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摘  要：有效土层厚度是评价土壤健康和生产力的一个决定性指标，精确描绘有效土层厚度的空间分布格局及其对

土地利用变化及地表基质类型的响应机制对于土壤资源的可持续保护具有重要意义。本文选取内蒙古东部黑土区为

研究区，基于地表基质调查数据和土壤-景观建模，开展该地区有效土层厚度数字化制图与空间格局分析，通过 SHAP

解释模型（Shapley additive explanation）识别有效土层厚度空间变异的主控因子，查明不同土地利用类型和地表基

质分区下有效土层厚度的差异性分布规律。结果表明：基于 Cubist 的有效土层厚度回归模型性能良好

（R2=0.5,RMSE=43.8），所生成的空间分布图能够准确揭示其空间格局特征。SHAP 分析揭示了地形和气候因子是

决定有效土层厚度空间变异的主控因子，具体表现在同一流域内高海拔区域受侵蚀作用影响，土层较薄；而月均气

温极值对有效土层厚度的影响为正向。地表基质分区和土地利用类型均对有效土层厚度的空间特征有重要制约作用，

坡洪积土和坡积土区土层厚度整体大于残坡土区；林地由于多分布于山区或坡度较大的区域，有效土层厚度最低。

本文为有效土层厚度的空间建模与表征提供了方法参考，研究结果可为查明区域自然资源本底条件及其对人类互动

的响应机制提供数据基础。 
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Abstract:【Objective】Effective soil thickness is a decisive indicator for evaluating soil health and productivity, it is 

therefore of great significance to accurately depict the spatial distribution pattern of effective soil thickness and its response 

mechanism to land use change and surface substrate type for the sustainable protection of soil resources.【Method】In this 

study, leveraging on the surface substrate survey data and soil-landscape modeling, we carried out predictive modelling and 

mapping of effective soil thickness in the black soil area of eastern Inner Mongolia. Based on the modelling results, the 

spatial variability of effective soil thickness was analyzed among land use types and surface substrate zoning. SHAP 
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analysis was employed to identify the main controlling factors underlying the spatial distribution pattern of effective soil 

thickness.【Result】The results show that the Cubist-based regression model had a good performance (R2=0.5,RMSE=43.8) 

for effective soil thickness prediction, and the generated spatial distribution map could accurately reveal its spatial pattern. 

SHAP analysis revealed that topographic and climatic factors were the main controlling factors determining the spatial 

variability of effective soil thickness, which was specifically reflected in the fact that highly eroded areas with high 

elevation had thinner soils, while monthly average temperature extremes had a positive effect.【Conclusion】Both surface 

substrate zoning and land use types exerted important constraints on the spatial characteristics of the effective soil layer 

thickness, with the overall soil layer thickness in the floodplain and sloping deposit areas being greater than that in the 

residual slope deposit area. Forestlands, which were mostly distributed in mountainous areas or regions with steep slopes, 

had the thinnest effective soil layer. This study provides a methodological reference for the spatial modeling and 

characterization of effective soil thickness, and the results can provide a data basis for identifying the background 

conditions of regional natural resources and their response mechanisms to human interactions. 

Key words: Effective soil thickness; Digital soil mapping; SHAP; Surface substrate; Landuse 

 

有效土层厚度作为土壤的重要属性之一[1]，直接制约植物生长[2]、植被覆盖、土壤养分和水分

迁移[3]等一系列地表生物和水土过程，对土壤碳库的固存、流失、迁移与转化具有重要的控制作用。

农业农村部《耕地质量等级》GB/T33469—2016 将有效土层厚度定义为作物能够利用的母质层以上

的土地总厚度，当有障碍层时，为障碍层以上的土层厚度。在我国东北黑土区，长期高强度的耕作

和漫川漫岗的地形条件导致黑土层变薄，严重影响土壤质量和农作物产量[4-5]，近年的研究报道典

型坡耕地受土壤侵蚀等退化过程影响，出现以土层变薄和土壤碳库流失为典型表现的“破皮黄”现象

[6]。因此，亟需开展黑土区有效土层厚间分布特征研究，探索其空间变异特征对成土因素、土地利

用变化等因素的差异性响应特征，促进生态保育与修复、降低土壤退化及地质灾害的潜在风险，为

区域土地资源的可持续利用与保护提供科学支撑[7]。 

有效土层厚度空间特征的定量评价方法首先依赖于野外调查与实测，通过实地挖掘土壤剖面和

利用钻探设备进行定点取样获取有效土层厚度数据。例如，刘凯等[8]对东北地区 61 处典型土壤剖

面进行实地考察，研究表明东北地区 40 年来土层厚度减少了 12cm。由于野外实地调查难以进行大

尺度、高密度的采样和数据获取，基于野外点数据的有效土层厚度调查通常难以详细揭示其空间异

质性及驱动机制。为克服这一瓶颈，土壤-景观模型模拟、遥感大数据集成应用、机器学习建模等

多元化手段逐渐应用于有效土层厚度数字化制图领域。根据 McBratney 提出的 SCORPAN 范式[9]，

数字土壤制图的工作原理是在有限的实测数据的支撑下，建立气候、地形、植被、成土母质、时间、

空间等环境协变量与待预测土壤指标之间的映射关系，通过统计模型或机器学习算法实现空间显式

制图
[10]

。伴随着人工智能技术的快速发展，机器学习算法由于能够表征环境变量与土壤属性之间

的非共线关系而被广泛采用。Yamashita
[11]利用随机森林预测了日本山区 A 层厚度超过 15 cm、A 层

和 B 层厚度超过 75 cm 的概率图；Wang 等[12]利用快速均值聚类和地理加权回归将研究区聚类为若

干子区域，建立回归模型，通过分层抽样对土层厚度进行了区域性的制图；Chen 等[13]利用分位数

随机森林方法测试黄土沉积物的厚度，结果表明航空伽马射线放射测量数据和 Sentinel 2 产品在法

国地区黄土厚度预测中的重要性。目前，国内外学者对土层厚度的研究多聚焦于利用机器学习方法提
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高土层厚度制图的预测精度，然而，对土层厚度空间分布规律的分析及其与地质、地理、地貌等因素的

响应关系探讨尚显不足，相关研究亟待进一步深入。 

 “地表基质”这一概念由自然资源部于 2020 年 1 月 18 日印发的《自然资源调查监测体系构建总体

方案》首次提出，是指“当前出露于地球陆域地表浅部或水域水体底部，主要由天然物质经自然作用形

成，正在或可以孕育和支撑森林、草原、水等各类自然资源的基础物质”。作为国内首次提出的概念，

地表基质调查旨在深入理解土地资源的分布、评估和保护生态环境，查清高强度人类活动制约下地表基

底条件对地球关键物质循环和能量流动过程的协同影响机理。国际上与地表基质相关的研究范畴包括生

态地质学、地球关键带等[14]，但这些研究范式均面临跨学科整合困难、观测数据不足等瓶颈，亟需建立

“地质调查-数据科学-自然资源系统评价”有机融合的研究新范式。中国地质调查局于 2020 年在全国范

围内开展了地表基质调查试点工作，通过地表基质分区和构型的划分，厘清地表基质的物质成分、空间

结构、理化性质、景观属性和生态功能等。其中，地表基质调查工作包括对有效土层厚度的调查，这为

分析有效土层厚度对地表基质结构和功能的响应机制，揭示地表基质空间异质性对土壤生产和生态

功能的控制机理提供了重要的数据基础。 

蒙东地区（内蒙古自治区东部）是我国重要的农业生产区域，但该地区地形和气候恶劣，坡耕

地集中，风蚀和水蚀现象严重，耕作层逐渐变薄，土地肥力下降，严重限制了农业的可持续发展。

土地退化现象的加剧还影响了该区域草地资源的承载力，草原沙化日趋突出[15]。在此背景下，揭示

蒙东地区有效土层厚度与区域地表基质本底条件和人类活动的空间异质关系，有助于明晰该区域的

自然资源概况和未来重点发展方向。为此，本文以内蒙古东部阿荣旗和莫力达瓦达斡尔族自治旗（以

下简称“莫旗”）为研究区，基于区内地表基质调查的 518 个采样点和 34 个环境变量，开展基于 Cubist

模型的有效土层厚度预测建模和空间制图，通过 SAHP 分析法测度不同环境变量对模型预测的重要

性，探究有效土层厚度与地表基质分区、土地利用类型的空间关联关系，为查明该区域自然资源本

底条件、制定区域黑土资源可持续利用与保护策略提供参考依据。 

1  材料与方法 

1.1  研究区概况 

1.1.1  自然地理概况    研究区为内蒙古自治区呼伦贝尔市阿荣旗和莫旗（纬度：47°56'54"—

49°50′50″N，经度：122°02'30"—125°16′14″E），占地约 2.4×10
4
 km

2，地理位置位于内蒙古自治区

东北部，大兴安岭向松嫩平原过渡的黑土带，全境地貌呈中低山—丘陵漫岗地形，海拔范围为

106~1152 m，地势从西北向东南呈阶梯式下降[16]（图 1）。该区域土壤类型主要包括黑土、暗棕壤、

草甸土、沼泽土等，其中黑土占耕地面积的 90%以上，农业资源优越；气候类型属于温带大陆性半

湿润气候，年平均气温为 1.3℃至 1.7℃，平均降水量为 400~500 mm，主要集中在夏季 6—8 月，占

全年降水量的 70%。 
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图 1 研究区区位及采样点分布 

Fig. 1 Location of the study area and distribution of sampling sites 

 

1.1.2 区域地表基质概况    自然资源部 2020 年发布的《地表基质分类方案（试行）》旨在对地表基质

的主要成分进行细致分类，采用包含四个一级类别和三级细分的体系。一级类别涵盖了岩石、砾质、土

质和泥质四种基本类型；在二级类别进一步扩展至 14 种不同类别；三级类别在二级类别的基础上进行更

详尽的划分。 

如图 2 所示，研究区地表基质分区表现出显著的空间分异特征。大兴安岭隆起带中低山残破积

地表基质区主要分布在西部和南部的山区等海拔较高的区域，是面积最大的地表基质分区，占研究

区面积的 44%；其次，大兴安岭隆起带丘陵残破积地表基质区，分布在研究区的东部和南部一小部

分，通常位于海拔中等或较低的平原地带，是山地向平原或河谷过渡的中间地形，占研究区面积的

22.8%；大兴安岭隆起带山间谷地冲洪积地表基质区呈脉状分布，沿河谷平原扩展，占研究区的

11.8%；大兴安岭隆起带丘陵坡积地表基质区集中在研究区东北呈块状分布；大兴安岭隆起带丘陵

坡洪积地表基质区在东北部沿着山间谷地冲洪积地表基质区呈脉状分布；松嫩平原沉降带阶地漫滩

冲洪积地表基质区分布在研究区地势最低的区域，沿着水体分布。 
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图 2 研究区地表基质分区空间分布图（a）和土地利用类型空间分布图（b）            

Fig.2 Spatial distribution of surface substrate types (a) and spatial distribution of land use types (b)  

 

 

有效土层厚度的野外测定工作于 2022 年进行。根据研究区土壤类型、成土母质、地质成因、

地形地貌以及土地利用类型等环境变量，遵循分区、分类、分层次的原则，利用背包钻和洛阳铲进

行有效土层厚度测量。基于《黑土地地表基质调查技术要求（试行）》：有效土层厚度定义为作物

能够利用的母质层以上的土体总厚度，当有障碍层或非土体时，为障碍层或非土体以上的土层厚度。

常见障碍层包括粘盘层、铁盘层、砂姜层、砂砾层、盐积层、石膏层、白土层、白浆层、灰化层、

潜育层、冻土层等。有效土层厚度最大值定为 2 m，即对于有效土层厚度超过 2 m 且无法识别有效

土层厚度的调查点位，未进行 2 m 以深的测量。为保证所测数据的可信度，项目组在野外工作过程

中进行了 100%的自检，100%的互检以及 30%的项目组抽检。最终，研究区内可用于有效土层厚度

空间预测建模的样本量为 518 个。 

1.1.3 土地利用概况    从土地利用类型空间分布特征来看（图 2），农业生产在该区域占据主导

地位，超过 46%的面积为耕地，主要分布在中部和东部等地势较为平坦的地区；其次为林地，占研

究区面积的 31.4%，主要分布在西部的山地、丘陵地区；草地资源的分布相对较为分散，多处于耕

地和林地的交界地带，占研究区面积的 19.3%；湿地则主要沿水体集中分布在东部和中部地区；人

造地表和裸地仅占研究区的一小部分，不作为后续研究对象。 

1.2  研究方法 

本研究采取的技术流程如图 3 所示。首先，基于地形、气候、遥感和土壤四个方面共计 34 个

环境变量作为模式解释因子，对比 Cubist、随机森林（Random forest，RF）、极端梯度提升（Extreme 

gradient boosting，XGBoost）三种建模算法对有效土层厚度的预测精度。在模型评估方面，利用

Kennard-Stone 算法划分 80%的训练集和 20%的验证集，以此来评估模型的准确性并筛选出性能最

优的算法。其次，基于最佳建模算法，通过 50 次 Bootstrap 重复抽样分析模型不确定性。最后，根
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据模型预测和空间制图结果，计算各因子 SHAP 值进行变量重要性分析，并对比不同土地利用类型

与地表基质分区下有效土层厚度的空间差异。 

图 3 研究流程图 

Fig.3 Research workflow diagram 

 

1.2.1  Cubist 回归预测    Cubist 模型是一种基于规则和实例的回归预测模型，它是对 Quinlan 的

M5 模型树的扩展[17]。其基于回归树，这种树状结构将输入空间划分为不同的区域，并在每个区域

中拟合一个简单的线性模型，从而捕获数据中的复杂非线性关系。其主要参数是模型复杂度

（commities），用于指定要创建的回归树的数量，默认是 1。本文基于 Cubist 模型利用环境协变量

对有效土层厚度进行预测。本文在建模时使用 Kennard-Stone 算法[18]选取样本作为模型的训练集和

验证集。 

1.2.2  随机森林    随机森林算法是一种集成学习方法，它通过构建多棵决策树并结合它们的预测

结果来提高整体模型的准确性。构建过程包括从原始训练集中有放回地抽取样本形成新的训练子集，

对每个节点的分裂随机选择特征，并使用最佳分裂方式进行分裂[19]。重复这一过程构建多棵决策树，

形成随机森林。随机森林的关键参数包括森林中决策树的数量（n_estimators）、每次分裂时考虑的

特征数量（max_depth）、决策树的最大深度（max_features）。 

1.2.3  XGBoost    XGBoost
[20]的基本原理是梯度提升，通过逐步构建多个弱模型并将它们组合成

一个强模型。每个弱模型都试图纠正前一个模型的错误，最终形成一个高度准确的预测模型。

XGBoost 使用二阶泰勒展开近似损失函数，并在每一轮迭代中通过最小化目标函数来选择最佳的树

分裂点。重要参数包括决策树的数量（n_estimators）、决策树的最大深度（max_features）、学习

率（learning_rate）。 

1.2.4 评价指标    本文采取均方根误差（Root Mean Square Error，RMSE）、平均绝对误差（Mean 

Absolute Error，MAE）和决定系数（R²）三种评估指标[21]对 cubist 模型的性能进行评价，其公式为： 

      
 

 
           

                              （1） 

    
           

 
   

 
                               （2） 
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                              （3） 

式中，  为真实值，   为模型预测值，   为真实值的平均值。 

1.2.5 SHAP解释模型    SHAP解释模型是Lundberg和Lee
[22]提出通过计算一个特征加入到模型时

的边际贡献，然后考虑到该特征在所有的特征序列的情况下不同的边际贡献，取均值，其表达式如

下： 

    
    （         ） 

    
                                       （4） 

式中，  表示特征 的 shapley 值， 表示特征子集， 表示所有特征的集合，    表示子集 的值函

数。 

在 SHAP 框架下，该值可理解为特征 对模型预测的期望边际贡献：  

                                                  （5） 

本文通过计算 SHAP 值对 Cubist 模型进行解释，分析环境变量的重要性。 

1.3 数据处理 

基于Scorpan土壤景观模型[9]，本研究选取34个变量作为预测有效土层厚度的环境因子（表1），

将其空间分辨率重采样为 30 m，并统一掩膜至与研究区空间范围一致。 

表 1 环境变量基本信息 

Table 1 Basic information of environmental variables 

 环境变量 

Environmental variables 

简称 

Abbreviation 

分辨率 

Resolution 

数据来源 

Data Sources 

地形因子 

Topographic 

factor 

高程 Elevation DEM 30 DEM 

坡度 Slope Slope 30 DEM 

坡向 Aspect Aspect 30 DEM 

流量 Flow accumulation FA 30 DEM 

流向 Flow direction FD 30 DEM 

坡长 Flow length FL 30 DEM 

坡度之坡度 Slope of slope SOS 30 DEM 

单位汇水面积 Specific catchment 

area 

SCA 30 DEM 

水流强度指数 Stream power index SPI 30 DEM 

地形湿度指数 Topographic wetness 

index 

TWI 30 DEM 

地形位置指数 Topographic position 

index 

TPI 30 DEM 

地形粗糙度指数 Topographic 

roughness index 

TRI 30 DEM 

泥沙输送指数 Sediment transport 

index 

STI 30 DEM 

气候因子 

Climate 

factor 

年平均降水量 Mean annual 

precipitation 

MAP 1 000 中国 1km 分辨率逐

月平均降水数据集 

年平均气温 Mean annual MAT 1 000 中国 1km 分辨率逐
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temperature 月平均气温数据集 

月均气温最大值 Mean month 

temperature maximun 

MMTmax 1 000 中国 1km 分辨率逐

月平均气温数据集 

月均气温最小值 Mean month 

temperature minimun 

MMTmin 1 000 中国 1km 分辨率逐

月平均气温数据集 

遥感因子 

Remote 

sensing 

factor 

归一化植被指数 Normalized 

difference vegetation index 

NDVI 30 Landsat8 

增强植被指数 Enhanced vegetation 

index 

EVI 30 Landsat8 

地表温度 Land surface temperature LST 30 Landsat8 

地表温度最大值 Land surface 

temperature maximun 

LSTm 30 Landsat8 

光合有效辐射 Fraction of 

photosynthetically active radiation  

FPAR 500 MODIS 

光合有效辐射最大值 Fraction of 

photosynthetically active radiation 

maximum 

FPARm 500 MODIS 

土壤因子 

Soil factor 

砂粒含量 Sand Sand 90 中国高分辨率国家

土壤信息格网基本

属性数据集 

粉粒含量 Silt Silt 90 中国高分辨率国家

土壤信息格网基本

属性数据集 

黏粒含量 Clay Clay 90 中国高分辨率国家

土壤信息格网基本

属性数据集 

土壤 pH Soil pH pH 90 中国高分辨率国家

土壤信息格网基本

属性数据集 

土壤有机碳 Soil organic carbon  SOC 90 中国高分辨率国家

土壤信息格网基本

属性数据集 

阳离子交换量 Cationic exchange 

capacity 

CEC 90 中国高分辨率国家

土壤信息格网基本

属性数据集 

 全氮含量 Total nitrogen TN 90 中国高分辨率国家

土壤信息格网基本

属性数据集 

 全磷含量 Total phosphorus TP 90 中国高分辨率国家

土壤信息格网基本

属性数据集 
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 土壤质地类型 Soil texture 

classification 

TEXCL 90 中国高分辨率国家

土壤信息格网基本

属性数据集 

 砾石含量 Cf 90 中国高分辨率国家

土壤信息格网基本

属性数据集 

 

数字高程模型（Digital Elevation Model, DEM）数据采用 ASTER GDEM 数据（国家基础数据

中心），其余地形衍生因子利用 Arcmap 和 SAGA 8.4.1 计算；气候因子采用中国 1 km 分辨率 2021

年逐月平均降水和气温数据集；遥感因子基于谷歌地球引擎（Google Earth Engine, GEE）平台获取，

在 ArcMap10.4 版本中进行预处理。其中 NDVI、EVI、LST、LSTm 来源于 Landsat8 数据，FPAR、

FPARm 来源于 MODIS 数据，时间范围是 2023 年；土壤因子采用中国高分辨率国家土壤信息网格

基本属性数据集；以上数据均用 R4.4.2 进行计算和裁剪。 

研究中土地利用数据来自 2020 年 Globe30（http://www.globallandcover.com），分辨率 30 m，

研究区土地利用分类为耕地、林地、草地、湿地、水体、人造地表和裸地。其中水体与人造地表不

在后续研究范围。 

2  结果与讨论 

2.1  描述性统计 

根据有效土层厚度的调查结果，研究区平均土层厚度为 94.55 cm，但呈现出显著的空间变异性。

研究区面积为 2.4×10
4
 km

2，采样点为 518 个，相较于已有部分研究，采样密度较高。对于自然资

源进行研究时，采样密度是一个非常重要的因素，他直接影响到数据收集的全面和预测结果的准确

性。如表 2 所示，有效土层厚度的变异系数为 60.95，数据分布离散，偏度值为 0.66（＞0.5），数

据呈轻微的正偏态，峰度值为 2.08（＞3），数据的分布相对正态分布较为平坦，尾部更重。使用

对数变换，虽然可以转化为正态分布，但对模型精度没有提升。因此，本文使用原始数据进行预测

模型的构建。 

表 2 有效土层厚度描述性统计 

Table 2 Descriptive statistical results of the effective soil thickness 

样本数量 

Number 

中位数

Median/cm 

平均数

Mean/cm 

标准差

SD/cm 

偏度 

Skewness 

峰度 

Kurtosis 

变异系数

CV/% 

518 75 94.55 57.63 0.66 2.08 60.95 

注：Standard Deviation，SD 

2.2  有效土层厚度空间建模与制图 

不同模型 Cubist、RF 和 XGBoost 对有效土层厚度进行建模精度评估，R²、MAE 和 RMSE 变

化如表 3 所示。结果表明，Cubist 模型预测精度最好（R²=0.50，MAE=33.05 cm，RMSE=43.79 cm）。
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建模时采用了被广泛使用的 Kennard-Stone 算法，该算法是 Kennard 和 Stone
[23]提出的一种基于样本

对之间欧氏距离比较的算法，其可以选出数据空间中最能代表整体分布信息的样本。 

表 3 不同模型的预测性能 

Table 3 Predictive performance of different models  
 决定系数 R² 平均绝对误差 MAE/cm 均方根误差 RMSE/cm 

Cubist 0.50 33.05 43.79 

随机森林 RF 0.45 35.63 45.64 

极端梯度提升 XGBoost 0.45 35.62 46.06 

 

基于 Cubist 算法，训练集占比为 80%的有效土层厚度预测模型训练集与验证集的精度评估结果

如图 4 所示。可以看出，利用 80%调查点训练的模型可以较好的捕捉有效土层厚度的变异，预测值

与实测值之间存在显著的线性关系（R
2
=0.59）。由直方图可知，目标值与预测值均为轻微的正偏

态，散点图中的点大致沿着蓝色的拟合线分布，即模型存在对部分有效土层厚度 150 cm 以上点位

的低估现象，可能与采样时未采集 200 cm 以深的有效土层厚度有关。从 20%的独立验证点来看，

校准模型的表现力有较好的迁移性，验证集预测模型的 R
2为 0.50。 

 

图 4 基于 Cubist 的有效土层厚度模型训练与预测结果 

Fig. 4 Model calibration and validation results for effective soil layer thickness prediction based on Cubist regression 

 

 

有效土层厚度受到多种环境因素的影响，包括气候条件、地形特征、植被覆盖以及人类活动等，

这些因素之间存在着复杂的相互作用和反馈机制。因此目前，研究对于有效土层厚度的预测相比其

他土壤性质如土壤有机碳、pH 等具有更大的难度：Zhang 等[24]用 RF、支持向量机（Support vector 

regression，SVR）、神经网络算法（Artificial neural networks，ANN）对有效土层厚度进行预测，

结果显示 SVR 能更好预测有效土层厚度（R²>0.63）；郭俊辉等[25]通过比较不同数字制图方法，结

果表明堆叠泛化模型（Stacking）模型表现最佳（R²=0.47）；Zhang 等[?]采用多元线性回归（Multiple 

linear regression，MLR）预测有效土层厚度，其 R²仅为 0.28；Li 等[26]对比 MLR、SVR、RF、XGBoost

预测土层厚度分布图，其 R
2 为 0.43~0.64。 

基于 Cubist 模型，将所有变量重新采样至最小分辨率 30 m，并作为出图的基础。采用 Bootstrap
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重复计算 50 次得到均值，并计算 90%预测区间，得到如图 5 所示的空间预测结果及其不确定性分

布。有效土层厚度的分布在空间上呈现明显异质性，与 DEM 的分布大体相同，在同一流域内，地

势较高、容易侵蚀的地方有效土层厚度较薄，而地势低洼的地方土层较厚。有效土层厚度较高值在

研究区内分布较广泛，空间上东南普遍高于西北。西北部有效土层厚度分布普遍较低，可能是在山

地或岩石裸露地区，山地地势高，土壤容易受到侵蚀，导致土层变薄且不连续；中间和东南区域土

层分布较厚，适合农业发展，可能是平原、河谷或沉积区，地势较低，泥沙沉积作用明显，形成厚

土层。橙色区域有效土层厚度呈脉状分布，河流带来的沉积物堆积，尤其是沿着主河道和支流的交

汇处，促进了土层的加厚；水系分布与有效土层厚度关系紧密。此外，通过 90%预测区间表达的不

确定性图能够从空间角度对有效土层厚度建模进行评估。由图 5b 可知，大部分地区的预测区间范

围都较小，不确定性较高的区域主要集中在地势较低的平原地区，可能是因为平原地区土壤类型分

布较为复杂且空间异质性较高。相比之下，高程较高的山地地区预测结果的不确定性相对较低。这

些区域通常土地利用相对单一，自然干扰较少，土壤发育过程较为稳定，从而使得模型预测更加一

致。 

 

图 5 有效土层厚度空间分布图（a）和有效土层厚度 90%预测区间空间分布图（b） 

Fig. 5 Spatial distribution of effective soil thickness (a) and 90% prediction interval spatial distribution of effective soil 

thickness (b) 

 

计算 34 个环境变量的 SHAP 值和相对重要性排名，结果如图 6 所示。使用 Cubist 建模时，对

有效土层厚度建模预测时比较重要的前 5 个环境变量分别为：DEM，MMTmax，MAT，MMTmin

和 TRI。其中 DEM、TRI 为地形因子，其余为气候因子。DEM 与 TRI 对有效土层厚度的影响均为

负向。气温在模型中占据主导地位，可能是由于 1 000 m 分辨率的气温数据无法捕捉局部变化，导

致重要性被高估。 
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图 6 环境变量 SHAP 因素重要性分析结果 

Fig.6 SHAP value importance results of environmental covariates 

 

为了更直观显示各因子对有效土层厚度的影响，将变量重要性排名前九的环境变量特征值与

SHAP 值做部分依赖分析，如图 7 所示。每个因子对有效土层厚度的影响不同。变量重要性最高的

DEM 在建立模型时，Cubist 将其进行分区间预测，SHAP 值大部分时候为负值，与有效土层厚度呈

负相关性。MMTmax 和 MMTmin 的分布趋势相同，SHAP 值在较高水平时为正值，较低水平时为

负值；MAT 与此相反，在较高水平为负值，较低水平为负值。月均气温极值与有效土层厚度呈正

相关性，原因是较高的温度会促进有机质的产生与积累，有利于植被的根系生长[27]，从而增加有效

土层厚度。当月均气温在 0℃上下浮动时，反复的冻融作用会使细小颗粒向下迁移，形成更厚的有

效土层[28]。 

TRI 值分布较集中，在大多情况下 SHAP 值其负值，与有效土层厚度呈负相关性。粉粒、砂粒

和 SOC 的分布趋势相同，且呈较好的线性，在较高水平时为正值，促进有效土层厚度的积累，较

低水平时为负值，不利于有效土层厚度的积累。SOS 总体 SHAP 值较小且为负值，与有效土层厚度

为负相关性。 

地形因子 DEM 被识别为影响土壤厚度预测的首要关键因子，这一发现与先前研究的结论相吻

合：陈玉蓝等[29]通过对比不同机器学习方法，发现控制四川省土层厚度变化的主要因子为地形因子；

Zhang 等[24]发现影响喀斯特流域土层厚度的最重要因素是坡位；Zahedi 等[30]研究也发现坡度和坡向

是预测土壤厚度最重要的解释变量之一。除地形因子外，气候因子在预测有效土层厚度方面也占据

了相对显著的位置，这与刘凯等[31]研究发现一致。气候作为五大成土母质之一，温度通过影响土壤

有机碳的分解、土壤结构的紧实度以及土壤温度的垂直分布，对有效土层厚度也会产生重要影响。
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而在目前已有的研究中，其不作为主要的解释变量，可能是由于尺度导致研究区气候相对均一。 

 
图 7 环境变量部分依赖图 

Fig.7 Partial dependence plots of environmental covariates 

 

 

2.3 有效土层厚度与土地利用、地表基质的关系 

为更准确地评估各类土地的生产力和适宜性，进而为土地的合理利用和规划提供科学依据，根

据土地利用类型，制作不同土地利用类型的有效土层厚度箱线图。由图 8 可知，不同土地利用类型

有效土层厚度平均值顺序为湿地＞裸地＞耕地＞草地＞林地，有效土层厚度分布范围顺序为草地＞

耕地＞林地＞裸地＞湿地。湿地分布集中，有效土层厚度最高，湿地环境稳定，影响因子单一，受

到外界干扰小；裸地大部分集中在 100~150 cm 之间，其因为缺少人类活动干扰，有效土层厚度也

较高；耕地分布范围较广，集中于中低有效土层厚度，耕地受人为耕作与干扰较多；草地有效土层

厚度分布范围最广，植被覆盖能力相对较弱，有效土层厚度也较低；林地有效土层厚度最低，主要

是其多分布于山区或坡度较大的区域，地形陡峭，流失严重。 
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图 8 不同土地利用类型的有效土层厚度箱线图 

Fig.8 Box plots of effective soil thickness for different land use types 

 

不同土地利用类型有效土层厚度平均值顺序为湿地＞裸地＞耕地，这与艾晓军等[32]研究结果一

致。湿地分布较均一，这可能与湿地环境较稳定有关，其均值最高，长期水分饱和可能不利于土地

的侵蚀作用；裸地通常位于平坦或缓坡区域，植被覆盖少且侵蚀较少，沉积物易堆积；耕地有效土

层厚度较低，反映了其受到人为耕作导致的土壤侵蚀与压实作用[33]，低于自然沉积的裸地；一些坡

耕地的水土流失也是导致耕土层变薄的重要原因；草地微生物及有机质积累较少，且缺乏树木保护，

导致其更容易受到风蚀和水蚀的影响，且人为的放牧也会影响土壤退化；林地多分布于山区，土壤

侵蚀严重，且由于较少人工干预，恢复速度较低。 

为更好地理解地表基质对自然资源的支撑作用，根据地表基质分区，制作不同地表基质分区的

有效土层厚度箱线图。由图 9 可知，在大兴安岭隆起带中低山地形地貌分区内，由成因类型所划分

的地表基质区有效土层厚度均值顺序为：坡积地表基质区＞坡洪积地表基质区＞残坡积基质区；在

同大兴安岭隆起带丘陵地形地貌分区内，由成因类型所划分的地表基质区有效土层厚度均值顺序为：

坡洪积地表基质区＞坡积地表基质区＞残坡积基质区；总体而言，有效土层厚度均值顺序为；山间

谷地地表基质区＞中低山地表基质区＞丘陵地表基质区；针对冲洪积地表基质区而言，松嫩平原沉

降带阶地漫滩地表基质区＞大兴安岭隆起带山间谷地地表基质区。 
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图 9 不同地表基质分区的有效土层厚度箱线图 

Fig.9 Box plots of effective soil thickness for different surface substrate 

 

不同地表基质分区对有效土层厚度的影响具有显著的规律性，地表基质作为五大成土因素之一，

对有效土层厚度的形成与发展起着绝对性作用[34]。坡积土则是由于重力作用和雨水冲刷，土粒在坡

面上移动并在坡脚堆积形成；由于搬运距离短，层理不明显，且可能持续从坡上冲刷下来，有效土

层厚度较厚。坡洪积土多由大雨或洪水冲刷山坡时沉积形成的，通常在山前平原堆积；但由于洪水

的冲刷和搬运，坡洪积土的层理和分选性相对较好[35]；多分布于洪水冲刷后形成的扇形地貌[36]，厚

度因水流强度和沉积物类型而异，一般较残坡积土厚。残坡积土由于其在岩石风化后未被搬运[36]，

以残积物为主，搬运较少，导致土层发育不够厚；且通常处于较高坡度，侵蚀作用较强。 

本研究系统整合地形、气候、遥感及土壤多源数据，建立了典型黑土区有效土层厚度的空间预

测模型，并从地表基质分区构型的视角分析了不同地表基底条件对土壤演育的影响。受限于高质量

的耕作方式、土壤机械压实状况、土壤侵蚀空间显式数据的缺失，本研究难以实现多形式人类活动

对土层厚度的深入刻画，这也一定程度上构成了预测模型的误差来源。此外，基于 SHAP 值的影响

因子重要性分析解析了地形、气候、遥感等关键因子的独立贡献度，其全局特征重要性排序为土壤

-景观模型提供了清晰的解释框架，然而对于解释因子彼此之间的非线性交互效应，传统 SHAP 方

法仍存在理论局限性。根据本研究提供的有效土层厚度预测结果，发现有效土层厚度分布与土地利

用类型和地表基质分区关系密切，可持续土地资源管理与保护措施应充分考虑地形和成土母质的不

同，采取差异化的土地利用策略。根据宜林则林、宜耕则耕的原则，推广适宜的农业技术。在对地

观测卫星大数据集成应用蓬勃发展的背景下，未来研究可开展面向保护性耕作、土壤物理结构定量

评价、土壤侵蚀遥感反演等方面的研究，生成高质量土壤基准信息和管理措施数据，深入评估多形
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式人类干扰下有效土层厚度的时空变异特征。 

3  结  论 

本文利用蒙东黑土区地表基质调查基础数据，构建了以地形、气候、遥感和土壤因子为自变量

的有效土层厚度 Cubist 预测模型，预测性能良好，可有效捕捉有效土层厚度的空间分布特征。SHAP

因素重要性分析显示地形特征是决定有效土层厚度的首要因子，同一流域内海拔较高的区域受土壤

侵蚀等地表外动力过程影响而土层较薄，而地势低洼地带土层较厚；气候因子也对有效土层厚度的

空间分异具有显著影响。由于土壤形成与演育过程的控制作用，不同地表基质分区有效土层厚度平

均值坡积、坡洪积均大于残坡积土；林地由于多分布于山区或坡度较大的区域，有效土层厚度最低。 
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