DOI: 10.11766/trxb202110190563

李森, 遆超普, 彭凌云, 陶莉敏, 白潇, 李承霖, 孟磊, 颜晓元. 不同区域旱地土壤氨挥发过程同位素 δ¹⁵N 变化规律[J]. 土壤学报, 2023, 60 (3): 705-715.

LI Miao, TI Chaopu, PENG Lingyun, TAO Limin, BAI Xiao, LI Chenglin, MENG Lei, YAN Xiaoyuan. Changes of δ^{15} N Values during Ammonia Volatilization from Different Upland Soils in China[J]. Acta Pedologica Sinica, 2023, 60 (3): 705–715.

不同区域旱地土壤氨挥发过程同位素 $\delta^{15}N$ 变化规律^{*}

李 $淼^{1,2}$, 遆超普^{2†}, 彭凌云², 陶莉敏², 白 潇², 李承霖², 孟 $磊^{1\dagger}$, 颜晓元²

(1. 海南大学热带作物学院,海口 570228; 2.土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所),江苏常熟农田生态系统国家野外科学观测站,南京 210008)

摘 要: 大气氨(NH₃)是 PM_{2.5}形成的重要前体物,明确和量化农田等排放源对大气 NH₃的贡献,是大气污染治理的基础。 农田 NH₃挥发是大气 NH₃的重要来源之一,氮同位素自然丰度(δ¹⁵N)特征可以用来定量溯源大气 NH₃的来源,但目前对 于农田土壤 NH₃挥发全过程 δ¹⁵N 值动态变化规律的研究比较缺乏,且农田土壤 NH₃挥发受土壤性质等不同因素的影响,会 直接或间接影响 NH₃挥发的 δ¹⁵N 值,进而影响溯源结果。旱地土壤 NH₃挥发在我国农田 NH₃挥发中占主导地位,选取我国 4 个不同区域旱地土壤(辽宁北票、河南新乡、河北唐山、西藏林芝),添加尿素后在受控条件下采用海绵吸收法开展为期 15 d 的室内培养试验,通过化学转化法测定不同区域土壤 NH₃挥发全过程 δ¹⁵N 值并观察其变化规律。结果表明,辽宁北票、 河南新乡、河北唐山、西藏林芝的土壤 NH₃挥发过程 δ¹⁵N 值变化范围分别为-26.14‰~-5.57‰、-31.92‰~-26.31‰、 -24.41‰~-3.11‰、-29.17‰~-2.20‰,均值分别为-21.74‰±1.89‰、-29.31‰±1.72‰、-19.82‰±2.04‰、-23.25‰±2.16‰。 不同区域旱地土壤 NH₃挥发过程 δ¹⁵N 值的特征存在差异,新乡土壤的 δ¹⁵N-NH₃值持续升高,而北票、唐山和林芝土壤的 δ¹⁵N-NH₃值出现先降低后升高的趋势。综上所述,土壤性质、NH₃挥发速率是影响 NH₃挥发⁵N 值的主要因素,其中土壤 pH、NH₃挥发速率和累积损失量与 δ¹⁵N-NH₃值显著负相关;此外,同位素分馏效应对 δ¹⁵N-NH₃值也有一定的影响。本研究 结果可为大气 NH₃的定量溯源提供更好的支撑。

关键词:旱地土壤; NH₃挥发; 氮同位素自然丰度; 影响因素; 源解析 **中图分类号:** X511 **文献标志码:** A

Changes of $\delta^{15}N$ Values during Ammonia Volatilization from Different Upland Soils in China

LI Miao^{1, 2}, TI Chaopu^{2†}, PENG Lingyun², TAO Limin², BAI Xiao², LI Chenglin², MENG Lei^{1†}, YAN Xiaoyuan²

(1. College of Tropical Crops, Hainan University, Haikou 570228, China; 2. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Changshu National Agro-Ecosystem Observation and Research Station, Nanjing 210008, China)

* 通讯作者 Corresponding author, E-mail: cpti@issas.ac.cn; menglei@hainanu.edu.cn
 作者简介: 李 森(1997—), 男, 甘肃金昌人, 硕士研究生, 主要研究方向为土壤氮循环及其环境效应。E-mail: mli1002@163.com
 收稿日期: 2021-10-19; 收到修改稿日期: 2022-01-08; 网络首发日期(www.cnki.net): 2022-03-15

^{*} 国家自然科学基金项目(42177313、41961124004)资助 Supported by the National Natural Science Foundation of China (Nos. 42177313, 41961124004)

Abstract: **(**Objective**)** Atmospheric ammonia (NH₃) is an important precursor for the formation of PM_{2,5}. Hence, identification and quantification of the sources of atmospheric NH₃ are important for NH₃ emission abatement and air pollution control. Farmland NH₃ volatilization is one of the important sources of atmospheric NH₃. The technology of natural abundance of nitrogen isotopes (δ^{15} N) has been used to trace NH₃ sources in recent years. Despite these advances, studies on the dynamic change of δ^{15} N values from the whole process of NH₃ volatilization from farmland soils are lacking. Moreover, NH₃ volatilization from farmland soils is affected by different factors such as soil properties, pH, which can directly or indirectly influence the δ^{15} N values of volatilized NH₃ and may lead to uncertainties in sources traceability. Upland soil NH₃ volatilization dominates total farmland NH₃ volatilization in China. We selected four types of upland soil from different regions in China to study the δ^{15} N values of NH₃ volatilization from the whole volatilization process to clarify the changes of δ^{15} N-NH₃ values and their impacting factors.

[Method **]** Urea was applied to four types of soils from Liaoning, Hebei, Henan and Tibet, and NH₃ volatilization was studied in a 15-day indoor culture experiment by the sponge absorption method under controllable conditions. The δ^{15} N value during the whole process of NH₃ volatilization was measured by the chemical transformation method. **[** Result **]** Results showed that the values of δ^{15} N during NH₃ volatilization from Beipiao soil from Liaoning Province ranged from –26.14‰ to –5.57‰, with an average of –21.74‰±1.89‰. The variation range of δ^{15} N values of Xinxiang soil (from Henan province) was from –31.92‰ to –26.31‰, with an average value of –29.31‰±1.72‰ while that of Tangshan soil (from Hebei province) and Linzhi soil (from Tibet) ranged from –24.41‰ to –3.11‰ with an average of –19.82‰±2.04‰, and from –29.17‰ to –2.20‰ with an average of –23.25‰±2.16‰, respectively. Overall, the δ^{15} N values of the NH₃ volatilization process in upland soils from different regions are different. During the whole process of soil NH₃ volatilization, the δ^{15} N-NH₃ values of Xinxiang continued to increase, and the δ^{15} N-NH₃ values of Beipiao, Tangshan and Linzhi first decreased and then increased. Soil properties and NH₃ volatilization rate are the main factors affecting the δ^{15} N value. **[** Conclusion **]** Our results showed that soil pH, NH₃ volatilization rate and cumulative NH₃ loss were significantly negatively correlated with the δ^{15} N-NH₃ values. In addition, isotope fractionation also impacts the δ^{15} N-NH₃ values. The results of this study can provide better support for the quantitative traceability of atmospheric NH₃. **Key words:** Upland soil; Ammonia volatilization; Nitrogen natural isotopic abundance; Impact factors; Source identify

氨(NH₃)是大气中主要的碱性气体,也是大 气活性氮的重要组成部分^[1],在大气化学和土壤氮 循环中起着关键作用^[2]。研究表明,NH₃极易与大 气中的酸性物质(HNO₃、H₂SO₄等)结合生成硫酸 铵、硝酸铵等大气颗粒态铵盐气溶胶,是大气 PM_{2.5} 形成的重要前体物^[3-4],会降低空气质量并严重危害 人类健康^[5]。农业源对大气 NH₃的贡献较大^[6],以 往的研究表明,我国农业源 NH₃ 排放贡献率达到 80%~90%,其中农田施氮导致的 NH₃挥发是重要 的排放源之一,占农业源排放的 40%^[7-8]。因此,明 确和量化农田系统对大气 NH₃的贡献是合理减排的 基础。

随着同位素技术的发展,氮稳定同位素技术被 应用于解析不同 NH₃ 排放源对大气 NH₃ 的贡献,其 原理是不同源表现出特定的氮同位素自然丰度特征 (δ^{15} N-NH₃),从而可以利用 δ^{15} N-NH₃值的差异解析 各个来源的贡献^[9-10]。Pan 等^[11]和 Felix 等^[12]研究发 现,挥发性肥料和禽畜排泄物中排放的 NH₃具有 较低的 δ^{15} N 值,可以与化石燃料燃烧排放的 NH₃ 区分开。Elliott 等^[13]进一步总结表明,农田 NH₃ 挥发的 δ^{15} N-NH₃ 值为-46‰±5‰,远远低于化石 燃料(-6‰)、人类生活废弃物(-38.4‰)及海洋 排放(-8‰)等其他源。因此,可以利用农田 NH₃ 挥发与其他排放源 δ^{15} N-NH₃ 值的差异进行大气 NH₃溯源。

但是当前由于实测数据的缺乏,大多溯源研究 无论在时间还是空间尺度上,均使用固定的同位素 值定量农田挥发对大气 NH₃的贡献。然而,农田氮 素循环过程极其复杂,NH₃挥发过程也是由物理化 学、微生物等作用共同作用。此外,农田土壤 NH₃ 挥发过程也会受到土壤性质、施氮水平和外界温度 等因素的影响^[14-15],其直接或间接地导致 NH₃挥发 的δ¹⁵N-NH₃值存在较大的变化。例如,随着氮输入 的增加,土壤 NH₃排放量呈指数级增加^[16]; Ti 等^[17] 通过培养试验表明,不同施肥水平下农田土壤 NH₃ 挥发的 δ^{15} N-NH₃ 值差异显著,施肥水平越高其 δ^{15} N-NH₃ 值越低。Cejudo 和 Schiff^[18]指出土壤 pH 越高,¹⁴N 更易于挥发出来而形成富集,导致挥发的 δ^{15} N 值越低。同时,温度与 δ^{15} N-NH₃ 值负相关^[19-20]。 此外,由于 ¹⁴N 比 ¹⁵N 更易挥发出来的特点,土壤 NH₃ 挥发的过程存在同位素分馏效应,使得 δ^{15} N-NH₃ 值变化较大^[21]。研究显示,草地生态系统 中添加氮肥后,土壤 NH₃挥发过程的 δ^{15} N 值随时间 推移最终呈现富集趋势^[22-23]。因此,农田土壤 NH₃ 挥发过程中 δ^{15} N-NH₃ 值影响因素较多,在时间或空 间尺度上都会存在一定的变化,需要进一步深入研 究不同地区、不同土壤性质条件下,其 δ^{15} N-NH₃值 的特征及影响因素。

我国农田 NH₃ 挥发中旱地土壤所占比例较大^[24], 因此本研究选取旱地土壤为研究对象,具体研究: 1)我国不同区域旱地土壤 NH₃ 挥发 δ^{15} N 值的特征; 2)我国不同区域旱地土壤 NH₃ 挥发过程 δ^{15} N 值的 影响因素及其变化规律,以期为进一步提高大气 NH₃溯源解析的准确性和精度提供科学支撑。

1 材料与方法

1.1 供试土壤

选取我国4个地区旱地土壤为研究对象(图1), 分别为东北地区辽宁北票褐土(41°57′N,120°36′ E)、中部地区河南新乡潮土(35°60′N,113°56′E)、 华北地区河北唐山潮褐土(39°47′N,118°0′E)和 高原地区西藏林芝棕壤(29°34′N,94°25′E),种植 作物为玉米、小麦、玉米和油菜。土壤样品采集主 要集中于2020年9月上旬至10月中旬,选取地形 一致、施肥耕作措施和作物生长状况基本相同的典 型样地,采集0~20 cm 耕层土壤,带回实验室经自 然风干后,手工去除肉眼可见的杂质(作物根系和 石块等),研磨并过2 mm 筛后充分混匀,储存至室 温下备用。不同地区土壤的基本理化性质见表1。

Table 1Physical-chemical properties of tested soils									
帯区	土壤米刑	pН	全氮	铵态氮	硝态氮	阳离子交换量	黏粒	粉粒	砂粒
	Soil type		Total nitrogen/	NH_4^+ -N/	NO_3^- -N/	CEC/	Clay/	Silt/	Sand/
Area			$(g \cdot kg^{-1})$	$(\ \mathbf{mg}{\cdot}\mathbf{kg}^{-1}\)$	$(\ \mathrm{mg}{\cdot}\mathrm{kg}^{\text{-}\mathrm{l}}\)$	$(\ \mathbf{cmol}{\cdot}\mathbf{kg}^{-1}\)$	%	%	%
北票	褐土	6.63	0.75	5.63	4.21	14.53	19.80	16.70	63.50
Beipiao	Cinnamon soil								
新乡	潮土	8.07	0.82	4.23	85.97	9.81	18.50	22.90	58.60
Xinxiang	Fluvo-aquic soil								
唐山	潮褐土	6.44	0.91	7.41	29.67	15.77	23.57	21.63	54.80
Tangshan	Meadow cinnamon soil								
林芝	棕壤	5.83	0.95	0.74	57.04	6.57	8.66	17.94	73.40
Linzhi	Brown soil								

表1 供试土壤理化性质

注:北票、新乡、唐山和林芝分别为辽宁、河南、河北和西藏;CEC 表示 cation exchange capacity。Note: Beipiao, Liaoning Province; Xinxiang, Henan Province; Tangshan, Hebei Province; Linzhi, Tibet; CEC, cation exchange capacity.

1.2 试验设计

利用海绵吸收法,在可控条件下进行 NH₃ 挥发 室内培养试验。选取上述 4 个不同区域旱地土壤, 分别称取 20 g风干土加入 500 mL 塑料培养瓶中(直 径 8.5 cm),并轻摇铺平,为模拟野外情况,除空白 外,设置肥料添加实验,氮肥施用量 12.67 mg 尿素, 相当于施 N180 kg·hm⁻²,用注射器均匀施入土壤中, 并用去离子水将土壤水分调节至 60%质量含水量。 每个处理重复 3 次,本试验中施入的尿素 δ^{15} N 值为 -3.6‰±0.1‰。培养瓶的颈部放入直径 5.5 cm、厚 1 cm 的圆形海绵,以捕获瓶中土壤挥发出的 NH₃。 海绵内含 3 mL 0.3 mol·L⁻¹ H₂SO₄ 吸收液,保证培养 过程中土壤挥发出的 NH₃ 被完全吸收。瓶盖打直径 1.4 cm 的小孔,将直径 1.4 cm 的硬质橡胶管塞入孔 中,含 H₂SO₄吸收液的小海绵用镊子塞入橡胶孔中, 防止外部空气进入培养瓶中影响试验,且每天更换 一次小海绵。

同时将培养瓶放置于恒温恒湿培养箱中,设置 温度为 25±3℃、湿度为 95%,连续培养 15 天,并 分别于第 1、2、3、4、5、6 和 15 天对培养后的土 壤和海绵进行采样。培养过程中进行非破坏式采样, 即一开始就将整个培养过程的取样次数考虑在内, 并设置相应重复。每次采样后,将吸收 NH₃的海绵 浸入 50 mL 1 mol·L⁻¹ KCl 溶液中 200 r·min⁻¹浸提 2.5 h 之后用 Whatman 42 (2.5 µm)滤纸过滤,用 Skalar San++流动分析仪 (Breda,荷兰)测定滤液 的 NH⁴₄-N 和 NO₃⁻-N 浓度。其中 NH₃ 挥发累积量 (F_n , kg·hm⁻²)、NH₃挥发速率 (F_r , kg·hm⁻²·d⁻¹)分 别用式 (1)和式 (2)计算:

$$F_n = \frac{C \times V \times 180 \times 10^{-3}}{29.146}$$
(1)

$$F_r = F_n - F_{n-1} \tag{2}$$

式中, *C* 为海绵浸提液中 NH₄⁺-N 浓度(mg·L⁻¹), *V* 为浸提液中溶液体积(mL), 29.146 为转换系数, 180 为施氮量, *n* 为培养天数。

1.3 土壤理化性质测定

将培养瓶中的土壤搅拌均匀,称取5g新鲜土 加入 50 mL 2 mol·L⁻¹ KCL 溶液中,置于 25℃ 200 r·min⁻¹ 摇床中震荡 1 h,定量滤纸过滤后用 Skalar San++连续流动分析仪测定土壤的 NH₄⁺-N 和 NO₃⁻-N 浓度。土壤 pH 采用电位法测定,按水:土= 2.5:1浸提土样后用 pH 计(FE20, Mettler-Toledo, USA)测定;土壤质地和阳离子交换量分别使用激 光衍射粒度分析法和 EDTA-乙酸铵盐交换法测定; 土壤 TN 使用半微量凯氏法测定。

1.4 NH₃ 挥发过程 δ^{15} N 的测定

被海绵捕获的 NH₃ 以及土壤溶液中 NH₄⁺-N 的 δ¹⁵N 值采用化学转换法测定^[25]。首先通过 NaBrO 将 样品中的 NH₄⁺氧化为 NO₂⁻, 然后在强酸条件下,通 过 NH₂OH 将 NO₂⁻转化为 N₂O。N₂O 气体中的两个 氮原子分别来自 NH₂OH 和样品 NH_x中,其δ¹⁵N 换 算曲线的理论斜率应为 0.5。生成的 N₂O 可通过同 位素质谱仪(Isoprime 100, Isoprime, UK)进行分 析,利用转化生成气体的 δ^{15} N-N₂O 可以反推出底物 δ^{15} N-NH₄⁺。样品中 NH_x 同位素自然丰度可通过以 下公式计算:

$$\delta^{15} \text{N} - \text{NH}_{x} (\%) = \frac{({}^{15} \text{N}/{}^{14} \text{ N}) \text{sample} - ({}^{15} \text{N}/{}^{14} \text{ N}) \text{standard}}{({}^{15} \text{N}/{}^{14} \text{ N}) \text{standard}}$$
(3)

试验中选择 USGS-25 (-30.4‰)、USGS-26 (+53.7‰)和 IAEA-N-1 (+0.4‰)作为同位素标准 值进行质量控制。

1.5 数据处理与分析

试验所有数据用 Microsoft Excel 2016 软件整 理,图表所列数据用相应处理 3 次重复的平均值 (mean)和标准差(SD)来表示。各处理间的统计 学差异均采用单因素方差分析(ANOVA)和最小显 著性差异法(LSD)进行检验,采用非线性曲线拟 合分析方法研究了土壤 pH、NH₃挥发速率和累积量 及土壤 δ^{15} N-NH₄ 值与 δ^{15} N-NH₃ 值之间的关系(*P*< 0.05,*P*<0.01)。所有数据运用 IBM SPSS Statistics 26 进行统计分析,运用 Origin 2018 进行绘图。

2 结 果

2.1 土壤理化性质及氮同位素自然丰度值的变化

不同区域旱地土壤 NH₃挥发过程中土壤性质随 时间动态变化的规律见图 1。整个试验过程中,土 壤 NH₄⁺-N 含量均呈现先急剧上升、之后缓慢下降的 趋势(图 1a)。新乡土壤 NH₄⁺-N 含量第1天迅速升 高,达到峰值后急剧降低,峰值为(199.2±2.1) mg·kg⁻¹;北票和唐山土壤均在第2天达到峰值,分 别为(75.1±3.2)mg·kg⁻¹和(145.7±0.6)mg·kg⁻¹; 林芝土壤则持续上升至第5天才达到峰值,为 (156.9±2.4)mg·kg⁻¹。试验的第15天,土壤 NH₄⁺-N 含量均下降到较低水平,北票、新乡、唐山和林芝土 壤 NH₄⁺-N含量分别为(4.6±0.3)mg·kg⁻¹、(0.49±0.04) mg·kg⁻¹、(5.1±0.3)mg·kg⁻¹和(47.1±6.1)mg·kg⁻¹。 在试验的培养过程中,土壤 NH₄⁺-N含量均值水平表 现为:林芝>唐山>新乡>北票,且林芝和唐山土壤 NH₄⁺-N水平显著高于北票和新乡(P<0.05)。

随培养时间的增加,北票、唐山和林芝的土壤 NO₃⁻N 含量均呈持续升高的趋势,新乡土壤 NO₃⁻N 含量急剧升高至第5天,之后缓慢下降(图 lb)。第15天,北票、新乡、唐山和林芝土壤NO₃⁻N 含量分别为(103.4±6.2)mg·kg⁻¹、(257.5±7.0) mg·kg⁻¹、(186.3±9.6)mg·kg⁻¹和(195.7±1.3)mg·kg⁻¹。 试验培养过程中,新乡的土壤NO₃⁻-N含量显著高于 北票、唐山和林芝(P<0.01),林芝的土壤NO₃⁻-N 含量显著高于北票(P<0.05),而唐山的土壤NO₃⁻-N 浓度与北票、林芝之间差异不显著。

土壤 pH 的变化规律与土壤 NH₄-N 含量的变 化规律相似,均为先升高再降低的趋势(图 1c)。 施入尿素后的第1天,各土壤 pH 较初始值均不同 程度升高,北票、新乡和唐山土壤的 pH 在第一天 达到峰值,分别为 7.98±0.03、8.42±0.05、7.77±0.03, 之后随着时间的推移缓慢降低;而林芝土壤的 pH 则持续升高至第 4 天才达到峰值,为 7.20±0.03, 培养过程中土壤 pH 均值水平总体表现为:新乡> 北票>唐山>林芝。试验第15天,四个区域的土壤 pH 均降低到较低水平,低于初始 pH,分别为 6.37±0.11、7.85±0.01、5.48±0.02 和 5.25±0.06, 添 加尿素后土壤 NH3挥发过程导致了土壤的酸化。在 本试验的培养过程中,新乡的土壤 pH 值显著高于 唐山和林芝 (P<0.05), 北票的土壤 pH 显著高于林 芝(P<0.05),而唐山的土壤pH与北票、林芝差异 不显著。

除新乡外,北票、唐山和林芝土壤 δ^{15} N-NH⁺4值 随培养时间持续升高。而新乡土壤 δ^{15} N-NH⁺4值呈 现先升高再降低,随着培养时间推移又升高的趋势 (图 2)。试验第 1 天,北票、新乡、唐山和林芝土 壤 δ^{15} N- NH⁴ 值分别为-6.71‰±0.37‰、5.78‰± 0.16‰、-2.02‰±0.97‰、-5.44‰±0.95‰,第 15 天 时,土壤 δ^{15} N- NH⁴ 值分别为 37.70‰±4.38‰、 28.82‰±0.67‰、59.12‰±5.76‰、29.72‰±1.19‰。 这表明在 NH₃ 挥发过程中出现了氮同位素分馏效 应,¹⁵N 随培养时间在土壤中富集。在本试验的 15 天培养期内,土壤 δ^{15} N- NH⁴ 值的变化范围分别为 -6.71‰±0.37‰至 37.70‰±4.38‰、-5.58‰±0.73‰ 至 28.82‰±0.67‰、-2.02‰±0.97‰ 至 59.12‰± 5.76‰、-5.44‰±0.95‰至 29.72‰±1.19‰。

图 2 施用尿素后土壤 δ^{15} N- NH⁺₄ 值的变化规律 Fig. 2 Changes of soil δ^{15} N- NH⁺₄ values after urea application

2.2 土壤 NH₃ 挥发速率及累积量的变化

不同区域旱地土壤 NH₃挥发速率随培养时间的 推移呈现先增高再降低的趋势(图 3a)。添加尿素 后,北票、新乡、唐山和林芝土壤 NH₃挥发速率的 峰值分别于第4天、第1天、第3天和第4天出现, 试验第15天 NH₃挥发速率基本接近0。不同区域旱 地土壤的 NH₃挥发累积量随着15d培养时间的推移 稳步增加(图3b)。试验第15天时,北票、新乡、 唐山和林芝土壤的 NH₃挥发 N 累积损失量分别为 (1.51±0.06) kg·hm⁻²、(6.56±0.16) kg·hm⁻²、(1.45±0.02) kg·hm⁻²和(4.67±0.10) kg·hm⁻²。在整个培养 期间内,新乡和林芝土壤的 NH₃挥发累积损失量显 著高于北票和唐山(P<0.05),且新乡土壤 NH₃挥发 累积量显著高于林芝(P<0.01),北票与唐山土壤 NH₃挥发累积量差异不显著。

图 3 施用尿素后土壤 NH₃ 挥发速率(a)和 NH₃ 挥发累积量(b)的变化规律 Fig. 3 Changes of soil NH₃ volatilization rate (a) and the cumulative amount of NH₃ volatilization (b) after urea application

2.3 土壤 NH₃ 挥发过程同位素 δ^{15} N 特征

不同区域旱地土壤 NH₃挥发过程同位素 δ¹⁵N 值 的特征不同(图4)。随着土壤 NH₃挥发的进行,北 票、唐山和林芝土壤 δ¹⁵N 值先迅速降低,之后随培 养时间推移缓慢升高;而新乡土壤 δ¹⁵N 值则在培养 第1天达到最低,之后随培养时间持续缓慢升高。 在整个试验过程中,北票、新乡、唐山和林芝土壤

图 4 施用尿素后土壤 NH₃ 挥发 δ¹⁵N 值的变化规律 Fig. 4 Changes of δ¹⁵N values of soil NH₃ volatilization after urea application

的 δ¹⁵N-NH₃ 值变化范围为-26.14‰~-5.57‰、 -31.92‰~-26.31‰、-24.41‰~-3.11‰和-29.17‰~ -2.20‰, 土壤 NH₃ 挥发过程 δ¹⁵N 的平均值分别为 -21.74‰、-29.31‰、-19.82‰和-23.25‰(图5), 整个培养期间内均值水平由低到高依次为新乡、林 芝、北票、唐山。分析表明,新乡的 δ¹⁵N-NH₃ 值显 著高于北票和唐山(*P*<0.01), 林芝的 δ¹⁵N-NH₃ 值

图 5 不同区域旱地土壤 NH₃ 挥发 δ^{15} N 值的分布状况 Fig. 5 δ^{15} N values of NH₃ volatilization from different upland soils 显著高于唐山(P<0.01)。

3 讨 论

3.1 土壤 NH₃ 过程中 δ^{15} N 值特征

尽管氮稳定同位素技术在大气 NH₃ 溯源研究中 取得了一定的进展,但是不同区域旱地土壤 NH₃挥 发全过程中 $\delta^{15}N$ 值变化特征的研究仍比较缺乏。 Felix 等^[12]、Bateman 和 Kelly^[26]使用被动采集方法 量化了大气 NH₃ 主要排放源的 δ^{15} N-NH₃值,其在美 国的田间试验结果显示,两次单独施用135 kg·hm⁻² 尿素-氨-硝酸盐肥料后, 捕获的玉米地 NH, 挥发 $δ^{15}$ N-NH₃值的范围在-48.0‰~-36.3‰之间;而 Chang 等^[27]在复旦大学的实验室捕获化肥挥发后产 生的 NH₃并测定其 δ^{15} N-NH₃值,范围处于-52.0‰~ -47.6‰之间,低于 Felix 测定的 δ^{15} N-NH₃值; Ti 等[17]通过室内培养试验得到不同施氮水平下水稻 土的 NH₃挥发 δ¹⁵N-NH₃值为-40.6‰~-26.0‰,相 较于 Felix 和 Chang 的研究结果其 δ^{15} N-NH₃ 值更高。 本试验结果显示不同区域旱地土壤 NH,挥发的 $δ^{15}$ N-NH₃ 值差异较大,四个地区农田源的平均 $δ^{15}$ N-NH₃ 值区间为-29.31‰(新乡)~-19.82‰(唐 山), 而 Elliott 等^[13]总结表明农田挥发性肥料的 $δ^{15}$ N-NH₃平均值为-46‰±5‰,低于本试验的研究结 果,这可能是由于采样方法的不同或者土壤性质、 施肥方式、施肥量等造成的。例如,本试验使用主 动采样法,而 Felix 和 Chang 的研究均使用被动采 样器,由于¹⁴N扩散速率较快,更多的¹⁴NH₃吸附 到被动采样膜上,可能会导致被动采样法较主动采 样法测定结果偏低^[28]。此外,由于氮肥的施用农田 NH, 排放存在一定的周期性且 $\delta^{15}N$ 值时间变化特 征明显^[29],因此随着施肥后时间的推移,4个区域 的土壤整个 NH₃挥发过程中 δ¹⁵N 值均存在较大的 差别。

3.2 影响 NH₃ 挥发及其 δ^{15} N 值的因素

农田 NH₃挥发过程受土壤性质、温度、施氮量 等多种因素的影响,其直接或间接地影响 δ^{15} N-NH₃ 值的变化^[30-31]。我国土壤资源丰富,不同地区土壤 性质变化较大,因此 NH₃挥发也存在较大差别^[32]。 目前对于我国不同地区的农田 NH₃挥发过程 δ^{15} N 值 的影响因素研究严重不足,揭示 δ^{15} N 值变化的影响 因素对于明确其规律进而指导减排有至关重要的 作用。

土壤 pH 是调控土壤液相中 NH₄⁺-NH₃转化反应 体系的主导因子, pH 与土壤液相中 NH₄⁺-N 浓度呈 正相关关系,NH₃挥发潜力也随之变大^[33]。Wu 等^[34] 研究证明,在半干旱草原上,土壤 pH 是影响 $δ^{15}$ N-NH₃值的关键因素,较高的 pH 通过 NH₃挥发 加速氮素气态流失。此外, Ti 等^[17.19]通过田间试验 和室内培养试验,观察到土壤 δ^{15} N-NH₃ 值和 NH₃ 挥发速率具有极显著的负相关, 与 pH 也呈现极显 著负相关,即土壤 pH 越高 δ^{15} N-NH₃ 值越低,这与 本试验的结果一致(图 6a)。根据研究结果,新乡 的土壤 pH 最高,NH,挥发速率和累积损失量最高且 伴随着最低的 δ^{15} N-NH₃值;但林芝的土壤 pH 较低, NH,挥发速率和累积量却仍然表现出较高的水平, 并伴随着较低的δ¹⁵N-NH₃值,这可能是因为林芝的 土壤质地更加疏松通透性较好,更利于 NH3 向空气 中挥发, 且对 NH₄ 的吸附作用较弱, 有效增强了土 壤液相中 NH₄⁺-NH₃转化作用^[33]。土壤液相中的阳离 子对 NH⁴ 有吸附和解吸作用^[35],本试验中北票和唐 山的土壤 CEC 含量高,阳离子抑制了土壤中 NH₄向 NH₃转化的过程,而林芝土壤恰恰相反,低 CEC 含 量伴随着更迅速的NH₄⁺-NH₃转化体系。因此,各影 响因子共同耦合作用调控了不同区域旱地土壤 NH, 挥发过程 δ^{15} N-NH₃值的变化规律。

由于分子扩散等物理化学反应,土壤 NH₃挥发 是氮素循环中关键的同位素高度分馏过程,且分馏 过程及其控制因素较复杂^[36]。肥料的初始 δ^{15} N 值、 微生物数量与其他因素(温度、pH、阳离子交换量 等)会通过影响 NH₃挥发过程的同位素动力学分馏 速率,造成δ¹⁵N-NH₃值的差异^[37]。有研究显示,牛 粪堆肥过程中,发生了显著的氮同位素分馏,且与 NH,挥发相关的同位素分馏系数在 N 循环中最高^[38]。 土壤中添加高浓度尿素后快速水解,氮素以 NH,的 形式向空气挥发,¹⁴N 由于质量较轻而优先挥发出 来, 捕获的 NH3 同位素值普遍偏负, 而 ¹⁵N 则更多 地富集在土壤中导致土壤的 δ¹⁵N-NH⁴ 值偏正^[39]。 Frank 等^[22]在草地土壤中添加模拟尿液的试验表明, 标准酸捕获到 NH₃的 δ^{15} N-NH₃值从-28‰(第1天) 升高至-0.3‰ (第 10 天),且随着时间推移,模拟 尿液增加了土壤和植物中的 δ¹⁵N 值,导致土壤-植

物系统 ¹⁵N 富集, 阮超越等^[40]研究杉木人工林土壤 表明, 添加凋落物后土壤 δ^{15} N 丰度值显著升高, 反 映了土壤中可能发生了氮素的损失或转移。本试验 也得到同样的结果, 北票、唐山和林芝土壤中残留 NH₄ 的 δ^{15} N-NH₄ 值随时间推移而增高, 这可能是 NH₃ 挥发过程中同位素分馏机制导致的^[41], 而新乡 土壤残留 NH₄ 的 δ^{15} N-NH₄ 值在培养期间出现一个 降低的过程, 这可能是土壤的硝化作用造成的。此 外, NH₃ 挥发速率和累积损失量越高, ¹⁴N 较 ¹⁵N 更 快地向空气扩散,因此捕获到的 δ^{15} N-NH₃值越低。 本试验通过非线性拟合也得到了同样的结果,土壤 NH₃挥发速率和累计损失量与 δ^{15} N-NH₃值呈显著的负 相关(图 6b、图 6c)。Denk等^[42]研究表明,土壤 NH₃ 挥发的同位素分馏过程会受硝化作用、反硝化作用、 微生物调控和作物吸收等多种因素的影响。研究结果 显示,土壤 NH₃挥发过程中捕获 NH₃的 δ^{15} N值与土 壤中残留 NH₄ 的 δ^{15} N值并未达到同位素平衡,可能 是因为土壤 NH₃挥发过程中发生了同位素分馏效应。

图 6 土壤 NH₃ 挥发的 δ^{15} N 值与土壤 pH (a)、土壤 NH₃ 挥发速率 (b)、NH₃ 挥发累积量 (c) 的关系 Fig. 6 The relationship among the δ^{15} N value of soil NH₃ volatilization and soil pH (a), soil NH₃ volatilization rate (b) and the cumulative amount of NH₃ volatilization (c)

3.3 δ¹⁵N-NH₃值的应用前景与限制

土壤 N 循环过程中,不同的氮输入源具有不同 的氮同位素自然丰度特征[36]。已有研究发现,大气 NH₃的农业源与非农业源的¹⁵N 同位素特征值存在 较大的差异。如 Savard 等^[43]使用主动膜采样法发现 农业源的 δ^{15} N-NH₃ 值(农田源: -31.3‰, 禽畜养殖: -15.3‰)低于非农业源(汽车源:-14.9‰,化石燃 料: -15.1‰)。此外, 由于土壤液相中 NH⁺₄-NH₃转 化体系的同位素平衡效应以及 NH₃挥发过程中的同 位素动力学分馏^[41,44],土壤 NH₃挥发过程的 $δ^{15}$ N-NH₃ 值显著低于土壤和尿素背景值,如本试验 中尿素 δ^{15} N 为-3.6±0.1‰。因此,农田 NH₃ 挥发的 同位素δ¹⁵N值可以作为追踪农田源NH₃排放的重要 工具,目前国内外已经有少数学者利用氮稳定同位 素技术解析大气环境中 NH₃ 的来源以及动态变化规 律,并取得初步的成果^[11-12, 38]。农田 NH₃挥发δ¹⁵N 值也可为大气活性氮的转化和循环机制提供新的研 究前景,并有助于探索多个 NH₃ 排放源对跨区域、 种植模式和陆地沉降的贡献^[13]。

本试验研究了不同区域旱地土壤 δ^{15} N-NH₃ 的

特征及影响因素,但其他条件如温度、水分和肥料 类型等都会影响 δ¹⁵N-NH₃ 值,全面定量溯源大气 NH₃ 排放还需要大量的数据支撑;同时本试验是在 室内受控条件下开展的,暂时没有考虑作物吸收的 影响,与野外田间种植系统存在一定的差别,下一 步研究拟选取我国更多不同地区、不同性质的土壤, 将室内培养和野外田间试验相结合,进一步量化不 同土壤类型 δ¹⁵N 值变化规律,以期提高大气 NH₃ 源解析的精度并为大气污染治理提供更详细的理论 依据。

4 结 论

通过室内培养试验明确了我国 4 个不同地区旱 地土壤 NH₃挥发过程 δ^{15} N 值的特征, δ^{15} N 均值由低 到高依次为河南新乡、西藏林芝、辽宁北票、河北 唐山。河南新乡 δ^{15} N-NH₃ 值随培养时间推移持续升 高,而辽宁北票、河北唐山和西藏林芝 δ^{15} N-NH₃ 值 表现出培养前期迅速下降,随培养时间推移缓慢上 升的趋势。土壤 NH₃挥发过程 δ^{15} N 值低于土壤中残 留 NH₄⁺的 δ^{15} N 值, 土壤 pH、NH₃ 挥发速率和累积 损失量与对 δ^{15} N-NH₃ 值有显著影响, 同位素分馏效 应也是影响 δ^{15} N-NH₃ 值的重要因素。研究结果可以 提高大气 NH₃ 氮同位素源解析的准确性和精度, 进 而为合理开展大气污染治理提供依据。

参考文献(References)

- Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions[J]. Science, 2008, 320 (5878): 889–892.
- [2] Tjepkema J D, Cartica R J, Hemond H F. Atmospheric concentration of ammonia in Massachusetts and deposition on vegetation[J]. Nature, 1981, 294 (5840): 445-446.
- [3] Kuang Y, Xu W Y, Lin W L, et al. Explosive morning growth phenomena of NH₃ on the North China Plain: Causes and potential impacts on aerosol formation[J]. Environmental Pollution, 2020, 257: 113621.
- [4] Lyu X M, Zeng Y, Tian S L, et al. Atmospheric reactive nitrogen in typical croplands and intensive pig and poultry farms in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2020, 28 (7): 1043—1050.
 [吕雪梅, 曾阳, 田世丽, 等. 华北典型农田和畜禽场环境大气中活性氮化学组成和浓度变化特征[J]. 中国 生态农业学报:中英文, 2020, 28 (7): 1043—1050.]
- [5] Konstantinoudis G, Padellini T, Bennett J, et al. Long-term exposure to air-pollution and COVID-19 mortality in England: A hierarchical spatial analysis[J]. Environment International, 2021, 146: 106316.
- [6] Liu X J, Sha Z P, Song Y, et al. China's atmospheric ammonia emission characteristics, mitigation options and policy recommendations[J]. Research of Environmental Sciences, 2021, 34 (1): 149—157. [刘学军,沙志鹏, 宋宇,等. 我国大气氨的排放特征、减排技术与政策建 议[J]. 环境科学研究, 2021, 34 (1): 149—157.]
- [7] Kang Y N, Liu M X, Song Y, et al. High-resolution ammonia emissions inventories in China from 1980 to 2012[J]. Atmospheric Chemistry and Physics, 2016, 16 (4): 2043-2058.
- [8] Gao Z L, Ma W Q, Zhu G D, et al. Estimating farm-gate ammonia emissions from major animal production systems in China[J]. Atmospheric Environment, 2013, 79: 20-28.
- [9] Wang X, Ti C P, Luo Y X, et al. Determination of ¹⁵N natural abundance in nitrogen oxides from major anthropogenic emission sources[J]. Acta Pedologica Sinica, 2016, 53 (6): 1552—1562. [王曦, 遆超普, 罗永霞,等. 主要人为排放源中氮氧化物 ¹⁵N 自然丰度 的测定[J]. 土壤学报, 2016, 53 (6): 1552—1562.]

- [10] Chalk P M, Inácio C T, Chen D L. An overview of contemporary advances in the usage of ¹⁵N natural abundance (δ¹⁵N) as a tracer of agro-ecosystem N cycle processes that impact the environment[J]. Agriculture, Ecosystems & Environment, 2019, 283: 106570.
- [11] Pan Y P, Tian S L, Liu D W, et al. Fossil fuel combustion-related emissions dominate atmospheric ammonia sources during severe haze episodes: Evidence from ¹⁵N-stable isotope in size-resolved aerosol ammonium[J]. Environmental Science & Technology, 2016, 50 (15): 8049–8056.
- Felix J D, Elliott E M, Gish T J, et al. Characterizing the isotopic composition of atmospheric ammonia emission sources using passive samplers and a combined oxidation-bacterial denitrifier approach[J]. Rapid Communications in Mass Spectrometry: RCM, 2013, 27 (20): 2239-2246.
- [13] Elliott E M, Yu Z J, Cole A S, et al. Isotopic advances in understanding reactive nitrogen deposition and atmospheric processing[J]. Science of the Total Environment, 2019, 662: 393–403.
- [14] Wu D, Zhang Y X, Dong G, et al. The importance of ammonia volatilization in estimating the efficacy of nitrification inhibitors to reduce N₂O emissions: A global meta-analysis[J]. Environmental Pollution, 2021, 271: 116365.
- [15] HeFY, Yin B, Jin XX, et al. Ammonia volatilization from urea applied to two vegetable fields in Nanjing suburbs[J]. Acta Pedologica Sinica, 2005, 42 (2): 253—259. [贺发云, 尹斌, 金雪霞, 等. 南京两种菜地 土壤氨挥发的研究[J]. 土壤学报, 2005, 42 (2): 253—259.]
- Jiang Y, Deng A X, Bloszies S, et al. Nonlinear response of soil ammonia emissions to fertilizer nitrogen[J]. Biology and Fertility of Soils, 2017, 53 (3): 269-274.
- [17] Ti C P, Ma S T, Peng L Y, et al. Changes of δ¹⁵N values during the volatilization process after applying urea on soil[J]. Environmental Pollution, 2021, 270: 116204.
- [18] Cejudo E, Schiff S L. Nitrogen isotope fractionation factors(α) measured and estimated from the volatilisation of ammonia from water at pH 9.2 and pH 8.5[J]. Isotopes in Environmental and Health Studies, 2018, 54 (6): 642-655.
- [19] Ti C P, Gao B, Luo Y X, et al. Isotopic characterization of NHx-N in deposition and major emission sources[J]. Biogeochemistry, 2018, 138 (1): 85–102.
- [20] Gong W W, Zhang Y S, Huang X F, et al. High-resolution measurement of ammonia emissions from fertilization of vegetable and rice crops in the Pearl River Delta Region, China[J]. Atmospheric Environment, 2013, 65: 1—10.
- [21] Gu M N, Pan Y P, He Y X, et al. Source apportionment of atmospheric ammonia: Sensitivity test based on stable

isotope analysis in R language[J]. Environmental Science, 2020, 41 (7): 3095—3101. [顾梦娜, 潘月 鹏, 何月欣, 等. 稳定同位素模型解析大气氨来源的参数敏感性[J]. 环境科学, 2020, 41 (7): 3095—3101.]

- [22] Frank D A, Evans R D, Tracy B F. The role of ammonia volatilization in controlling the natural ¹⁵N abundance of a grazed grassland[J]. Biogeochemistry, 2004, 68 (2): 169–178.
- [23] Wells N S, Baisden W T, Clough T J. Ammonia volatilisation is not the dominant factor in determining the soil nitrate isotopic composition of pasture systems[J]. Agriculture, Ecosystems & Environment, 2015, 199: 290-300.
- [24] Zhang Y B, Li J G, Wang Z, et al. Substitution of chemical fertilizer with organic manure reduces ammonia volatilization in maize farmland in North China Plain[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(1): 1—11. [张怡彬,李俊改,王震,等. 有机替代下华北平原旱地农田氨挥发的年际减排特征[J]. 植物营养与肥料学报, 2021, 27(1): 1—11.]
- [25] Liu D W, Fang Y T, Tu Y, et al. Chemical method for nitrogen isotopic analysis of ammonium at natural abundance[J]. Analytical Chemistry, 2014, 86 (8): 3787-3792.
- [26] Bateman A S, Kelly S D. Fertilizer nitrogen isotope signatures[J]. Isotopes in Environmental and Health Studies, 2007, 43 (3): 237-247.
- [27] Chang Y H, Liu X J, Deng C R, et al. Source apportionment of atmospheric ammonia before, during, and after the 2014 APEC summit in Beijing using stable nitrogen isotope signatures[J]. Atmospheric Chemistry and Physics, 2016, 16 (18): 11635—11647.
- [28] Lü X M. Reactive nitrogen composition from typical source and source apportionment of urban atmospheric ammonia using nitrogen isotope[D]. Jinan: Shandong University, 2020. [吕雪梅. 典型排放源大气活性氮浓 度和氨同位素特征及城市大气氨来源解析[D]. 济南: 山东大学, 2020.]
- [29] Yang S, Wu S J, Wang Y, et al. Ammonia volatilization and its reducing countermeasures in the agro-ecosystem of the Three Gorges area: A review[J]. Soils, 2014, 46 (5): 773—779. [杨杉, 吴胜军, 王雨, 等. 三峡库区 农田氨挥发及其消减措施研究进展[J]. 土壤, 2014, 46 (5): 773—779.]
- [30] Zhou J, Cui J, Wang G Q, et al. Ammonia volatilization in relation to n application rate and climate factors in upland red soil in spring and autumn[J]. Acta Pedologica Sinica, 2007, 44 (3): 499—507. [周静, 崔键, 王国 强,等. 春秋季红壤旱地氨挥发对氮施用量、气象因子 的响应[J]. 土壤学报, 2007, 44 (3): 499—507.]
- [31] Zhang Z B, Luo W, Bai X L, et al. Comparative study on ammonia volatilization from soil surface and whole

shed in solar greenhouse[J]. Acta Pedologica Sinica, 2022, 59(4): 1068—1077.[张兆北,罗伟,白新禄, 等. 日光温室栽培下土面及整棚氨挥发比较[J]. 土壤 学报, 2022, 59(4): 1068—1077.]

- Zhou F, Ciais P, Hayashi K, et al. Re-estimating NH₃ emissions from Chinese cropland by a new nonlinear model[J]. Environmental Science & Technology, 2016, 50 (2): 564-572.
- [33] Xu Y X, He L L, Chen J Y, et al. Effects of biochar on ammonia volatilization from farmland soil: A review[J]. Chinese Journal of Applied Ecology, 2020, 31 (12): 4312—4320.[许云翔,何莉莉,陈金媛,等. 生物炭对 农田土壤氨挥发的影响机制研究进展[J]. 应用生态学 报, 2020, 31 (12): 4312—4320.]
- $\begin{bmatrix} 34 \end{bmatrix}$ Wu Y, Wang B, Chen D M. Regional-scale patterns of δ^{13} C and δ^{15} N associated with multiple ecosystem functions along an aridity gradient in grassland ecosystems[J]. Plant and Soil, 2018, 432 (1/2): 107–118.
- [35] Song Y S, Fan X H. Summanry of research on ammonia volatilization in paddy soil[J]. Ecology and Environment, 2003, 12 (2): 240—244. [宋勇生, 范晓晖. 稻田氨挥发研究进展[J]. 生态环境, 2003, 12 (2): 240—244.]
- [36] Nikolenko O, Jurado A, Borges A V, et al. Isotopic composition of nitrogen species in groundwater under agricultural areas: A review[J]. Science of the Total Environment, 2018, 621: 1415-1432.
- [37] Hristov A N, Hanigan M, Cole A, et al. Review: Ammonia emissions from dairy farms and beef feedlots[J]. Canadian Journal of Animal Science, 2011, 91 (1): 1-35.
- [38] Hristov A N, Zaman S, Vander Pol M, et al. Nitrogen losses from dairy manure estimated through nitrogen mass balance and chemical markers[J]. Journal of Environmental Quality, 2009, 38 (6): 2438-2448.
- [39] Unkovich M. Isotope discrimination provides new insight into biological nitrogen fixation[J]. New Phytologist, 2013, 198 (3): 643-646.
- [40] Ruan C Y, Liu X F, Lü M K, et al. Effects of litter carbon, nitrogen and enzyme activity in soil under Chinese fir[J]. Acta Pedologica Sinica, 2020, 57 (4): 954—962. [阮超越,刘小飞,吕茂奎,等. 杉木人工林 凋落物添加与去除对土壤碳氮及酶活性的影响[J]. 土 壤学报, 2020, 57 (4): 954—962.]
- Li L, Lollar B S, Li H, et al. Ammonium stability and nitrogen isotope fractionations for NH⁺₄-NH₃ (aq)-NH₃ (gas) systems at 20-70 °C and pH of 2-13: Applications to habitability and nitrogen cycling in low-temperature hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 2012, 84: 280–296.

- [42] Denk T R A, Mohn J, Decock C, et al. The nitrogen cycle: A review of isotope effects and isotope modeling approaches[J].
 Soil Biology & Biochemistry, 2017, 105: 121–137.
- [43] Savard M M, Cole A, Smirnoff A, et al. δ¹⁵N values of atmospheric N species simultaneously collected using sector-based samplers distant from sources - Isotopic

inheritance and fractionation[J]. Atmospheric Environment, 2017, 162: 11-22.

 [44] Deng Y Y, Li Y Z, Li L. Experimental investigation of nitrogen isotopic effects associated with ammonia degassing at 0-70 °C[J]. Geochimica et Cosmochimica Acta, 2018, 226: 182–191.

(责任编辑:卢 萍)