DOI: 10.11766/trxb202212130690

周少龙,李月梅,张志春,甄国赟,孙丰豪,欧建芳. 三江源地带性土壤铁(铝)键合碳分布特征[J]. 土壤学报, 2024, 61(4): 1031–1041. ZHOU Shaolong, LI Yuemei, ZHANG Zhichun, ZHEN Guoyun, SUN Fenghao, OU Jianfang. Distribution Characteristics of Fe (Al) -C in Zonal Soils of the Three-River Source Region[J]. Acta Pedologica Sinica, 2024, 61 (4): 1031–1041.

三江源地带性土壤铁(铝)键合碳分布特征*

周少龙^{1,2,3},李月梅²,张志春^{4†},甄国赟³,孙丰豪⁵,欧建芳⁴ (1. 青海大学农牧学院,西宁 810016; 2. 青海大学农林科学院,西宁 810016; 3. 青海省海北州气象局,海北 810299; 4. 青海省气象灾 害防御技术中心,西宁 810001; 5. 新疆农业大学草业学院,乌鲁木齐 830052)

摘 要:为了解青藏高原腹地天然草地土壤稳定性碳储量,掌握其固碳能力和增汇潜力,将三江源地区土壤按地域空间和3种典型草地类型进行划分,以活动层土壤为对象,进行土壤总有机碳(TOC)及铁(铝)键合碳[Fe(Al)-C]分析,并与地理、气候资料建立关系模型,反演近 60 年(1961—2020 年)时空变化规律。结果表明:(1)江源地区 Fe(Al)-C 平均含量 6.07 g·kg⁻¹, [Fe(Al)-C]/TOC 平均 16.87%,其含量分布地带性特征明显,中、东部地区显著高于西部地区(P<0.05);(2)3种草地类型 Fe(Al)-C含量在 2.35~8.81 g·kg⁻¹, [Fe(Al)-C]/TOC 11.99%~20.52%,高山灌丛草甸和高寒草甸均显著高于高寒草原(P<0.05);3种高寒草地 Fe(Al)-C 与 TOC 呈极显著正相关(P<0.01);(3)模拟数字化制图结果显示,近 20 年(2001—2020 年)三江源地区 Fe(Al)-C 分布面积变化相比过去两个时段(1961—1980 年和 1981—2000 年,其含量 ≥5.75 g·kg⁻¹的分布面积平均增加了 1.64%),整体处于碳汇状态,三江源地区土壤铁(铝)键合碳在土壤稳定中的固碳潜力不容忽视。

关键词:三江源;青藏高原;铁(铝)键合碳;土壤碳库稳定性;时空演变;气候变化 中图分类号:TP399;S153.6 文献标志码:A

Distribution Characteristics of Fe(Al)-C in Zonal Soils of the Three-River Source Region

ZHOU Shaolong^{1, 2, 3}, LI Yuemei², ZHANG Zhichun^{4†}, ZHEN Guoyun³, SUN Fenghao⁵, OU Jianfang⁴

(1.College of agriculture and animal husbandry, Qinghai University, Xining 810016, China; 2. Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; 3. Qinghai Province Haibei Meteorological Bureau, Haibei, Qinghai 810299, China; 4. Qinghai Province Meteorological Disaster Prevention Technology Center, Xining 810001, China; 5. College of grassland science, Xinjiang Agricultural University, Urumqi 830052, China)

Abstract: [Objective] This study aimed to understand the soil stable organic carbon (SSOC) storage of natural grassland in the hinterland of the Qinghai-Tibet Plateau, and clarify its carbon fixation capacity and potential for increasing sinks. [Method] The soil in the Three-River Source Region was divided according to regional space and three typical grassland types and the active

† 通讯作者 Corresponding author, E-mail: zczhang2006@aliyun.com

^{*} 青海省应用基础研究计划(2019-ZJ-7015) Supported by the Qinghai Applied Basic Research Program (No.2019-ZJ-7015)

作者简介:周少龙(1986—),男,青海西宁人,硕士研究生,高级工程师,主要从事气候变化及资源环境方面的研究。E-mail: 851392004@qq.com

收稿日期: 2022-12-13; 收到修改稿日期: 2023-08-25; 网络首发日期 (www.cnki.net): 2023-11-03

layer soil was taken as the object. The soil total organic carbon (TOC) and Iron (aluminum)-bounded carbon [Fe(Al)-C] were analyzed, the relationship model was established with the geographical and climatic data, and the temporal and spatial variation law in recent 60 years(1961-2020) was retrieved. **[**Result**]** The results show that: 1) The average content of Fe(Al)-C] is $6.07 \text{ g} \cdot \text{kg}^{-1}$ and the average content of [Fe(Al)-C]/TOC is 16.87% in the Three-River Source Region, with obvious zonal characteristics. Also, the content in the central and eastern regions was significantly higher than that in the western region (P < 0.05); 2) The contents of Fe(Al)-C and [Fe(Al)-C]/TOC in the three types of grassland were $2.35 \sim 8.81 \text{ g} \cdot \text{kg}^{-1}$ and $11.99\% \sim$ 20.52%, respectively, and the alpine shrub meadow and alpine meadow were significantly higher than those in alpine steppe (P < 0.05). Fe(Al)-C was positively correlated with TOC in the three typical natural grassland types (P < 0.01). 3) The results of analog-digital mapping showed that the distribution area change of Fe(Al)-C in the Three-River Source Region has changed in the recent 20 years (2001-2020). Compared with the past two periods; 1961-1980 and 1981-2000, the distribution area with its content >5.75 g·kg⁻¹ and increased by 1.64% on average. **[**Conclusion **]** From our analysis, it was deduced that whole area is in a state of carbon sink, and the C fixation potential of Fe(Al)-C in soils in the Three-River Source Region can not be overlooked. **Key words:** Three-River Source; Qinghai—Tibet Plateau; Fe(Al) bonded organic carbon; Stability of soil carbon pool; Spatio-temporal evolution; Climate change

稳定性土壤有机碳(Stable Soil Organic Carbon, SSOC)决定着土壤抗干扰与固碳能力^[1],土壤有机 碳(SOC)的稳定机制主要包括有机碳的自身难降 解性、与土壤金属氧化物和黏土矿物的相互作用、 土壤团聚体的物理保护机制及土壤的生物学机制^[2]。其 中矿物结合有机碳(Mineral Soil Organic Carbon. MOC, <53 um)的化学稳定性较高,属于惰性有机 碳,细矿物颗粒对有机碳的吸附作用也被认为是土 壤固持有机碳的重要机制之一^[3]。尤其是铁和铝由 于其分布的广泛性和表层的活跃性,对土壤有机碳 的储存有着重要意义^[4]。

1990年代起国外学者关于土壤矿物结合碳的相 关研究得到大量关注,普遍认为铁、铝矿物表面对 有机质的吸附能抵抗微生物的分解,进而增强其稳 定性^[5-6]。21世纪以来,国内的研究者也开展了有关 矿物结合态有机碳的研究^[7-9],多集中在依托某一区 域试验站的农业土壤。近几年国内有关不同地域环 境下铁铝氧化物与团聚体稳定性间的关系开始有相 关报道^[10-12],但青藏高原腹地铁(铝)键合碳特征 鲜有报道,高原多年冻土区铁(铝)键合碳对气候 变化的响应机制还缺乏足够的研究。

青藏高原高寒草地土壤有机碳储量约为30~40 Gt,占中国总土壤有机碳储量的20%以上,占全球 土壤碳储量的2%~3%^[13],作为海拔最高、类型最 为独特的草地生态系统,其在碳氮固定、气候调节 等方面发挥着重要的生态功能^[14]。三江源地区地处 青藏高原核心区域,土壤有机碳赋存形态和组分特 征在空间维度上有一定的特殊性,在高寒地区土壤 有机碳的研究中具有代表性,且土壤碳库的稳定和 维持对三江源地区高寒草地生态系统的作用无可替 代^[15],其科学意义显而易见。但受限于土壤极大的 空间异质性和对深层土壤碳动态理解的匮乏,目前 对高原土壤碳库及土壤碳汇功能大小的估算仍具有 较大不确定性^[16]。有机地运用气候模型方法,以时 空耦合为主线的现代生态学研究思路,对于揭示三 江源区生态变化提供了思路和方法^[17]。

本文以三江源区土壤及典型天然草地类型为对 象,以铁(铝)键合碳为目标,梳理其空间分布和 草地间的固持状态,模拟时空演变下的面积变化, 旨在探讨气候变化背景下青藏高原高寒草地有机碳 库固碳能力和增汇潜力,也为进一步科学认知三江 源天然草地土壤碳库提供重要的基础数据。

1 材料与方法

1.1 研究区概况

三江源(31°65′—36°24′N, 89°40′—102°40′E) 总面积 36.37×10⁴ km²,位于青藏高原腹地青海省南 部,约占青海省总面积的 1/2。全区地势南高北低, 属于青藏高原气候系统,为典型的高原大陆性气候, 冷热两季交替、干湿两季分明。气温年较差小、日 较差大,年平均气温仅为 0.9℃;降水主要集中在暖 季的 5—9月,年平均为 475.50 mm;日照长、辐射 强烈,光照时数年平均达 2 622 h。全区以山地地貌 为主,海拔3335~6564m,平均约4400m,相对 高差3229m。三江源地区是世界上高海拔生物多样 性最集中的地区之一,孕育了独特的植物区系和生 态系统。

三江源高寒草地植被分布具有较鲜明的地带 性特征,自东南向西北呈现灌丛向草原过渡的特 点,植被覆盖度渐次降低(图1)。植被类型有针 叶林、阔叶林、灌丛、草原等9个植被类型,分 为14个群系纲、50个群系。其中高山灌丛草甸 (alpine shrub meadow, ASM)主要分布于三江源 东南大部分区域,灌丛植被与高寒草甸呈复合分 布,构成高山灌从草甸带,主要植被有山生柳 (Salix oritrepha)、积石柳(Salix jishiensis)、金露 梅(Potentilla frutico-sa)、头花杜鹃(Rhododendron capitatum)、箭叶锦鸡儿(Caragana jubata)、绣 线菊(Spiraea salicifolia)、窄叶鲜卑花(Sibiraea angustata)、沙棘(Hippophae rhamnoides)等, 植被种类相对丰富。高寒草甸(alpine meadow, AM)主要分布于三江源中部地区,植被以小嵩草 (Kobresia pygmaea)、藏嵩草(K. tibetica)、矮生 嵩草(K. humilis)等种群为优势,种类成分较为 丰富,分布广,面积大,但区系成分简单。高寒 草原(alpine steppe, AS)主要分布于三江源西北 部及北缘一线,以青藏苔草(Carex moorcroftii) 和紫花针茅(Stipa purpurea)为主,植被稀疏, 覆盖度低,草丛低矮,层次结构简单。

图 1 三江源地区植被及土壤采样点空间分布

Fig. 1 Spatial distribution of vegetation and soil sampling sites in the Three-River Source Region

随海拔由高到低,主要土壤类型依次为高山寒 漠土、高寒草甸土、高寒草原土、山地草甸土、灰 褐土、栗钙土等。

1.2 样地设置与样品采集

样点布设以中国 1:100 万土壤图、青海省第二 次土壤普查资料、中国 1:100 万植被数据集^[18]、青 海省 1961—2020 年气候资料及青海省行政区划图 和青海省交通图为作为本次土系调查的参考依据, 筛选出能代表当地及草地类型的平坦地区布设土壤 样点共 70 个: a (东部) 24 个样点、b (中部) 25 个样点、c (西部) 21 个样点;高山灌丛草甸 (alpine shrub meadow, ASM) 土 22 个样点、高寒草甸(alpine meadow, AM) 土 21 个样点、高寒草原(alpine steppe, AS) 土 27 个样点;间距 30~100 km (图 1)。样品 采集于 2019 年 11 月至 2020 年 4 月,每个样点按 100 m×100 m 的样方 5 点混合采样,采集 0~40 cm 或至冰碛物的土壤实验室自然风干后分出 1/4 样品, 研磨过 0.25 mm 尼龙筛记录编号备用。

1.3 样品提取与测定

土壤有机碳采用重铬酸钾外加热法测定(LY/T1237-1999)。土壤铁(铝)键合碳即铁(铝)键腐 殖质有机碳用 $0.1 \text{ mol·L}^{-1} \text{ Na}_4\text{P}_2\text{O}_7(\text{pH13})提取^{[19]},$ 提取液中的碳用重铬酸钾氧化法测定。

1.4 制图参数与方法

数据分析采用 SPSS22.0 软件, Origin2020 绘制 小提琴图和散点图。空间分布图采用距离反比加权 (IDW 插值法订正,结合 ArcGIS (10.2)制图,并 以自然裂隙法分阶。多元回归模型中年均降水量 (*mean annual precipitation*, MAP)、年平均气温 (mean annual temperature, MAT)、年均光照时数 (annual sunshine duration, ASD)、采样点海拔高度 (*Altitude*, *ALT*)及经纬度(Longitude, LON and Latitude, LAT)采集自青海省南部 30 个分布均匀 的气象站,数据均来源于中国气象局气候中心。多 年模拟数字化制图中DEM数据空间分辨率为90m, 来源于地理空间数据云 (gscloud.cn)。

2 结 果

2.1 铁(铝)键合碳空间分布

三江源地区 Fe(Al)-C 含量介于 0.70~14.92 g·kg⁻¹ 之间,均值为 6.07 g·kg⁻¹,占土壤总有机碳(TOC)的 比值平均为 16.87%。其含量分布具有明显地带性特征, 从东南向西北依次递减。东部(100°0′—102°23′E)(下 同)平均含量为 8.69 g·kg⁻¹,中部(96°30′—97°30′E)平 均含量为 7.71 g·kg⁻¹,西部(90°0′—95°0′E)平均含量为 1.12 g·kg⁻¹,且东、中部地区显著高于西部地区(*P* < 0.05);离散度:中部>东部>西部(表1)。

表1 三江源地区土壤铁(铝)键合碳与总有机碳

Table 1	Fe	(Al)	-C,	TOC in the soil of	the Three-River Source	Regior
---------	----	------	-----	--------------------	------------------------	--------

区域 Region	土层深度	铁(铝)键合碳	标准差 RSD	最大值	最小值	占总有机碳比值	总有机碳
	Soil depth	Fe(Al) - C		Max.	Min.	[Fe(Al) - C]/TOC	TOC
	/cm	/ ($g \cdot kg^{-1}$)		$/ \; (\; g{\cdot}kg^{^{-1}}\;)$	$/ \; (\; g{\cdot}kg^{-1}\;)$	/%	$/ \; (\; g{\cdot}kg^{-1}\;)$
东部 East	0~40	8.69±0.15a	0.33	14.07	4.56	20.52±3.12a	42.99±8.03a
中部 Central	0~40	7.71±0.08a	0.47	14.92	0.70	18.02±3.96a	47.19±9.66a
西部 West	0~40	1.12±0.02b	0.20	6.00	0.59	11.33±1.67b	14.07±2.89b

注:不同小写字母表示不同区域相同土层间差异显著(P<0.05)。Note: Different lowercase letters indicate significant differences between the same soil layers in different regions (P<0.05).

根据自然裂隙法将三江源 Fe(Al) -C 含量分 为4类:低值区(0.70~1.99 g·kg⁻¹)分布于玉树州 曲麻莱、治多、杂多三县的西部地区和格尔木市唐古 拉乡;次低值区(2.00~4.49 g·kg⁻¹)主要分布于低 值区东南边缘一线,及三江源中部的零星区域;次高 值区(4.50~9.99 g·kg⁻¹)西起玉树州中部一线,东 至三江源东部沿线,分布范围广阔;高值区(10.00~ 14.92 g·kg⁻¹)仅分布于玉树州称多县大部、治多县局 部,果洛州玛沁县与甘德县接壤的东部区域、久治县 东部及斑马县南部的部分区域(图 2)。

2.2 铁(铝)键合碳草地间分布

三江源 3 种高寒草地土壤 Fe (Al) -C 含量介 于 2.35~8.81 g·kg⁻¹之间,其含量分布具有明显地 带性特征,从高山灌丛草甸 (ASM)向高寒草甸 (AM)、高寒草原(AS)依次递减。分别为:ASM 8.81 g·kg⁻¹、AM 7.38 g·kg⁻¹、AS 2.35 g·kg⁻¹,且 ASM 和 AM 显著高于 AS (*P*<0.05),分别高出 6.46 g·kg⁻¹、5.03 g·kg⁻¹; ASM 和 AM 二者之间差 异不显著 (*P*>0.05),仅相差 1.43 g·kg⁻¹。离散度: AM > ASM >AS (图 3)。

3 种高寒草地土壤 Fe (A1) -C 占 TOC 比值为 11.99% ~ 20.52%,分别为: ASM 20.52%、AM 18.37%、AS 11.99%,且 ASM 和 AM 显著高于 AS (*P*<0.05),分别高出 8.53%、6.38%;ASM 和 AM 二者之间差异不显著 (*P*>0.05),仅相差 2.15%。 离散度:AM >ASM > AS (图 3)。

三江源 3 种高寒草地土壤 Fe (Al) -C 与 TOC 均呈极显著 (*P*<0.01) 正相关关系 (图 4)。

图 2 三江源地区铁(铝)键合碳空间分布特征

Fig. 2 Spatial distribution characteristics of Fe (Al) -C in the Three-River Source Region

注: AS, 高寒草原; ASM, 高山灌丛草甸; AM, 高寒草甸。 Note: AS, alpine steppe; ASM, Alpine shrub meadow; AM, Alpine meadow.

图 3 三江源典型草地类型 Fe(Al)-C 与 [Fe(Al)-C]/TOC Fig. 3 Fe(Al)-C, [Fe(Al)-C]/TOC in typical grassland types in the Three-River Source Region

2.3 三江源地区铁(铝)键合碳时空演变特征

2.3.1 铁(铝)键合碳的影响因素 本文根据三 江源地区的 70 个土壤采样点 0~40 cm 层土壤实测

铁(铝)键合碳含量与三江源地区 25 个气象观测点(剔 除缺测时间较长的巴颜喀拉山、风火山、鄂陵湖、沱 沱河 2 和杂多 2 共 5 个站点数据)实测年均降水量 MAP(mm)、年平均气温 MAT(℃)、年均光照时数 ASD(h)、采样点海拔高度 ALT(m)及经纬度 LON 和 LAT(°),气象数据的时间跨度统一取为土样采集 时间的临近 20 年,即 2001 年 1 月 1 日—2019 年

12 月 31 日。针对土壤采样点与气象观测站存在的 缺测数据,本文选取其相邻观测站同期数据对比后 进行线性插补(取周围临近观测站,对比气候环境 选相邻2个平均值作为插补值),一定程度上可以提 升资料数据序列的完整性和连续性。经线性多元回 归统计分析,得到了Fe(Al)-C与气候、环境因 子的关系:

$$C_{1}$$
=-61.126-0.002MAP+0.115MAT-0.002ASD+
0.002ALT-0.951LON+0.987LAT
 $r = 0.761$ $F = 14.444$. (1)

对回归方程(1)式进行 F 统计性检验,其 P<0. 01,统计关系极其显著。r 为计算值与实测值的复相 关系数, R²为 0.597,调整后的 R²达 0.539,即模型 解释度为 53.9%。

经计算,对应于 MAP, MAT, ASD, ALT, LON, LAT 的标准回归系数分别为

 $b_1 = -0.066\,,\, b_2 = 0.088\,,\, b_3 = -0.096\,,\, b_4 = -0.207\,,$ $b_5 = 0.745\,,\,\, b_6 = 0.238\,,$

 $|b_5| > |b_6| > |b_4| > |b_3| > |b_2| > |b_1|$,

可见经纬度是影响三江源地区 Fe(Al)-C 最显 著的因素,海拔高度次之。即,三江源 Fe(Al)-C 主要受经度分带性和纬度分带性控制,海拔高度变 化也有一定的影响,气候各要素对其分布影响作用 不甚明显。

2.3.2 铁(铝)键合碳的时空分布特征 用地理 空间数据云提取三江源地区 90 m分辨率 DEM 高程 数据,通过重采样将其处理为 500 m×500 m空间分 辨率,结合地理信息系统的经纬度数据,利用回归 方程和算法,及三江源地区 25 个筛选出的气象观测 点多年气候资料。反距离权重插值法将该要素残差 从采样点所在地区扩展至广大的非气象资料覆盖所 在地区,即残差网格化,并参考青海省表层土壤属 性数字制图方法^[20],绘制出三江源地区铁(铝)键 合碳 1961—1980 年、1981—2000 年、2001—2020 年空间分布图(图 5)。

图 5 列出了 1961—1980 年、1981—2000 年及 2001—2020 年三个 20 年资料统计时段,模拟 Fe(Al)-C 分布分带的相对面积,并以自然裂隙法分阶(I~ \m)。三江源地区近 20 年(2001—2020 年)与过去 两个 20 年(1961—1980 年、1981—2000 年)相比, Fe(Al)-C 分布发生了明显的变化,变化最明显的 区域出现在高山灌丛草甸(ASM)覆盖的区域,这 包括玉树州与果洛州东南面的大部分区域,以及黄 南州以东的小部分区域;而过去两个 20 年之间对比 下 Fe(Al)-C 的分布变化不明显。

具体而言,三江源地区近 20 年与过去两个 20 年相 比, < 5.75 g·kg⁻¹(I、II、III、IV)的 Fe (Al)-C 面 积在 4 个分阶整体均有减少,较 1961—1980 年分别 减少 0.53%、0.69%、0.17%、0.16%,整体共减少 1.55%(表 2);较 1981—2000 年分别减少 0.33、 0.61%、0.76%、0.02%,整体共减少 1.72%; \geq 5.75 g·kg⁻¹(V、VI、VII、VII)的 Fe (Al)-C 面积 在其余 4 个分阶整体均有增加,较 1961—1980 年 分别增加 0.39%、0.67%、0.47%、0.02%,整体共 增加 1.55%;较 1981—2000 年分别增加 0.21%、 0.84%、0.58%、0.09%,整体共增加 1.72%。过去 两个 20 年之间相比,Fe(Al)-C 面积在 8 个分阶 均有增有减,其中< $5.75 \text{ g·kg}^{-1}(I \times II \times III \times IV)$ 的面积共略微增加 0.17%, $\geq 5.75 \text{ g·kg}^{-1}(V \times VI、$ □ (Ⅲ、Ⅲ)的面积共略微减少 0.17%, 处于轻微的减少趋势(表 2)。

总体而言,时空模拟下近20年三江源地区Fe(Al)-C

分布分带的相对面积相比过去 40 年, <5.75 g·kg⁻¹ 面积 平均减少 1.64 %, 而≥5.75 g·kg⁻¹ 面积平均增加 1.64 %, 整体处于增加趋势。

 Table 2
 Zoned area percentage of Fe (A1) -C simulated in the Three-River Source Region (%)

时 段	Ι	II	III	IV	V	VI	VII	VIII
Time period	[0.05 , 1.63)	[1.63, 3.55)	[3.55, 4.84)	[4.84, 5.75)	[5.75, 6.90)	[6.90, 8.09]	(8.09, 9.53)	(9.53, 12.21)
1961—1980	38.42	5.54	10.32	15.33	17.56	9.36	2.52	0.95
1981—2000	38.22	5.46	10.91	15.19	17.74	9.19	2.41	0.88
2001—2020	37.89	4.85	10.15	15.17	17.95	10.03	2.99	0.97
平均 Mean	38.18	5.28	10.46	15.23	17.75	9.53	2.64	0.93

3 讨 论

3.1 空间与植被划分下土壤铁(铝)键合碳分布 特征

土壤类型、气候环境及地上植被差异等均会影 响铁铝氧化物的含量[10-11]。本研究中,三江源地区 的水热分布与地上植被有着一致的变化边界,铁 (铝)键合碳东部和中部地区含量显著高于西部地 区,高山灌从草甸和高寒草甸含量显著高于高寒草 原。适宜的水热条件,可以极大提高微生物的活性 与植物的新陈代谢速率,土壤表层形成更多的残 体、分泌物和凋落物归还给土壤,产生更多可供被 分解的有机物质。有学者提到,有机质与络合态铁 铝氧化物呈正相关关系^[21],还有学者认为有机质 (特别是羟基官能团) 在铁、铝矿物表面的吸附能 抵抗微生物酶对其的分解,从而增加其稳定性^[22]; 反之,稳定性有机碳能形成中密度的土壤微团聚 体,并制约氧气的扩散,进一步阻止微生物对有机 质的分解^[23-24],这种正向反馈在三江源东、中部地 区铁(铝)键合碳的累积和稳定性中发挥了重要作 用。与此同时,相较于高寒草原,高寒草甸的地上 植物种类更丰富,尤其是高山灌丛草甸的灌丛植被 与高寒草甸呈复合分布,丰富的林下植被层和凋落 物覆盖也使其保持了较高的土壤含水量,这些条件 均有利于微生物生长和繁殖。有研究表明,土壤矿 物对植物和微生物来源的碳组分均具有保护作用, 并且矿物对微生物残体碳的保护作用更强[25],一定 程度上加速了有机质的分解和向土壤的迁移、进而 使得两种草甸更有利于铁(铝)键合碳的富集。

三江源地区土壤全碳含量从东部到中部有逐 渐减小的趋势(表1),而铁(铝)键合碳含量从 中部到东部是逐渐增加的,且铁(铝)键合碳占全 碳的比值也是逐渐增大的。这表明,与全土有机碳 相比,在保存土壤有机碳方面,铁(铝)键合碳的 稳定性更强,尤其是在水热条件相对充沛的三江源 东、中部地区,作用是较大的。这与"与全土有机 碳相比,有机碳矿化稳定性由高到低依次为铁(铝) 键合碳、钙键合碳、全土土壤有机碳"的研究结论 互相印证^[26],因此用土壤铁(铝)键合碳来反映碳 库变化相对于土壤全碳更灵敏、更稳定、更可靠的。 3 种草地类型铁(铝)键合碳含量占全碳比值,自 高寒草原向高寒草甸和高山灌从草甸依次增高,且 高山灌丛草甸均为首位,这可能是在全球气候变化 及人类活动的干扰下,青藏高原高寒灌从化现象日 益严重[11]。有研究表明,青藏高原草地土壤团聚体 平均重量直径(MWD)均表现为灌从化草地大于未 灌从化草地, MWD 的增加一定程度上增强了灌从 化草地的团聚体稳定性[12],也促进了团聚体对铁铝 氧化物的固定,使其有了更好的固碳能力。此外, 有研究表明,有机-金属配合物中的碳含量通常是可 提取有机铁铝矿物复合体中最大的碳组分,并且通 常与 SOC 呈正相关[27] 。本研究中 3 种草地类型下 土壤铁(铝)键合碳与土壤 TOC 均呈极显著(P<0. 01)正相关关系,间接反映了三江源地铁(铝)键 合碳直接参与了高寒草地土壤有机碳的生物化学转 换过程。

3.2 时空演变下铁(铝)键合碳特征规律及固碳 潜力

三江源地区的土壤铁(铝)键合碳储量模拟 1981-2000年较 1961-1980年未发生较大的变化, 这与 1980-2000 年青藏高原草地土壤表层 0~ 30 cm 有机碳储量并未表现出显著的变化^[28]研究结 果一致,该研究进一步指出这主要是由于增加的土 壤呼吸和增加的植物生产力对土壤碳排放和积累作 用相互抵消。而 2001—2020 年较前两个模拟时段 (1961—1980年、1981—2000年), 三江源地区的土 壤铁(铝)键合碳储量有所上涨,这与陆面模式下 对青藏高原土壤有机碳时空变化的模拟结果"1970 年至 2010 年间整体呈现下降趋势, 2006 年出现转 折点,之后开始轻微上涨^[29]"的研究结论相互印证。 近年来,我国学者针对青藏高原碳汇开展了大量工 作,目前得出的普遍结论是高原陆地生态系统总体 表现为碳汇^[30-31]与波动式增加趋势^[32]。有学者指出, 近 20 年来青藏高原草地地上生物量碳库总体呈增 加趋势,处于碳汇状态,且 2000 年后以植被"碳" 增加为主,同期温度的显著增加,温度与生物量呈 正相关,温度的增加影响植被光合速率,促进植被 生长^[33]。最新研究发现,青藏高原高寒草地物种丰 度、地上生物量、土壤铁铝氧化物等与化学风化强 度显著正相关,风化过程中矿物所释放的土壤养分 增加,导致草地生产力提高,同时土壤铁铝氧化物 及黏粉粒含量增多,促进 SOC 的矿物稳定性增强, 最终影响 SOC 周转和固存^[24]。国内学者大量的研 究反映出近 20 年来青藏高原生态恢复质量稳定上 升[34]下的有机碳巨大增汇潜力,也进一步反映出三 江源地区铁(铝)键合碳在土壤稳定中确实具有较 高的固碳潜力。

4 结 论

空间划分下,铁(铝)键合碳含量分布有明显 的地带性特征,从东南至西北依次递减,中、东部 地区的铁(铝)键合碳含量显著高于西部地区;且 与全土有机碳相比,铁(铝)键合碳的稳定性更强。 植被划分下,铁(铝)键合碳含量从高山灌丛草甸 向高寒草甸、高寒草原依次降低,高山灌丛草甸与 高寒草甸的铁(铝)键合碳含量显著高于高寒草原; 且各草地类型土壤铁(铝)键合碳含量与总有机碳 含量均存在极显著正相关关系。本研究初步表明, 用土壤铁(铝)键合碳的消长来反映土壤有机碳碳 库长期变化相对于土壤全碳具有更为明显的优势; 三江源地铁(铝)键合碳含量的分布面积变化在时 空演变模拟下,近 20 年较过去 40 年有所增加,整 体处于增汇趋势。

参考文献(References)

- [1] Xu J H, Gao L, Sun Y, et al. Distribution of mineralbonded organic carbon and black carbon in forest soils of great Xing'an Mountains, China and carbon sequestration potential of the soils[J]. Acta Pedologica Sinica, 2018, 55(1): 236–246. [徐嘉晖,高雷,孙颖,等. 大兴 安岭森林土壤矿物结合态有机碳与黑碳的分布及土壤 固碳潜力[J]. 土壤学报, 2018, 55(1): 236–246.]
- [2] Wu X L, Li L, Shi X L, et al. Progress of studies on influencing factors and stabilization mechanism of soil organic carbon[J]. Journal of Jilin Agricultural Sciences, 2014, 39 (3): 42-45, 78. [吴晓丽,李林,史喜林, 等. 土壤有机碳稳定机制及影响因素研究进展[J]. 吉 林农业科学, 2014, 39 (3): 42-45, 78.]
- [3] Wiesmeier M, Hübner R, Spörlein P, et al. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation[J]. Global Change Biology, 2014, 20 (2): 653-665.
- [4] Heckman K, Lawrence C R, Harden J W. A sequential selective dissolution method to quantify storage and stability of organic carbon associated with Al and Fe hydroxide phases[J]. Geoderma, 2018, 312: 24–35.
- [5] Mikutta R, Mikutta C, Kalbitz K, et al. Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms[J]. Geochimica et Cosmochimica Acta, 2007, 71 (10): 2569-2590.
- Schneider M P W, Scheel T, Mikutta R, et al. Sorptive stabilization of organic matter by amorphous Al hydroxide[J]. Geochimica et Cosmochimica Acta, 2010, 74 (5): 1606—1619.
- Yuan Y H, Li H X, Huang Q R, et al. Effects of long -term fertilization on particulate organic carbon and mineral organic carbon of the paddy soil[J]. Acta Ecologica Sinica, 2008, 28(1): 353—360. [袁颖红, 李辉信,黄欠如,等. 长期施肥对水稻土颗粒有机碳和 矿物结合态有机碳的影响[J]. 生态学报, 2008, 28(1): 353—360.]
- [8] Tong X G, Wang B R, Xu M G, et al. Change characteristics of organic carbon stocks and sequestration rate of particle-size fractions in red soil under long-term fertilizations[J]. Journal of Agro-Environment Science, 2009, 28 (12): 2584—2589 [佟小刚, 王伯仁, 徐明

岗,等. 长期施肥红壤矿物颗粒结合有机碳储量及其固定速率[J]. 农业环境科学学报,2009,28(12): 2584—2589.]

- [9] Liang A Z, Zhang X P, Yang X M, et al. Dynamics of soil particulate organic carbon and mineral-incorporated organic carbon in black soils in northeast China[J]. Acta Pedologica Sinica, 2010, 47(1):153—158 [梁爱珍, 张晓平,杨学明,等. 黑土颗粒态有机碳与矿物结合态 有机碳的变化研究[J]. 土壤学报, 2010, 47(1):153—158.]
- [10] Wang X H, Yang Z J, Liu X F, et al. Effects of different forms of Fe and Al oxides on soil aggregate stability in mid-sub-tropical mountainous area of Southern China[J]. Acta Ecologica Sinica, 2016, 36(9): 2588—2596. [王小红,杨智杰,刘小飞,等.中亚热带山区土壤不同形态铁铝氧化物对团聚体稳定性的影响[J]. 生态学报, 2016, 36(9): 2588—2596.]
- [11] Zhao Y P, Meng M J, Zhang J C, et al. Relationship between soil aggregate stability and different forms of Fe and Al oxides in different forest types[J]. Bulletin of Soil and Water Conservation, 2018, 38(4): 75—81, 86. [赵友朋, 孟苗婧, 张金池, 等. 不同林地类型土壤团 聚体稳定性与铁铝氧化物的关系[J]. 水土保持通报, 2018, 38(4): 75—81, 86.]
- [12] Chen H, Ma W M, Zhou Q P, et al. Shrub encroachment effects on the stability of soil aggregates and the differentiation of Fe and Al oxides in Qinghai-Tibet alpine grassland[J]. Acta Prataculturae Sinica, 2020, 29 (9): 73-84. [陈红,马文明,周青平,等. 高寒草 地灌丛化对土壤团聚体稳定性及其铁铝氧化物分异的 研究[J]. 草业学报, 2020, 29 (9): 73-84.]
- [13] Shang W, Wu X D, Zhao L, et al. Seasonal variations in labile soil organic matter fractions in permafrost soils with different vegetation types in the central Qinghai–Tibet Plateau[J]. Catena, 2016, 137: 670–678.
- [14] Sun J, Zhou T C, Liu M, et al. Water and heat availability are drivers of the above ground plant carbon accumulation rate in alpine grasslands on the Tibetan Plateau[J]. Global Ecology and Biogeography, 2020, 29 (1): 50-64.
- [15] Cai X B, Peng Y L, Yu B Z. Soil aggregates organic carbon change and its influence in Tibetan alpine steppe[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29 (11): 92—99. [蔡晓布,彭岳林,于宝政.西藏高寒草原土壤团聚体有机 碳变化及其影响因素分析[J]. 农业工程学报, 2013, 29 (11): 92—99.]
- [16] Piao S L, Zhang X Z, Wang T, et al. Response of Qinghai-Tibet Plateau ecosystem to climate change and its feedback[J]. Chinese Science Bulletin, 2019, 64(27): 2842—2855. [朴世龙,张宪洲,汪涛,等. 青藏高原生态系统对气候变化的响应及其反馈[J]. 科学通报,

2019, 64 (27): 2842-2855.]

- [17] Wei W D, Li X L. Advances in researches on alpine grassland ecosystem in the three river head waters region[J]. Environmental Science and Management, 2011, 36 (8): 122—125, 136. [魏卫东,李希来. 三江源区高寒草地生态研究进展[J]. 环境科学与管理, 2011, 36 (8): 122—125, 136.]
- [18] Zhang X S. Vegetation map of the People's Republic of China (1: 1000000) [M]. Beijing: Geology Press, 2007. [张新时. 中华人民共和国植被图(1:1000000) [M].北京:地质出版社, 2007.]
- [19] Xu J M, Sai F, Yuan K N. Studies on organo-mineral complexes in soil IX. characteristics of humus in calcium-bound and iron/aluminum-bound organo-mineral complexes in soil[J]. Acta Pedologica Sinica, 1999, 36 (2): 168—178. [徐建民,赛夫,袁可能. 土壤有机矿 质复合体研究 IX.钙键复合体和铁铝键复合体中腐殖 质的性状特征[J]. 土壤学报, 1999, 36(2): 168—178.]
- [20] Pang L H, Liu F, Zhao X, et al. Digital mapping of topsoil attributes in Qinghai Province[J]. Chinese Journal of Soil Science, 2019, 50 (3): 505—513. [庞龙辉, 刘峰,赵霞,等. 青海省表层土壤属性数字制图[J]. 土壤通报, 2019, 50 (3): 505—513.]
- [21] Hseung Y. Soil colloid[M]. Beijing: Science Press, 1983. [熊毅. 土壤胶体[M]. 北京:科学出版社, 1983.]
- [22] Che M X, Wu Q, Fang H, et al. Distribution of soil organic carbon associated with Al and Fe minerals within alpine mountain soils in western Sichuan[J]. Acta Geographica Sinica, 2022, 77 (1): 93—105. [车明轩, 吴强, 方浩, 等. 川西高寒山地土壤有机碳与铁、铝矿 物复合体分布特征[J]. 地理学报, 2022, 77 (1): 93—105.]
- [23] Chen C M, Hall S J, Coward E, et al. Iron-mediated organic matter decomposition in humid soils can counteract protection[J]. Nature Communications, 2020, 11 (1): 1–13.
- [24] Wagai R, Kajiura M, Asano M. Iron and aluminum association with microbially processed organic matter via meso-density aggregate formation across soils : Organo-metallic glue hypothesis[J]. Soil, 2020, 6 (2): 597-627.
- [25] Zhao Y F. Source, turnover and driving factors of soil organic carbon in alpine grassland of Qinghai-Tibet Plateau[D]. Lanzhou: Lanzhou University, 2022. [赵云飞. 青藏高原高寒草地土壤有机碳来源、周转及驱动因素[D]. 兰州: 兰州大学, 2022.]
- [26] Li S P. A preliminary study on the variation regularity of organic carbon combined with Ca, Fe(Al) in soil [C]// Proceedings of the Eighth National Youth Symposium on Soil and the Third National Youth Symposium on Plant Nutrition and Fertilizer Scientists. 2002: 130—134. [李 世朋. 土壤中钙、铁(铝)结合的有机碳变异规律性的

初步研究[C]// 第八届全国青年土壤暨第三届全国青 年植物营养与肥料科学工作者学术讨论会论文集. 2002: 130—134.]

- [27] Rasmussen C, Torn M S, Southard R J. Mineral assemblage and aggregates control carbon dynamics in a California conifer forest[J]. Soil Science Society of America Journal, 2005, 69 (6): 1711–1721.
- [28] Yang Y H, Fang J Y, Smith P, et al. Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004[J]. Global Change Biology, 2009, 15 (11): 2723—2729.
- [29] Zhou Y. Master's dissertation of Zhejiang University about modeling the spatial and temporal dynamics of soil organic carbon in the Qinghai-Tibet Plateau using community land model[D] .Hangzhou : Zhejiang University, 2020. [周越.基于通用陆面模式的青藏高原 土壤有机碳时空变化模拟研究[D].杭州:浙江大学, 2020.]
- [30] Wang T, Wang X Y, Liu D, et al. The Current and future of terrestrial carbon balance over the Tibetan Plateau[J].Science China Earth Sciences, 2023, 66 (7): 1493—1503.

- [31] He H L, Wang S Q, Zhang L, et al. Altered trends in carbon uptake in China's terrestrial ecosystems under the enhanced summer monsoon and warming hiatus[J]. National Science Review, 2019, 6 (3): 505-514.
- [32] Zhang L, Zhou G S, Ji Y H, et al. Spatiotemporal dynamic simulation of grassland carbon storage in China[J]. Scientia Sinica: Terrae, 2016, 46 (10): 1392—1405. [张利,周广胜,汲玉河,等. 中国草地碳 储量时空动态模拟研究[J]. 中国科学:地球科学,2016, 46 (10): 1392—1405.]
- [33] Gao T, Xu B, Yang X C, et al. Review of researches on biomass carbon stock in grassland ecosystem of Qinghai-Tibetan Plateau[J]. Progress in Geography, 2012, 31 (12): 1724—1731. [高添, 徐斌, 杨秀春, 等. 青藏高原草地生态系统生物量碳库研究进展[J]. 地理科学进展, 2012, 31 (12): 1724—1731.]
- [34] Zhang Y X, Wang S M, Li Y, et al. Spatiotemporal patterns of ecological quality across the Qinghai-Tibetan Plateau during 2000-2020[J]. Chinese Journal of Ecology, 2023, 42(6): 1464—1473. [张云霞, 汪仕美, 李焱, 等. 2000—2020 年青藏高原生态质量时空变 化[J]. 生态学杂志, 2023, 42(6): 1464—1473.]

(责任编辑: 檀满枝)