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摘  要：土壤钠吸附比（ Sodium adsorption ratio, SAR）是表征盐碱地钠离子危害及土壤碱化程度的重要指标，然而在河北滨

海地区，受独特的盐分形成和积累及复杂的物理化学共同影响，土壤 SAR特征及影响因素仍不明确，不利于其精准预测。

因此，本文以河北省沧州市典型滨海盐碱地为研究对象，通过采集 0~20 cm和 20~40 cm不同层次土壤样品，测定土壤离子

组成、容重（ BD）、含水量（ SWC）、有机质（ SOM）、总孔隙度（ STP）、毛管孔隙度（ SCP）、饱和导水率（ Ks）、电导率（ EC）

和 pH。分析 SAR特征，探讨其主要影响因素，并利用线性回归（ LR）模型、决策树回归（ DT）模型、随机森林回归（ RF）

模型及 K-最近邻回归（ KNN）模型对 SAR进行预测。结果表明，SAR在上下两层（ 0~20 cm和 20~40 cm）的平均值分别为

22.23和 28.02，无显著性差异（ P=0.126），该地区土壤为中度盐化-钠质土。相关性分析发现，SAR与 K+、Cl-、SO4
2-、EC、

pH、BD、HCO3
-、SOM、SWC、STP、SCP、KS均呈显著相关，其中与 Cl-、SO4

2-、EC相关性较高，为主要影响因子。在

SAR 的预测模型对比中，使用 EC 和 pH 共同预测 SAR 的模型精度更高，且 RF 模型具有最优预测精度，预测参数中土壤

EC占比最高。本研究系统揭示了 SAR的影响因素，并构建多因子协同预测框架，为滨海盐碱土的改良与资源利用提供了科

学依据。 
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Abstract：The Sodium Adsorption Ratio (SAR) is a critical indicator for characterizing the hazard of sodium ions 

and the degree of soil sodification in saline-alkali soils. However, in the coastal region of Hebei, the characteristics 

and key influencing factors of soil SAR remain unclear due to unique processes of salt formation and accumulation, 

as well as complex physicochemical interactions, which hinders its accurate prediction.【Objective】This study 

aims to elucidate the spatial distribution and profile variation patterns of SAR in representative coastal saline-alkali 

soils of Cangzhou, Hebei; to identify and quantify the key soil physicochemical factors influencing SAR dynamics. 

Also, the study seeks to develop and select an optimal machine learning model for accurately predicting SAR based 
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on easily measurable parameters.【Method】Taking typical coastal saline-alkali land in Cangzhou City, Hebei 

Province as the research area, soil samples were collected from two layers (0-20 cm and 20-40 cm). A 

comprehensive set of properties was measured, including ionic composition, bulk density (BD), soil water content 

(SWC), soil organic matter (SOM), total porosity (STP), capillary porosity (SCP), saturated hydraulic conductivity 

(Ks), electrical conductivity (EC), and pH. The characteristics of SAR were analyzed, its main influencing factors 

were explored, and four machine learning models: Linear Regression (LR), Decision Tree (DT), Random Forest 

(RF), and K-Nearest Neighbors (KNN), were used to predict SAR. Model performance was evaluated using the 

coefficient of determination (R2) and Root Mean Square Error (RMSE).【Result】The mean SAR values in the 

upper (0-20 cm) and lower (20-40 cm) layers were 22.23 and 28.02, respectively, with no significant difference (P 

= 0.126). The soil in the study area was classified as moderately saline-sodic soil. Correlation analysis revealed that 

SAR was significantly correlated with K⁺, Cl⁻, SO₄²⁻, EC, pH, BD, HCO₃⁻, SOM, SWC, STP, SCP, and Ks. Among 

these, the correlations with Cl⁻, SO₄²⁻, and EC were the strongest, identifying them as the primary influencing factors. 

In the comparison of SAR prediction models, a model using both EC and pH as predictors achieved higher accuracy, 

and the RF model demonstrated the best predictive performance, with soil EC being the most significant feature.

【Conclusion】The RF model can achieve robust prediction of SAR in the coastal saline-alkali soils of Hebei based 

on easily measurable indicators such as EC and pH. This study identified the key driving factors of SAR in the 

region and developed an effective predictive framework, providing a scientific basis and practical tools for the 

precise reclamation and sustainable utilization of local saline-alkali lands. 
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土壤盐渍化是世界性的生态问题，全球范围内近 14亿公顷的土地受到盐碱化影响[1]。我国盐碱地分

布广泛，涵盖 17个省区，主要集中在东北、华北和西北地区，不同区域因气候条件和地形差异而表现出

显著的区域性特征[2]。例如，东北地区盐碱土多与地下水位升高和蒸发作用有关，盐分以硫酸盐和碳酸盐

为主[3]；华北滨海地区受海水倒灌影响明显，盐分以氯化钠为主[4]；西北地区则干旱少雨、蒸发强烈，盐

分以硫酸盐和氯化物为主，盐碱化程度较高[5]。这些区域性差异引起钠离子累积的表现形式存在显著差

异，进而对土壤钠吸附比 Sodium adsorption ratio, SAR）产生显著影响。 

SAR能够反映土壤中钠相对于钙和镁的含量，是衡量盐碱化程度的重要指标[6]。高 SAR值会引起

土壤结构分散、渗透性下降，从而破坏土壤结构稳定性，对土壤健康造成不利影响[7]。已有研究表明，随

着灌溉水盐度和 SAR的增加，土壤大团聚体稳定性和有机质含量显著降低[8]。同时，降水中 SAR升高会

导致土壤饱和导水率下降和入渗时间延长[9]。近年来，在 SAR的影响因素研究上突破传统的钠钙镁三因

子框架，发现 SAR的驱动机制更为复杂[10-11]。例如马笑丹等[10]在黄河三角洲滨海盐碱地研究中指出 SAR

除与 Na+、Mg2+、Ca2+离子相关外，还与 Cl-、K+关系密切。Mohammed等[11]利用机器学习方法分析东地

中海地区 SAR，发现除 Na+、Mg2+、Ca2+外，土壤阳离子交换量是影响其预测精度的重要因素。目前对

SAR的研究已形成多维度认知体系，其影响因素呈现显著的多因子特征，但主导因素识别仍存在不足。 

在大数据分析背景下，机器学习 ML）已成为广泛应用的决策工具，能够为复杂的环境和农业问题

提供有效解决方案[12]。目前，在机器学习框架内，决策树 DT）、K-最近邻 KNN）、人工神经网络

 ANN）、支持向量机 SVM）等方法已被应用于土壤盐分与相关指标的预测[13]。例如，解雪峰等[14]在

苏北滨海盐碱地研究中利用 3种机器学习算法预测土壤盐度；Abedi等[15]使用 6种机器学习算法来预测盐

度相关指标，结果表明随机森林回归模型 RF）在预测 SAR方面表现最佳。Chen等[16]应用 XGBoost模

型预测新疆地区土壤盐度，取得了较高精度。Gautam等[17]利用 ANN模型预测印度拉贾斯坦邦南部

(Pratapgarh)区地下水 SAR，取得了较好的效果。当前基于机器学习预测土壤变量的方法在特定区域内已

取得较高精度，但其跨区域泛化能力有限，对复杂环境的适应性不足，尤其缺乏针对河北滨海地区的系

统研究。 

河北省滨海盐碱土分布广泛，其形成受海水入侵、地下水蒸发与盐分积累等自然因素的影响，是典

型的盐渍化土壤类型[18]。这类土壤具有盐分高、碱性强等显著特征，并受到多种物理和化学因素的共同

作用，对区域生态环境与农业生产构成严重威胁。然而，目前该区土壤钠吸附比 SAR）的影响因素尚



 

 

未得到系统阐明，多因子预测模型构建不足，限制了 SAR的精准预测和盐碱土改良措施的优化。基于

此，本研究以河北滨海盐碱土为对象，结合定量实验与数据分析，系统探讨 SAR与土壤理化性质的耦合

关系，并引入机器学习方法开展 SAR预测研究。该研究不仅有助于深化对 SAR形成机制的理解，也为滨

海盐碱土科学管理与可持续利用提供理论支撑和实践依据。 

1 材料与方法 

1.1 研究区概况 

沧州市位于河北省滨海区域，地处华北平原中东部，东临渤海，南接山东，北靠京津(37°29′-

38°57′N，115°42′-117°50′E )。该地区地势低平，总体呈现微倾向海的特点，地貌类型以冲积平原为主。

属于温带季风气候，四季分明，年均气温约为 12.5℃，年均降水量为 581mm，但降水时空分布不均，夏

季多集中性强降水，冬季相对干旱。当地主要粮食作物有小麦 Triticum aestivum L.）和玉米 Zea mays 

L.），还种植谷子 Setaria italica）、豆类 Leguminosae）等作物。盐碱地特色农业有黄骅苜蓿 Medicago 

sativa L.）和碱地梨 Pyrus spp）等特色农产品。试验地点为中国科学院南大港滨海生态试验站 图

1b），试验站位于河北省沧州市渤海新区南大港产业园区内 图 1a），该区属于典型的滨海盐碱地带，

土壤含盐量较高，质地多为黏壤土或壤土，结构松散，透水性和透气性较差，表面常有盐霜现象，尤其

在干旱季节更为显著。 

 

图 1 研究区与采样点位置图 a图为沧州地理位置图，b图为中国科学院南大港滨海生态试验站） 

Fig.1 Map of the location of the study area and sampling points Picture a shows the geographical location of Cangzhou, and Picture b 

shows the Nandagang Coastal Ecological Experiment Station of the Chinese Academy of Sciences） 

1.2 样品采集与分析 

2023年 8月，按照规则网格进行采样，采集研究区典型盐碱地地块 0~20 cm和 20~40 cm层原状土与

扰动土样品各 54个 图 1b）。原状土用体积为 100 cm3的环刀采集，用于测定土壤含水量、饱和导水

率、毛管孔隙度、总孔隙度和容重。土壤含水量用烘干法测定；孔隙度用体积法测定；饱和导水率采用

双环刀-定水头法测定；容重用环刀法测定。针对扰动土，采样方法为在目标区域周围选取 3个点位采

集，均匀混合后带回实验室自然风干，磨碎过筛，用于测定土壤机械组成和有机质含量。土壤机械组成

使用激光粒度仪测定，按照美国农业部制 1951年）分级标准，测定不同粒径土壤颗粒所占比例。土壤



 

 

有机质采用重铬酸钾氧化—外加热法测定；土壤 pH采用电位法测定；土壤电导率采用电极法测定；

HCO3
–、CO3

2–用标准硫酸滴定法测定；Cl–用标准硝酸银滴定法测定；Mg2+、Ca2+、SO4
2–采用 EDTA络合

滴定法测定；Na+、K+采用火焰光度法测定；土壤全盐量为八大离子浓度之和[19]。 

1.3 数据处理 

土壤钠吸附比 SAR）采用式 1）计算。同时计算交换性钠百分比 Exchangeable sodium 

percentage,ESP），依据分类分级方法[20-21]分级。 

SAR =
Na+

√(Ca2+ + Mg2+) ×
1
2

 (1)
 

ESP(%) =
0.01475 × SAR − 0.0126

1 + (0.01475 × SAR − 0.0126)
× 100 (2) 

式中，Na+、Ca2+、Mg2+为各离子相应浓度 mmol·L−1）。 

采用 SPSS 26软件进行数据统计与分析，采用 Origin 2022、ArcGIS Pro 2022软件绘图，空间分布图采

用普通克里金插值法。先通过 Spearman相关分析初步寻找 SAR的相关特征，确定影响 SAR的主控因子。

选择 pH和 EC共同，以及 EC单独来进行 SAR预测对比，采用线性回归（ LR）、决策树回归（ RF）、随机

森林回归（ DT）、K-最近邻回归方法（ KNN）。线性回归分析选取数据集的 60%作为训练集，采用训练集拟

合，测试集验证模型好坏。其他方法分析前对数据进行归一化处理，且选择贝叶斯 200次迭代优化算法参

数寻优，进行数据洗牌，确定训练占比为 0.6。 

2 结 果 

2.1 不同深度土壤理化性质的差异特征 

上层土壤相较于下层，有机质含量 SOM）、总孔隙度 STP）、毛管孔隙度 SCP）及饱和导水率

 Ks）更高，而容重 BD）更低，且两层间存在显著差异。土壤 pH、含水量 SWC）与机械组成 砂

粒、粉粒、黏粒）上下两层均值接近 表 1）。 

表 1 不同层次土壤理化性质差异特征 

Table 1 Soil physicochemical properties at different soil layer  

土层 Soil 

layer 

/cm 

pH 

土壤有机质

SOM 

/(g·kg-1) 

容重 BD 

/(g·cm-3) 

总孔隙

度 STP 

/% 

毛管孔隙

度 SCP 

/% 

饱和导水率

KS 

/(cm3·h-1) 

含水量

SWC 

/% 

电导率 EC 

/(mS·cm-1) 

土壤颗粒组成 Soil particle size 

composition /% 

______________________________ 

砂粒 Sand 粉粒 Slit  黏粒 Clay  

0~20 
8.33± 

0.44a 

13.33± 

2.56a 

1.30± 

0.95a 

44.26± 

5.86a 

40.27± 

5.79a 

0.56± 

0.33a 

33.01± 

10.3a 

1.22± 

1.14a 

0.87± 

0.26a 

46.29± 

4.24a 

52.84± 

4.24a 

20~40 
8.37± 

0.42ab 

11.51± 

3.29b 

1.40± 

1.09b 

41.65± 

5.35b 

38.72± 

5.85b 

0.34± 

0.23b 

31.52± 

15.87ab 

1.38± 

0.96ab 

0.86± 

0.26ab 

46.10± 

2.86ab 

53.05± 

2.86ab 

注：不同小写字母表示不同层次间差异显著(P<0.05)。下同。Note : Different lowercase letters indicate significant differences among levels (P<0.05).The 

same below. 

研究区土壤阳离子以 Na+为主，阴离子以 Cl-、HCO3
-为主。土壤盐分类型以钠盐、氯化物、碳酸氢盐

为主 表 2）。下层 Na+、Cl-、SO4
2-、NO3

-、HCO3
-含量高于上层，上层 K+略高于下层，Mg2+、Ca2+两层

间变化不大。SAR随深度增加，均远超碱化阈值 SAR＞13），根据式 2）计算 ESP分别为 23.97%和

28.61%，根据分类分级方法[20-21]，该地区土壤为中度盐化-钠质土壤。 



 

 

表 2 不同层次土壤盐分含量及钠吸附比 

Table 2 Soil salt content and SAR at different soil layer  

土层 Soil layer 

/cm 

Na+ K+ Mg2+ Ca2+ Cl- SO4
2- NO3

- CO3
2- HCO3

- 全盐 Total salt  钠吸附比

SAR 
——————————————————/(mg·kg-1)———————————————— 

0~20 745.51± 

926.19a 

102.88± 

114.44a 

46.29± 

42.24a 

107.96± 

56.64a 

861.59± 

1355.33a 

232.98± 

271.44a 

26.83± 

25.03a 
0 

813.21± 

214.82a 

2937.24± 

2602.95a 

22.23± 

20.27a 

20~40 892.55± 

818.70ab 

94.35± 

109.99ab 

46.33± 

34.96ab 

106.43± 

53.84ab 

1032.65± 

1168.99ab 

262.13± 

213.27ab 

35.30± 

24.73b 
0 

835.12± 

207.64ab 

3304.86± 

2206.40ab 

28.02± 

22.86ab 

2.2 SAR 空间分布特征 

SAR空间分布呈显著区域分异特征。研究区西部、西南部上、下两层土壤 SAR值较低，受盐分影响

较轻；东部、东北部、东南部地区 SAR较高，盐渍化程度较重。下层 SAR空间分布较上层增大，受 Na+

毒害作用较强 图 2）。 

 

图 2 研究区土壤钠吸附比空间分布 a、b分别为 0~20 cm、20~40 cm层土壤） 

Fig. 2 Spatial distribution of soil sodium adsorption ratio in the study area （ a） and b）are the upper and lower soils, 

respectively） 

2.3 SAR 与土壤理化性质的相关性 

SAR与土壤理化性质的相关性较强。SAR与 K+、Cl-、SO4
2-、EC、pH、BD呈显著性正相关

 r=0.238、r=0.845、r=0.790、r=0.788、r=0.317、r=0.339）；与 HCO3
-、SOM、SWC、STP、SCP、KS呈

显著性负相关 r=-0.262、r=-0.216、r=-0.194、r=-0.601、r=-0.546、r=-0.332）。与其他指标相关性不显

著。Cl-、SO4
2-、EC为 SAR的主要影响因素，相关性较强。总体 SAR与 Cl-、SO4

2-、HCO3
-、pH、BD、

STP、SCP呈 0.01水平下显著相关，根据数据获取性更优、检测指标更便捷，本文选定 EC和 pH共同、

以及 EC单独作为 SAR预测指标进行预测对比 图 3）。 



 

 

  
图 3 土壤 SAR与土壤盐分和理化性质的相关性图 

Fig. 3 Correlation graph of soil SAR with soil salinity and physicochemical properties 

2.4 土壤钠吸附比（SAR）预测精度 

 1）线性回归模型（ LR）预测精度。以 SAR为因变量，pH和 EC为自变量进行回归分析。上层训练

集土壤回归分析显著性 P＜0.001。测试集 R2为 0.653 表 3），拟合效果一般。训练集 SAR的回归方程如

下： 

SAR = −122.84 +  14.746𝑥 +  18.996𝑦 (3) 

式中，x、y分别为土壤 pH、EC。 

训练集下层回归分析的显著性 P＜0.001。测试集 R2为 0.838 表 3），拟合效果较好。训练集土壤

SAR的回归方程如下： 

SAR = −176.085 + 21.219𝑥 +  18.856𝑦 (4) 

式中，x、y分别为土壤 pH、EC。 

以 SAR为因变量，EC为自变量进行回归分析。上层训练集土壤回归分析显著性 P＜0.001。测试集

R2为 0.531 表 3），拟合效果一般。训练集土壤 SAR的回归方程如下： 

SAR = 1.055 +  17.872𝑥 (5) 

式中，x为土壤 EC。 

训练集回归分析显著性 P＜0.001。测试集 R2为 0.671 表 3），拟合效果较好。训练集土壤 SAR的回

归方程如下： 

SAR = −176.085 +  21.219𝑥 (6)

式中，𝑥为土壤 EC。 



 

 

表 3 线性回归模型(LR)预测精度 

Table 3 Prediction accuracy of the Linear Regression Model  

预测指标 

Predictive indicators 

土层 

Soil layer/cm 
数据集 Dataset 均方误差MSE 

均方根误差

RMSE 

平均绝对误差

MAE 

平均绝对百分

比误差MAPE 
决定系数 R² 

EC、pH 0~20 训练集 Train set 92.785 9.632 7.519 56.253 0.740 

测试集 Test set 162.427 12.745 7.597 55.998 0.653 

20~40 训练集 Train set 84.40 9.200 7.505 46.572 0.795 

测试集 Test set 101.982 10.246 7.656 46.084 0.838 

EC 0~20 训练集 Train set 136.807 11.696 9.418 65.282 0.616 

测试集 Test set 219.739 14.824 10.810 79.564 0.531 

20~40 训练集 Train set 174.873 13.224 11.209 67.349 0.676 

测试集 Test set 213.913 14.626 11.777 63.521 0.671 

 2）随机森林回归模型 RF）预测精度。特征重要性百分比表示每个特征在土壤深度区间内对某种

分析或模型预测的贡献程度。EC、pH作为 SAR预测指标，上层土壤 EC的贡献占比最高为 90.80%，表明

土壤盐分含量是最关键的预测特征，pH占比为 9.20%，贡献相对较小但仍有一定影响。在下层土壤深度

区间，EC的重要性降低为 86.50%，pH的贡献增加，达到 13.50%。 

在模型性能方面，EC、pH共同预测模型综合表现出较好的拟合效果和较低的误差，上层测试集 R2

为 0.793，下层测试集 R2为 0.798 表 4），综合评价明显高于 EC单独预测模型。相比之下，EC单独预

测模型的拟合效果一般，误差较高，上层测试集 R2为 0.584，下层测试集 R2为 0.668 表 4）。 

表 4 随机森林回归模型 RF）预测精度 

Table4 Prediction accuracy of the Random Forest Regression Model  

预测指标 

Predictive indicators 

土层 

Soil layer /cm 
数据集 Dataset 均方误差MSE 

均方根误差

RMSE 

平均绝对误差

MAE 

平均绝对百分比

误差MAPE 
决定系数 R² 

EC、pH 0~20 训练集 Train set 19.284 4.391 2.954 16.542 0.960 

测试集 Test set 59.790 7.732 5.730 43.993 0.793 

20~40 训练集 Train set 14.835 3.852 3.064 14.908 0.974 

测试集 Test set 73.308 8.562 6.301 45.146 0.798 

EC   0~20 训练集 Train set 24.219 4.921 3.014 19.051 0.948 

测试集 Test set 132.020 11.490 9.107 56.915 0.584 

20~40 训练集 Train set 23.8689 4.886 3.181 11.804 0.959 

测试集 Test set 136.815 11.697 8.957 48.767 0.668 

 3）决策树回归模型 DT）预测精度。在特征重要性方面，上层土壤数据分析显示，EC占比最高，

为 96.90%，而 pH占比极低，为 3.10%，贡献很小。下层 EC重要性明显降低为 79.10%，pH的整体贡献增

大为 20.90%。 

在模型性能方面，EC、pH共同预测模型在训练集上的拟合效果一般，且在测试集上的泛化能力较

弱，上层土壤测试集 R2为 0.557，下层土壤测试集 R2为 0.501 表 5）。综合评价明显高于 EC单独预测

SAR的误差指标。EC单独预测模型的表现指标综合表明该模型拟合效果较差，误差指标较高，上层测试

集 R2为 0.424，下层测试集 R2为 0.395 表 5）。 



 

 

表 5 决策树回归模型 DT）预测精度 

Table 5 Prediction accuracy of the Decision Tree Regression Model 

预测指标 

Predictive indicators 
土层 

Soil layer /cm 
数据集 Dataset 均方误差MSE 

均方根误差

RMSE 

平均绝对误

差MAE 

平均绝对百

分比误差

MAPE 

决定系数

R² 

EC、pH 0~20 训练集 Train set 0 0 0 0 1 

测试集 Test set 160.68 12.68 8.50 61.61 0.557 

20~40 训练集 Train set 0 0 0 0 1 

测试集 Test set 274.576 16.57 10.835 33.876 0.501 

EC 0~20 训练集 Train set 0 0 0 0 1 

测试集 Test set 125.286 7.231 7.908 52.294 0.424 

20~40 训练集 Train set 0 0 0 0 1 

测试集 Test set 218.094 14.768 10.514 45.970 0.395 

 4）K-最近邻回归模型（ KNN）预测精度。该模型采用贝叶斯优化算法（ 200次迭代）进行参数寻优，

最终确定上、下两层土壤预测的最佳近邻数（ k值）均为 5。模型的误差指标表现出在训练集上拟合效果一

般，但在测试集上表现尚可，上层测试集 R2为 0.631，下层测试集 R2为 0.656（ 表 6），综合评价明显高于

EC单独预测 SAR误差指标。而 EC单独预测模型的拟合效果不佳，误差指标较高，上层测试集 R2为 0.276，

下层测试集 R2为 0.507 表 6）。 

表 6 K-最近邻回归模型 KNN）预测精度 

Table 6 Prediction accuracy of the K-Nearest Neighbor Regression Model 

预测指标 

Predictive indicators 

土层 

Soil layer /cm 
数据集 Dataset 均方误差MSE 

均方根误差

RMSE 

平均绝对误

差MAE 

平均绝对百分

比误差MAPE 

决定系数

R² 

EC、pH 0~20 训练集 Train set 74.113 8.609 6.029 33.378 0.726 

测试集 Test set 216.037 14.698 9.519 51.698 0.631 

20~40 训练集 Train set 64.666 8.041 5.288 23.202 0.883 

测试集 Test set 148.425 12.183 8.748 51.901 0.656 

EC 0~20 训练集 Train set 94.677 9.730 5.716 32.157 0.764 

测试集 Test set 247.566 15.734 12.441 42.019 0.276 

20~40 训练集 Train set 92.734 9.630 7.155 31.107 0.851 

测试集 Test set 139.294 11.802 8.459 51.834 0.507 

 5）SAR预测模型精度对比。EC、pH作为 SAR预测指标明显优于 EC单独作为 SAR预测指标。

对于 EC、pH作为 SAR预测指标，如表 3~表 6及图 4所示，不同模型 LR、RF、DT、KNN）的预测模

型评估结果显示，RF模型在测试集上综合表现最优。上层土壤 RF的测试集 R² 0.793）显著高于 LR

 0.653）、DT 0.557）和 KNN 0.631），且其MSE 59.790）和MAE 5.730）均为最低。下层土壤 RF

的 R² 0.898）高于 LR 0.838），但高于 DT 0.501）和 KNN 0.656），其综合误差指标 MSE、

RMSE、MAE、MAPE）整体最低。空间分布图 图 4）显示 RF模型在上下两层土壤的预测结果更符合

实际值的空间差异特征。而 DT模型在训练集上 MSE=0）存在明显的过拟合现象。综合测试集精度、

误差指标及空间分布效果，RF模型展现出最优的预测性能和指标均衡性，是本研究中表现最佳的回归模

型。 



 

 

 

注：a、b、c、d分别为 0~20 cm层 LR、RF、DT、KNN模型测试集预测图，e、f、g、h分别为 20~40 cm层 LR、RF、

DT、KNN模型测试集预测图。Note: Graphs a, b, c, and d are respectively the prediction graphs of the test sets of the upper-level 

LR, RF, DT, and KNN models, while graphs e, f, g, and h are respectively the prediction graphs of the test sets of the lower-level LR, 

RF, DT, and KNN models. 

图 4土壤钠吸附比空间预测图 

Fig. 4 Prediction plots of SAR 

3 讨 论 

3.1 土壤 SAR 垂直分布特征 

SAR上下两层均值分别为 22.23和 28.02，上层显著低于下层。根本原因在于上层 Na+含量低于下

层，而上下两层 Ca2+、Mg2+含量接近 表 2）。这种 Na⁺的垂直分布特征受多种因素共同作用。在降雨或

灌溉条件下，表层土壤频繁受到淋洗，尽管土壤胶体对 Na⁺有一定吸附能力，但部分 Na⁺仍被置换并随水

下渗，导致表层 SAR降低[22]。随着土壤深度增加，水分垂直流动性减弱限制了 Na+与 Ca2+、Mg2+的置换
[23]，加之植物根系主要从有效根区 常在中下层）吸收水分进行蒸腾[24]，根系对水分的吸收强度远大于

对 Na+的吸收[25]，导致根系周围 Na⁺浓度显著浓缩，直接促使下层 SAR值升高。此外，滨海盐碱土成土

母质 如海相沉积物）本身可能含有一定量的钙镁矿物，在风化过程中逐步释放，进一步弥补了上下层

离子含量的差异[26]，且二者作为强交换能力的二价阳离子易在土壤胶体上稳定吸附并占据主导[27-28]。 

3.2 SAR 的影响因素 

SAR与 K+、Cl-、SO4
2-、EC、pH、BD呈显著正相关性，主要源于高 SAR环境下，Na⁺在土壤胶体

表面的交换位点占有率升高，通过竞争性置换作用将部分吸附态 K⁺释放至土壤溶液中[29]，提升 K⁺浓度。

同时，Cl⁻和 SO₄²⁻作为主要的伴随阴离子，因“伴随离子效应”[20]浓度随 Na+同步升高，共同促进高钠盐

的积累与 SAR增加，这必然导致土壤溶液的总离子浓度上升，从而使 EC同步增加[21]。高 SAR会导致土

壤结构破坏与紧实[30]，进而增加土壤容重，而紧实的土壤进一步阻碍水分和盐分的淋溶；Na⁺累积可通过

水解作用产生 OH⁻，从而提高土壤 pH[31]。  

土壤 SAR与 HCO3
-、SOM、SWC、STP、SCP、KS呈显著负相关性，主要原因有高 SAR常伴随碱



 

 

性环境，HCO3
-在碱性条件下易转化为 CO3

2-，与环境中的 Ca2+、Mg2+结合形成碳酸盐沉淀[32]，此过程消

耗了溶液中的 Ca²⁺和Mg²⁺，降低了其有效性，从而相对提高了 Na⁺的交换优势，进一步恶化土壤。在高

SAR条件下，Na⁺优势取代土壤胶体上的 Ca²⁺和Mg²⁺，导致土壤胶体分散，引发颗粒收缩与孔隙减少
[30]，这种孔隙结构恶化直接导致 STP和 SCP显著降低，损害了土壤的导水能力，表现为 SWC的下降与

KS降低[33]。高 Na⁺含量造成的盐渍化会抑制土壤团聚体的形成和稳定性，进而影响土壤有机质的输入与

积累[34]。 

3.3 SAR 预测模型 

采用 EC和 pH共同预测土壤 SAR较单独使用 EC预测误差更低，主要原因在于 EC和 pH共同提供

了更全面、更直接反映影响 SAR关键过程的信息：EC综合指示离子总浓度，在预测模型中权重最高，

与 SAR由 Na⁺浓度直接驱动的原理相符[6,35]。相比之下，pH权重较低，与 SAR的关系更为间接，且常与

交换性钙镁离子等其他土壤属性存在共线性，削弱了其独立的解释能力[36-37]。但保留 pH仍具价值，因为

它关联着土壤碱化状态及离子沉淀过程，可能蕴含着独特的非线性或交互信息，若将其删除可能导致模

型性能意外下降[38-39]。本研究最终选用随机森林回归模型，因其通过 Bagging集成和特征随机选择有效抑

制过拟合、降低方差并增强鲁棒性[11,40]。线性回归模型难以处理变量间的非线性响应；决策树回归模型

对土壤数据存在的局部异常值和噪声敏感，容易过拟合；K-最近邻回归模型因依赖局部邻域的平均值而

易受异常值干扰。因此，RF凭借其更优的泛化能力和对复杂非线性关系的捕捉能力，成为本研究的最佳

模型。 

4结 论 

SAR值随土壤深度增加而显著增加，上层 SAR值为 22.23，下层 SAR值为 28.02，均明显高于碱化

土壤的标准值 SAR＞13），该地区土壤被归类为中度-钠质土。土壤 SAR与 K+、Cl-、SO4
2-、EC、pH、

BD呈显著正相关性，SAR与 HCO3
-、SOM、SWC、STP、SCP、KS呈显著负相关性。其中，Cl-、SO4

2-

和 EC为影响 SAR的主导驱动因子。在本研究的 4个模型分析中，随机森林 RF）回归模型在测试集土

壤上下两层均表现出最佳的综合预测效果，土壤 EC占比权重最高。本研究构建的预测框架成功实现了河

北滨海盐渍土 SAR的精准模拟，为优化钠离子迁移阻控方案提供了科学依据。 

参考文献（References） 

[1] Food and Agriculture Organization of the United Nations. Global Status Report on Saline and Alkaline Lands [R]. 

Bangkok, International Forum on Soil and Water Resources. 2024.[联合国粮食及农业组织.全球盐碱地现状报告[R]. 

曼谷,国际土壤和水资源论坛. 2024.] 

[2] Xu G F. The stuty on the improvement effect of saline-alkali soil in Luyang lake, Weinan[D]. Yangling, Shaanxi: 

Northwest A & F University, 2018. [徐国凤. 渭南卤阳湖盐碱地治理技术效果研究[D]. 陕西杨凌: 西北农林科技大

学, 2018.] 

[3] Xing K Y. Research on the saline-alkali tolerant/philic microorganisms with bisphenol A degradation ability inhabiting 

in saline-alkali soil of Northeast China[D]. Zhenjiang, Jiangsu: Jiangsu University, 2022. [邢凯燕. 东北盐碱土中耐/嗜

盐碱型的双酚 A降解微生物研究[D]. 江苏镇江: 江苏大学, 2022.] 

[4] Zhang G M, Gu W, Wu Z Z, et al. The effect of storm surge on soil salt content of the farmlands along the Bohai Bay 

in China[J]. Advances in Earth Science, 2006, 21(2): 157-160. [张国明, 顾卫, 吴之正, 等. 渤海湾风暴潮倒灌对沿

岸农田土壤盐分的影响[J]. 地球科学进展, 2006, 21(2): 157-160.] 

[5] Gu W T, Jin W J, YangTao L W, et al. Distribution characteristics of soil nutrients and salt content of northwest arid 

region in China—Taking the industrial park in Gansu as an example[J]. Chinese Agricultural Science Bulletin, 2015, 

31(9): 212-215. [顾文婷, 金文杰, 杨陶丽薇, 等. 中国西北干旱地区盐渍化土壤盐分和养分的分布特征——以甘

肃产业园区为例[J]. 中国农学通报, 2015, 31(9): 212-215.] 

[6] Guo K, Chen L N, Zhang X M, et al. Water and salt distribution in coastal saline soil after infiltration of melt-water 

of saline water ice with different sodium adsorption ratio[J]. Chinese Journal of Eco-Agriculture, 2011, 19(3): 506-510. 



 

 

[郭凯, 陈丽娜, 张秀梅, 等. 不同钠吸附比的咸水结冰融水入渗后滨海盐土的水盐分布[J]. 中国生态农业学报, 

2011, 19(3): 506-510.] 

[7] Wang J, Xiao L, Bi D X, et al. Processes of leonardite altering cation and anion composition of soil solution in salt-

affected soil in the Yellow River Delta[J]. Acta Pedologica Sinica, 2018, 55(6): 1367-1376. [王洁, 校亮, 毕冬雪, 等. 

风化煤改变黄河三角洲盐渍化土壤溶液组分的过程[J]. 土壤学报, 2018, 55(6): 1367-1376.] 

[8] Xie Y C, Ning H F, Zhang X B, et al. Reducing the sodium adsorption ratio improves the soil aggregates and organic 

matter in brackish-water-irrigated cotton fields[J]. Agronomy, 2024, 14(9): 2169. 

[9] Suarez D L, Wood J D, Lesch S M. Infiltration into cropped soils: Effect of rain and sodium adsorption ratio-impacted 

irrigation water[J]. Journal of Environmental Quality, 2008, 37(5 Suppl): S169-S179. 

[10] Ma X D, Liu J Z, Chen Y J, et al. Distribution characteristics and influencing factors of soil sodium adsorption ration 

around Tamarix chinensis in the Yellow River Delta[J]. Chinese Journal of Soil Science, 2022, 53(6): 1350-1359. [马笑

丹, 刘加珍, 陈永金, 等. 黄河三角洲柽柳周边土壤钠吸附比分布特征及影响因素分析[J]. 土壤通报, 2022, 53(6): 

1350-1359.] 

[11] Mohammed S, Arshad S, Bashir B, et al. Evaluating machine learning performance in predicting sodium adsorption 

ratio for sustainable soil-water management in the eastern Mediterranean[J]. Journal of Environmental Management, 2024, 

370: 122640. 

[12] Arshad S, Kazmi J H, Prodhan F A, et al. Exploring dynamic response of agrometeorological droughts towards winter 

wheat yield loss risk using machine learning approach at a regional scale in Pakistan[J]. Field Crops Research, 2023, 302: 

109057. 

[13] Chandan, Thakur R. Recent trends of machine learning in soil classification: A review[J]. International Journal of 

Computational Engineering Research, 2018,8(9): 25–32. 

[14] Xie X F, Pu L J, Shen H Y, et al. Dynamics and prediction of soil salinization parameters under the amelioration of 

heavy coastal saline-alkali land[J]. Acta Pedologica Sinica, 2022, 59(6): 1504-1516.[解雪峰, 濮励杰, 沈洪运, 等. 滨

海重度盐碱地改良土壤盐渍化动态特征及预测[J]. 土壤学报, 2022, 59(6): 1504-1516.] 

[15] Abedi F, Amirian-Chakan A, Faraji M, et al. Salt dome related soil salinity in southern Iran: Prediction and mapping 

with averaging machine learning models[J]. Land Degradation & Development, 2021, 32(3): 1540-1554. 

[16] Chen B L, Zheng H W, Luo G P, et al. Adaptive estimation of multi-regional soil salinization using extreme gradient 

boosting with Bayesian TPE optimization[J]. International Journal of Remote Sensing, 2022, 43(3): 778-811. 

[17] Gautam V K, Pande C B, Moharir K N, et al. Prediction of sodium hazard of irrigation purpose using artificial neural 

network modelling[J]. Sustainability, 2023, 15(9): 7593. 

[18] Gao M J, Wang X, Meng L L, et al. Spatial correlation analysis of seawater intrusion and soil salinization in coastal 

developed area[J]. Environmental Chemistry, 2022, 41(3): 987-1000. [高铭骏, 汪旭, 孟玲珑, 等. 沿海发展区海水入

侵与土壤盐渍化空间关联解析[J]. 环境化学, 2022, 41(3): 987-1000.] 

[19] Bao S D. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000. [鲍士旦. 土

壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.] 

[20] Qadir M, Schubert S. Degradation processes and nutrient constraints in sodic soils[J]. Land Degradation & 

Development, 2002, 13(4): 275-294. 

[21] Lin Z Q, Bañuelos G S. Soil salination indicators[M]//Environmental Indicators. Dordrecht: Springer Netherlands, 

2014: 319-330. 

[22] Dong L X, Tan J L, Li M, et al. Effect of salinities and sodium adsorption ratio of irrigation water on infiltration and 

distribution of water and salt under gravel-sand mulching[J]. Journal of Drainage and Irrigation Machinery Engineering, 

2022, 40(12): 1284-1289. [董立霞, 谭军利, 李淼, 等. 覆砂下微咸水盐度和钠吸附比对水盐入渗及分布的影响[J]. 

排灌机械工程学报, 2022, 40(12): 1284-1289.] 

[23] Chen X L. Research on the methods of water-salt control and vegetation construction under drip irrigation in coastal 

saline soil[D]. Beijing: University of Chinese Academy of Sciences, 2015. [陈秀龙. 滨海盐碱地滴灌水盐调控与植被

构建方法研究[D]. 北京: 中国科学院大学, 2015.] 



 

 

[24] Liu M Z, Sun J X, Jiang G M, et al. Hydraulic redistribution in plant-soil systems[J]. Acta Ecologica Sinica, 2006, 

26(5): 1550-1557. [刘美珍, 孙建新, 蒋高明, 等. 植物-土壤系统中水分再分配作用研究进展[J]. 生态学报, 2006, 

26(5): 1550-1557.] 

[25] Lincoln T, Eduardo Z, Ian M , et al. Plant physiology and development[M]. 7th ed. Cambridge: Oxford University 

Press 2017. 

[26] Nan J K. Ameliorative effects of flue gas desulfurization gypsum and organic material on coastal saline soil in north 

Jiangsu Province[D]. Nanjing:Nanjing Agricultural University, 2016.[南江宽.脱硫石膏与有机物料对苏北滨海盐渍土

的改良效应及评价[D].南京：南京农业大学,2016.] 

[27] Huang C Y. Soil science[M]. Beijing: China Agriculture Press, 2000. [黄昌勇. 土壤学[M]. 北京: 中国农业出版

社, 2000.] 

[28] Zhang S W, Chen X H, Tong L, et al. Method improvement for determination of soil exchangeable calcium and 

magnesium[J]. Journal of Yunnan Agricultural University(Natural Science), 2020, 35(6): 1081-1088. [张思文, 陈晓辉, 

童灵, 等. 土壤交换性钙和镁测定方法的改进研究[J]. 云南农业大学学报 自然科学）, 2020, 35(6): 1081-1088.] 

[29] Xiong M B, Lei X Z, Tian Y B, et al. Research progress of K+ adsorbing-desorbing kinetics in soils[J]. Ecology and 

Environmnet, 2003, 12(1): 115-118. [熊明彪, 雷孝章, 田应兵, 等. 钾离子在土壤中吸附和解吸动力学研究进展[J]. 

生态环境, 2003, 12(1): 115-118.] 

[30] Rengasamy P, Olsson K A. Sodicity and soil structure[J]. Soil Research, 1991, 29(6): 935. 

[31] Yu T R, Wang Z Q. Analytical chemistry of soils [M]. Beijing: Science Press, 1988. [于天仁，王振权. 土壤分析

化学[M]. 北京: 科学出版社, 1988.] 

[32] Gao X B, Pan Z D, Gong P L, et al. Process and mechanism of microbial induced carbonate precipitation[J]. 

Carsologica Sinica, 2022, 41(3): 441-452. [高旭波, 潘振东, 龚培俐, 等. 微生物诱导碳酸盐岩沉淀过程及作用机理

[J]. 中国岩溶, 2022, 41(3): 441-452.] 

[33] Wu Z D, Wang Q J. Study on impact of sodium adsorption ratio of saline water on soil physical and chemical 

properties and infiltration characteristics[J]. Agricultural Research in the Arid Areas, 2008, 26(1): 231-236. [吴忠东, 王

全九. 微咸水钠吸附比对土壤理化性质和入渗特性的影响研究[J]. 干旱地区农业研究, 2008, 26(1): 231-236.] 

[34] Dong X L, Wang J T, Tian L, et al. Review of relationships between soil aggregates, microorganisms and soil organic 

matter in salt-affected soil[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 364-372. [董心亮, 王金涛, 田柳, 等. 

盐渍化土壤团聚体和微生物与有机质关系研究进展[J]. 中国生态农业学报, 2023, 31(3): 364-372.] 

[35] Gao W Q, Zhang T B, Tong J K, et al. Effects of brackish water with different sodium-potassium ratios on soil water-

salt characteristics and winter wheat growth[J]. Journal of Soil and Water Conservation, 2024, 38(6): 372-380. [高伟强, 

张体彬, 童建康, 等. 不同钠钾比微咸水对土壤水盐特性和冬小麦生长的影响[J]. 水土保持学报, 2024, 38(6): 

372-380.] 

[36] Zhou W T, Lan T, Pan Y, et al. Construction of minimum data set with small number of samples for soil quality 

assessment: A case study of a typical land in the south bank of Yellow River irrigation area of Hangjin Banner, Inner 

Mongolia[J]. Journal of China Agricultural University, 2022, 27(6): 225-235. [周文涛, 兰天, 潘岳, 等. 土壤质量评价

中少量样本最小数据集的构建——以内蒙古杭锦旗黄河南岸灌区典型地块为例[J]. 中国农业大学学报, 2022, 

27(6): 225-235.] 

[37] Guo X L, Cao M. Study on pedo-transfer functions of cation exchange capacity in dry farming region[J]. Pure 

Mathematics, 2023,13(3): 683-693. [郭孝理, 曹梦. 旱作区阳离子交换量土壤转换函数的研究[J]. 理论数学 , 

2023,13 (3): 683-693.] 

[38] Power L, Guha K. Feature importance and explainability in quantum machine learning[EB/OL]. 2024: arXiv: 

2405.08917. 

[39] Zhang L. Feature selection method based on complementarity of feature classification capabilities[D]. Tianjin: 

Nankai University, 2015. [张璐. 基于特征分类能力互补性的特征选择方法[D]. 天津: 南开大学, 2015.] 



 

 

[40] Tran D A, Tsujimura M, Ha N T, et al. Evaluating the predictive power of different machine learning algorithms for 

groundwater salinity prediction of multi-layer coastal aquifers in the Mekong Delta, Vietnam[J]. Ecological Indicators, 

2021, 127: 107790. 

 责任编辑：檀满枝） 


