochlorine pesticide contaminated sites in China and advances in site remediation[J]. Soils, 2018, 50 (3): 435—445. [赵玲, 滕应,骆永明. 我国有机氯农药场地污染现状与修复技术研究进展[J]. 土壤, 2018, 50 (3): 435—445.]
- [4] Horta A, Malone B, Stockmann U, et al. Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: A prospective review[J]. Geoderma, 2015, 241/242: 180-209.
- [5] Bartsch C. The new federal law on brownfields: The small business liability relief and brownfields revitalization act[J]. Environmental Practice, 2003, 5 (1): 48-52.
- Levrel H, Pioch S, Spieler R. Compensatory mitigation in marine ecosystems: Which indicators for assessing the "no net loss" goal of ecosystem services and ecological functions?[J]. Marine Policy, 2012, 36(6): 1202-1210.
- [7] Schädler S, Morio M, Bartke S, et al. Designing sustainable and economically attractive brownfield revitalization options using an integrated assessment model[J]. Journal of Environmental Management, 2011, 92 (3): 827-837.
- [8] Die Q Q, Nie Z Q, Liu F, et al. Seasonal variations in atmospheric concentrations and gas-particle partitioning of PCDD/Fs and dioxin-like PCBs around industrial sites in Shanghai, China[J]. Atmospheric Environment, 2015, 119: 220-227.
- Fang Y Y, Nie Z Q, Die Q Q, et al. Spatial distribution, transport dynamics, and health risks of endosulfan at a contaminated site[J]. Environmental Pollution, 2016, 216: 538-547.
- [10] Chakraborty S, Weindorf D C, Deb S, et al. Rapid assessment of regional soil arsenic pollution risk via diffuse reflectance spectroscopy[J]. Geoderma, 2017, 289: 72-81.

- [11] Fan J N, Zhang Y, He X M, et al. BP neural network based prediction and evaluation of heavy metal pollution in soil around the enterprises in key areas of Hubei Province[J]. Journal of Huazhong Agricultural University, 2019, 38 (4): 55—62. [范俊楠,张钰, 贺小敏,等. 基于 BP 神经网络的重点行业企业周边土 壤重金属污染预测及评价[J]. 华中农业大学学报, 2019, 38 (4): 55—62.]
- Liu S H, Zeng G M, Niu Q Y, et al. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi : A mini review[J]. Bioresource Technology, 2017, 224: 25-33.
- Yang Q Q, Li Z Y, Lu X N, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment[J]. Science of the Total Environment, 2018, 642: 690-700.
- [14] Gowd S S, Reddy M R, Govil P K. Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India[J]. Journal of Hazardous Materials, 2010, 174 (1/2/3); 113—121.
- [15] Han W, Gao G H, Geng J Y, et al. Ecological and health risks assessment and spatial distribution of residual heavy metals in the soil of an e-waste circular economy park in Tianjin, China[J]. Chemosphere, 2018, 197: 325–335.
- [16] Weber R, Watson A, Forter M, et al. Persistent organic pollutants and landfills - A review of past experiences and future challenges[J]. Waste Management & Research, 2011, 29 (1): 107-121.
- [17] Khan S, He X X, Khan J A, et al. Kinetics and mechanism of sulfate radical- and hydroxyl radical-induced degradation of highly chlorinated pesticide lindane in UV/peroxymonosulfate system[J]. Chemical Engineering Journal, 2017, 318: 135—142.
- [18] Song X, Lin N, Yin P H. Contaminated site remediation industry in China: Current state and future trends[J]. Soils, 2015, 47 (1): 1—7. [宋昕,林娜,殷鹏华. 中 国污染场地修复现状及产业前景分析[J]. 土壤, 2015, 47 (1): 1—7.]
- [19] Public Meteorological Service Center of China Meteorological Administration. China weather net[DB/OL]. http://www.weather.com.cn/. 2020-05-01. [中国气象局公共气象服务中心.中国天气网[DB/OL]. http://www.weather.com.cn/. 2020-05-01.]
- [20] Institute of Soil Science, Chinese Academy of Sciences. China soil database [DB / OL]. http://vdb3.soil.csdb.cn/.
 2020-05-01. [中国科学院南京土壤研究所. 中国土壤数 据库[OL/DB]. http://vdb3.soil.csdb.cn/. 2020-05-01.]
- [21] Yu D S, Shi X Z, Sun W X, et al. Estimation of China soil organic carbon storage and density based on 1 : 1000000 soil database[J]. Chinese Journal of Applied Ecology, 2005, 16 (12): 2279—2283. [于东升,史学正,孙维

侠,等.基于1:100万土壤数据库的中国土壤有机碳
密度及储量研究[J].应用生态学报,2005,16(12):
2279—2283.]

- [22] University of Hertfordshire. PPDB: Pesticide Properties DataBase[DB/OL]. [2020-05-01]. http://sitem.herts.ac.uk/ aeru/ppdb/en/atoz.htm.
- [23] National Health Commission of the People's Republic of China. GBZ230-2010, Classification for hazards of occupational exposure to toxicant [S]. Beijing: Standards Press of China, 2011: 1—6. [中华人民共和国国家卫生 健康委员会.GBZ230-2010, 职业性接触毒物危害程度 分级[S]. 北京:中国标准出版社, 2011: 1—6.]
- [24] Shively E. CAS surveys its first 100 years[J]. Chemical & Engineering News, 2007, 85 (24): 13.
- [25] Liu J. Study on spatial and temporal variation of the boundary and area of the semi-arid region in Northern China over the past 60 years[D]. Xi'an: Northwest University, 2019. [刘洁. 近 60 年来中国北方半干旱区 界线与范围时空变化特征研究[D]. 西安:西北大学, 2019.]
- [26] Zeng X B. Acidification of red soils and control methods[J]. Chinese Journal of Soil Science, 2000, 31 (3):111—113,145.[曾希柏. 红壤酸化及其防治[J]. 土壤通报, 2000, 31 (3): 111—113, 145.]
- [27] Foreman W T, Majewski M S, Goolsby D A, et al. Pesticides in the atmosphere of the Mississippi River Valley, part II—air[J]. Science of the Total Environment, 2000, 248 (2/3): 213—226.
- [28] Passatore L , Rossetti S , Juwarkar A A , et al. Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): State of knowledge and research perspectives[J]. Journal of Hazardous Materials, 2014, 278: 189-202.
- [29] Lian Q C. Risk analysis and countermeasure of construction project based on fuzzy analytic hierarchy process research—A case study of Beijing M project[D]. Xi'an:Xi'an Polytechnic University, 2019. [连启超. 基 于模糊层次分析法的建设工程项目的风险分析及对 策研究——以北京 M 项目为例[D]. 西安:西安工程 大学, 2019.]
- [30] Yuan Y L. The research on the construction engineering project risk management based on fuzzy analytic hierarchy process[D]. Chongqing: Chongqing University, 2013. [元 云丽. 基于模糊层次分析法(FAHP)的建设工程项目风 险管理研究[D]. 重庆:重庆大学, 2013.]
- [31] Guo L Y, Liu B L. Grey correlation evaluation of listed companies' operating performance based on coefficient of variation [J]. Statistics & Decision, 2005(3): 18—19.
 [郭璐芸,刘蓓蕾. 基于变异系数法的上市公司经营业 绩灰色关联评价[J]. 统计与决策, 2005(3): 18—19.]
- [32] Liu W, Bian Y F, Chen L L, et al. Comparative research of BP neural network estimates IRT parameters[J]. China

720

Examinations, 2013 (2): 7—11. [刘文, 边玉芳, 陈玲丽, 等. BP 神经网络估计 IRT 参数的比较研究[J]. 中国考试, 2013 (2): 7—11.]

- [33] Sun H L. Correlation analysis of driving behavior based on correlation analysis and frequent pattern mining[D]. Fuxin, Liaoning: Liaoning Technical University, 2019.
 [孙浩琳. 基于相关性分析和频繁模式挖掘的驾驶行为 关联性分析[D]. 辽宁阜新:辽宁工程技术大学, 2019.]
- [34] He L Z, Gielen G, Bolan N S, et al. Contamination and remediation of phthalic acid esters in agricultural soils in China : A review[J]. Agronomy for Sustainable Development, 2015, 35 (2): 519-534.
- [35] Dixit R, Wasiullah, Malaviya D, et al. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes[J]. Sustainability, 2015, 7 (2): 2189-2212.
- [36] Idowu O, Semple K T, Ramadass K, et al. Beyond the obvious : Environmental health implications of polar polycyclic aromatic hydrocarbons[J]. Environment International, 2019, 123: 543-557.
- [37] Ministry of Ecology and Environment of the People's Republic of China. HJ 25.3-2019, Technical guidelines for risk assessment of on soil contamination of land for construction[S]. Beijing : China Environmental Publishing Group, 2019. [生态环境部. HJ25.3-2019, 建 设用地土壤污染风险评估技术导则[S]. 北京:中国环 境出版集团, 2019.]
- [38] Wang Q H, Pang Z, Zheng R L, et al. Effects of contour grass hedges on migration of tribenuron-methyl residue in sloping cropland soil[J]. Journal of Agro-Environment Science, 2016, 35 (6): 1081–1089. [王庆海, 庞卓, 郑瑞伦,等. 等高草篱对坡耕地土壤苯磺隆残留迁移的影响[J]. 农业环境科学学报, 2016, 35 (6): 1081–1089.]
- [39] Alharbi O M L, Basheer A A, Khattab R A, et al. Health and environmental effects of persistent organic pollutants[J]. Journal of Molecular Liquids, 2018, 263: 442-453.
- [40] Wu X M, Dong F S, Wu X H, et al. Impact of climate change on application risk of pesticide [J]. Plant Protection, 2019, 45 (2): 25—29. [吴秀明,董丰收, 吴小虎,等. 气候变化对农药应用风险的影响[J]. 植物 保护, 2019, 45 (2): 25—29.]
- [41] Xu P. Study on the speciation distribution of organochlorine pesticides in different types of soils[D].
 Beijing: China University of Geosciences, 2014. [徐鹏.
 不同类型土壤中有机氯农药形态分布规律研究[D]. 北

京:中国地质大学(北京), 2014.]

- [42] Peng S Y, Ye H, Wei J, et al. Residues and dissipation of clothianidin, thiamethoxam, chlorpyrifos and thiosultapmonosodium in soil and sugarcane[J]. Agrochemicals, 2020, 59 (11): 814—820. [彭思雅, 叶昊, 韦婕, 等. 噻虫胺、噻虫嗪、毒死蜱、杀虫单在土壤和甘蔗中的 残留消解动态[J]. 农药, 2020, 59 (11): 814—820.]
- Utembe W, Faustman E M, Matatiele P, et al. Hazards identified and the need for health risk assessment in the South African mining industry[J]. Human & Experimental Toxicology, 2015, 34 (12): 1212–1221.
- [44] Chen G H, Zou M T, Huang K X, et al. Methods analysis and frontiers review of vulnerability for coupled multihazard in Chemical Industry Park[J]. Chemical Industry and Engineering Progress, 2019, 38 (5): 2527—2535. [陈国华, 邹梦婷, 黄孔星, 等. 化工园区 多灾种耦合脆弱性方法探究与前沿综述[J]. 化工进展, 2019, 38 (5): 2527—2535.]
- [45] He Z B, Wen X H, Liu H, et al. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region[J]. Journal of Hydrology, 2014, 509: 379–386.
- [46] Kuo Y H, Kusiak A. From data to big data in production research: The past and future trends[J]. International Journal of Production Research, 2019, 57 (15/16): 4828-4853.
- [47] Yang J F, Qiao P R, Li Y M, et al. A review of machine-learning classification and algorithms[J]. Statistics & Decision, 2019, 35(6): 36—40. [杨剑锋, 乔佩蕊,李永梅,等. 机器学习分类问题及算法研究综 述[J]. 统计与决策, 2019, 35(6): 36—40.]
- [48] Liu T S. The research and application on BP neural network improvement[D]. Harbin: Northeast Agricultural University, 2011. [刘天舒. BP 神经网络的改进研究及 应用[D]. 哈尔滨:东北农业大学, 2011.]
- [49] National Oceanic and Atmospheric Administration. Hourly/sub-Hourly Observational Data Map[DB/OL]. https://gis.ncdc.noaa.gov/maps/ncei/cdo/hourly. 2020-11-01.
- [50] Hu H. Introduction of Geographic Information System history and prospects[D]. Beijing: China University of Geosciences, 2011. [胡祎. 地理信息系统(GIS)发展 史及前景展望[D]. 北京:中国地质大学, 2011.]
- [51] Jiao C P. Comparison study on multi-category classification with binary SVMs[D]. Xi'an: Xidian University, 2011. [焦春鹏. 基于二分类 SVM 的多分类 方法比较研究[D]. 西安:西安电子科技大学, 2011.]

(责任编辑: 檀满枝)