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Abstract: Phosphorus (P) is a critical limiting nutrient in terrestrial ecosystems, and its bioavailability in soils is particularly
important in influencing primary productivity and ecosystem carbon sequestration capacity. Mountain ecosystems are highly
sensitive to climate changes and exhibit distinct responses to alterations in environmental conditions. The P bioavailability in
mountain soils is thus a popular topic in ecological and environmental research, especially in the context of climate warming and
increased atmospheric nitrogen (N) deposition. This review integrated a Meta-analysis method to synthesize findings of the
response patterns and underlying mechanisms of soil P bioavailability to in sifu simulated warming and N addition experiments in
China’s mountain soils. This study found that single treatment of warming or nitrogen addition did not reduce the bioavailability
of soil P, although there were still debates that were closely related to the initial environmental conditions of different ecosystems.
Furthermore, the prospects of future research were provided, underscoring the necessity for long-term and multi-elevation in situ
simulation experiments. These experiments are vital for understanding the variations in soil P bioavailability under the dual
pressures of warming and N inputs. It is also essential to conduct controlled laboratory experiments to explore the effects of these
factors on the transformation of soil P fractions across multiple spatial scales, such as landscape and ecosystem levels. Also, the
molecular-level response mechanisms of soil P bioavailability to various climate change factors require further investigation.
Additionally, there is a need to optimize the parameters in the P biogeochemical cycling models for predicting the effects of
climate warming and varied atmospheric N deposition on soil P bioavailability in mountain ecosystems. These potential results
will contribute to a far-reaching understanding of the processes and mechanisms of P biogeochemical cycling in mountains in the
context of global climate change, which can become an important theoretical basis for the health and stability of mountain
ecosystems.
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Fig. 1 Locations of in situ warming experiment sites (a ) and the response characteristics of soil bioavailable phosphorus to warming (b))
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